
RESEARCH POSTER PRESENTATION DESIGN © 2012

www.PosterPresentations.com
RESEARCH POSTER PRESENTATION DESIGN © 2019

www.PosterPresentations.com

METHODOLOGY

[1] A. Kramer (2019). LIDAR Odometry with ICP. Bot Blog.
http://andrewjkramer.net/lidar-odometry-with-icp/

[2] A. Sakai, D. Ingram, J. Dinius, K. Chawla, A. Raffin, A. Paques
(2018). PythonRobotics: a Python code collection of robotics
algorithms. https://doi.org/10.48550/arXiv.1808.10703

Dave Laygo (B.S. MAE ‘25) • Christopher Gonzales (B.S. MAE ‘23)

Advisors/Mentors: Prof. Jorge Cortés • Prof. Sonia Martínez • Parth Paritosh • Scott Addams • Brandon Bao

Multi-Agent Robotics (MURO) Lab at University of California, San Diego

Real-Time Localization and Mapping in Mobile Robots

INTRODUCTION

IMPLEMENTATION

RESULTS

REFERENCES

ACKNOWLEDGEMENTS

CONCLUSIONS

Figure 2: Image of TurtleBot 4

with visible iRobot® Create® 3

mobile base, Raspberry Pi 4

display using ROS 2, 2D LiDAR,

and OAK-D stereo camera

➢ Wrote algorithm that reads TurtleBot 4 sensor
data and creates a resulting map of environment

➢ Integrated ROS topic publisher and subscriber to
perform localization and mapping in real-time

➢ Future Work:

I. Extend to Multi-Robotic Network

II. Extend to Quadcopter collaboration

III. Incorporate MarvelMind Beacon localization

The authors want to thank Parth, Scott, and Brandon for
the mentorship received throughout the project. We
are grateful to Prof. Jorge Cortés, Prof. Sonia Martínez,
Prof. Evdokimenko, Sergio Godinez, Jessica Baldis, and
the GEAR program for such an amazing opportunity.

Our Mobile Robot: TurtleBot 4

Iterative Closest Point (ICP) Correction

Odometry-Based Localization

➢ Iterative Closest Point (ICP) Algorithm

I. Compares current dataset to previous dataset

Association: point-to-point correspondence

Transformation: ෨𝑇 = 𝑎𝑟𝑔min
𝑇

1

𝑁
σ𝑖
𝑁 𝒕𝒊 − 𝑻𝒔𝒊

𝟐

Error Evaluation: 𝒆 =
𝟏

𝑵
σ𝒊
𝑵 𝒕𝒊 −𝑹𝒔𝒊 + 𝒕 𝟐

N – # of points R – rotation matrix t – translation

𝒕𝒊 – target points 𝒔𝒊 – source points
Unicycle Model Dynamics

➢ The TurtleBot 4 is a mobile educational/research
robot with advanced computing power, equipped
with a multitude of sensors for data collection
and modern mobility/control applications

➢ Operates wirelessly through network connection
with a personal computer using ROS and Linux Occupancy Grid Mapping

➢ The purpose of the project is to implement real-time

simultaneous localization and mapping algorithms in

Turtlebots to demonstrate 2-D mapping capabilities

➢ Discretization of map space into elements with
calculated occupancy probability estimation

𝒑 𝒎𝒊| 𝒛, 𝒙 → 𝟎: 𝒇𝒓𝒆𝒆 𝒑 𝒎𝒊| 𝒛, 𝒙 → 𝟎. 𝟓: 𝒖𝒏𝒌𝒏𝒐𝒘𝒏

𝒑 𝒎𝒊| 𝒛, 𝒙 → 𝟏: 𝒐𝒄𝒄𝒖𝒑𝒊𝒆𝒅

p – occupancy probability 𝒎𝒊 – occupancy cell

z – sensor measurements x – position of robot

➢ Bresenham’s Line Drawing Algorithm

I. Declares free space on occupancy grid map

Figure 8: Bresenham’s line
algorithm for LiDAR data

Figure 7: Comparison

of transformed data

without ICP (red)

versus with ICP (blue)

➢ Movement of the TurtleBot is modelled through
unicycle dynamics, a path-dependent state system

➢ Given a 2D plane with x-y coordinates, the equations
of motion are given by:

ሶ𝑥1 = 𝑣 cos 𝜃, ሶ𝑥2 = 𝑣 sin 𝜃, ሶ𝜃 = 𝜔

Heading: (𝑥, 𝑦, 𝜃)

𝑣 – linear input velocity

𝜔 – angular input velocity

Light Detection and Ranging (LiDAR) Data

➢ LiDAR operates on time of flight (TOF) principle

➢ LiDAR message obtained via /scan topic:

I. Ranges [m]: [0.15 (min) – 12 (max)]

II. Angles [rad]: angle_increment (0.5 degrees)

III. Timestamp and Header

➢ Data point of observed obstacle calculated by:

𝑥

𝑦

𝑣

𝜃

𝑣 sin 𝜃

𝑣 cos 𝜃
𝜔 Figure 3: Model of unicycle

dynamics on a 2D x-y plane

Decision parameter:
𝝓𝒌+𝟏 = 𝝓𝒌 + 𝟐∆𝒚

∆𝒚

➢ Odometry message obtained via /odom topic:

I. Position [m]

II. Orientation [quaternions]

➢ Estimation of robot’s change in position and
orientation over time based on motion sensors

𝒑𝒐𝒅𝒐𝒎 = 𝑹𝒛 × 𝒑𝒔𝒆𝒏𝒔𝒐𝒓 + 𝒅

➢ Wheel encoder induced drift

𝑥

𝑦

𝑦

True Odom Origin

𝑧

𝑧

𝜓
റ𝑝𝑜𝑑𝑜𝑚

റ𝑝𝑠𝑒𝑛𝑠𝑜𝑟

𝑑

Controls

➢ Final maps obtained using mapping algorithm

𝑑

𝜃

(𝑥1, 𝑦1)

Figure 5: LiDAR model hitting an obstacle

Figure 11: Occupancy Grid Map of MURO Lab

Figure 10: Raw LiDAR scan data map of MURO Lab

𝑥

𝑦

Figure 6: Rigid body static transformation

u i o

j k l

m , .

➢ TurtleBot 4 controls used in the project

was a simple open-loop control system

➢ Wireless control via ROS Keyboard

Teleoperation package, displayed on

Linux command-line interface

Figure 4: Keyboard keys for moving around the TurtleBot

➢ Data points are in LiDAR (sensor)

frame and need to be transformed

in order to obtain a static map

𝒙 = 𝒅𝐜𝐨𝐬𝜽 𝐲 = 𝒅𝐬𝐢𝐧𝜽 𝐳 = 𝟏

Robot

Figure 1: 2D Map Model of MURO Lab from top-down

Figure 9: Flowchart documenting real-time mapping procedure

➢ Iterative data transfer from TurtleBot to written mapping algorithm via ROS publishers and subscribers

(xsensor, ysensor)→ (xodom, yodom)

Publisher: Sends data from node to topic

I. TurtleBot (topic: /odom)

II. LiDAR (topic: /scan)

Subscriber: Receives data from a topic

I. Written Mapping Algorithm

	Slide 1

