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Abstract

A vakonomic mechanical system can be alternatively described by an extended la-

grangian using the Lagrange multipliers as new variables. Since this extended lagrangian

is singular, the constraint algorithm can be applied and a Dirac bracket giving the evo-

lution of the observables can be constructed.
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I Introduction

There are two different approaches to lagrangian systems subjected to nonholonomic con-

straints. The first one is based on d’Alembert principle [1, 34, 35, 38, 39] and the correspond-

ing equations of motion are termed nonholonomic. The second approach is purely variational

and it was proposed by V.V. Kozloz [25]. V.I. Arnold, V.V. Kozlov and A.I. Neishtadt [1]

coined the name of vakonomic (mechanics of variational axiomatic kind) to refer to that sort

of mechanics. Interesting comparisons between both approaches can be found in [7, 31, 35].

Both topics have received a lot of attention in recent years in the context of Geometric Mechan-

ics. Nonholonomic mechanics has been studied from a hamiltonian point of view [3, 14, 36], from

a lagrangian one [5, 9, 10, 21, 26, 28] and even from a Poisson one [32, 33, 37]. Several papers

are devoted to highlight the equivalence among these viewpoints [11, 23, 24]. Indeed, nonholo-

nomic mechanics has many applications to Engineering (robotics, control of satellites,...), since

it seems appropiate to model the dynamical behaviour of phenomenae like rolling, etc. (see [34]

and references therein). On the other hand, vakonomic mechanics is applied to study problems

of optimal control theory (being related to sub-Riemannian geometry [4, 6]), economic growth

theory [29], motion of microorganisms at low Reynolds number [22], etc. A geometric unified

approach was recently developed in [27].

The aim of this paper is to study the equations of motion of vakonomic mechanical systems

in the framework of singular lagrangian theories. As is well known, a vakonomic system given

by a lagrangian function L = L(qA, q̇A) and constraints Φi(q
A, q̇A) = 0, can be equivalently

described by the extended lagrangian L = L(qA, λi, q̇A, λ̇i) = L(qA, q̇A) + λiΦi (see [1]). This

new lagrangian is obviously singular, and its dynamics can be studied using Dirac’s machinery

of constraints [15]. A first step in this direction is due to Cariñena and Rañada [13], where they

considered a global constraint function and treated the problem in the lagrangian formalism.

Our program here is to apply the geometric version of Dirac-Bergmann constraint algorithm

due to Gotay and Nester [16, 17, 18] to the extended lagrangian L. For that purpose, we first

enlarge the original space of velocities Q to P = Q × R
m, and then we apply Gotay-Nester’s

procedure to L. We assume that L is a natural lagrangian, that is, L = T − U where T is

the kinetic energy derived from a Riemannian metric on Q, and U is the potential energy. In

addition, the constraints are supposed to be linear in the velocities. With these assumptions,

we find that the algorithm stabilizes at the second step or, in other words, there are only

secondary constraints. Moreover, all the constraints are second class accordingly with Dirac’s

terminology. This last fact implies that the final constraint submanifold M2 is symplectic with

respect to the canonical symplectic structure on T ∗P and the symplectic structure induced

there provides a Poisson bracket that is just the same induced by the ambient Dirac bracket

[15, 20]. A first result is that this procedure “reduces” the phase state from T ∗P to M2.
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Furthermore, the final constraint submanifold is diffeomorphic with M̄ × R
m, where M̄ is the

image in T ∗Q by the Legendre transformation of M . An interesting consequence of this iden-

tification is the possibility of defining a Poisson bracket on functions on M̄ which produces

a function on M2 (since we have to take account of the Lagrange multipliers). We are then

impelled to call this bracket as the vakonomic bracket, in distinction with the so-called nonholo-

nomic bracket in nonholonomic mechanics [2, 11, 24, 33, 37]. Indeed, the vakonomic bracket

gives the evolution of the observables of the vakonomic system.

If we consider a more general kind of constraints or lagrangians not necessarily regular (situ-

ations which are more common in applications), the proccess is of course very much involved,

since tertiary and higher order constraints will appear. We leave this problem for further

research.

The paper is organized as follows. In Section II, we review the two kinds of mechanics, nonholo-

nomic and vakonomic mechanics, from a unified variational approach. The constraint algorithm

in its geometric version is described in Section III and applied to vakonomic mechanics in Sec-

tions IV and V. In Section VI, we study the second order differential problem and in Section

VII, we classify the constraints according to Dirac. In Section VIII, we discuss what happens

if the constraints are not globally defined on TQ, that is, they are given by a submanifold of

TQ.

II Variational methods in mechanics

In this section we shall give a brief account of the variational principles involved in the derivation

of the equations of motion in classical mechanics. For a more extended discussion see for

instance [19, 27, 31, 35]. Let Q be an n-dimensional configuration manifold, and L : TQ −→ R

an autonomous lagrangian function. If (qA) are coordinates on Q, we denote by (qA, q̇A) the

natural bundle coordinates on TQ such that the tangent bundle projection τQ : TQ −→ Q reads

as τQ(qA, q̇A) = (qA). Given two points x, y ∈ Q we define the manifold of twice differentiable

curves joining x and y as

C2(x, y) = {c : [0, 1] −→ Q/ c is C2, c(0) = x and c(1) = y} .

Let c be a curve in C2(x, y). As is well known, the tangent space of C2(x, y) at c is given by

Tc C
2(x, y) = {X : [0, 1] −→ TQ/ X is C1, X(t) ∈ Tc(t)Q, X(0) = 0 and X(1) = 0} .

We will assume here that L is subjected to nonholonomic linear constraints given by a subman-

ifold M of TQ. Alternatively, the submanifold M can be viewed as the total space of a vector
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subbundle of TQ, or, equivalently, as a distribution on Q which will be denoted by the same

letter. Therefore, if the annihilator M o of M is locally spanned by m independent 1-forms {ω1,

. . . , ωm}, where ωi = µiAdq
A, we have that the constraint functions {Φ1, . . . ,Φm} are just the

evaluation functions of this basis, that is, Φi(vq) = 〈vq, ωi(q)〉, for all vq ∈ TqQ, 1 ≤ i ≤ m. Now,

we introduce the submanifold of C2(x, y) which consists of those curves which are compatible

with the constraint submanifold M

C̃2(x, y) = {c̃ ∈ C2(x, y) / ˙̃c(t) ∈Mc̃(t) , ∀t ∈ [0, 1]} .

Given a curve c̃ ∈ C̃2(x, y), the constraints allow us to consider a special vector subspace of

Tc̃ C
2(x, y)

Vc̃ = {X ∈ Tc̃ C
2(x, y) / ωi(X) = 0 , 1 ≤ i ≤ m} ,

which are the allowed variations. Then, if X = XA ∂

∂qA
, we deduce that X ∈ Vc̃ if and only if

µiAX
A = 0 , ∀ 1 ≤ i ≤ m ,(1)

along the curve c̃.

Next, define a functional J by

J : C2(x, y) −→ R

c 7→
∫ 1

0
L(ċ(t)) dt .

A direct computation using integration by parts shows that (see [31])

dJ (c)(X) =
∫ 1

0

(

∂L

∂qA
−

d

dt

(

∂L

∂q̇A

))

XA dt .

for c ∈ C2(x, y) and X ∈ Tc C
2(x, y).

(i) Unconstrained systems.

In this case, M = TQ. The Hamilton principle states that a curve c ∈ C2(x, y) is a

motion of the lagrangian system defined by L if and only if c is a critical point of J ; that

is, iff dJ (c)(X) = 0 for all X ∈ Tc C
2(x, y), or

∫ 1

0

(

∂L

∂qA
−

d

dt

(

∂L

∂q̇A

))

XA dt = 0 , ∀XA .

This condition is equivalent to the Euler-Lagrange equations

d

dt

(

∂L

∂q̇A

)

−
∂L

∂qA
= 0 , 1 ≤ A ≤ n .
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(ii) Nonholonomic mechanics. In this case, a curve c̃ ∈ C̃2(x, y) is a motion if and only if

it satisfies dJ (c̃)(X) = 0, for all X ∈ Vc̃, that is,

∫ 1

0

(

∂L

∂qA
−

d

dt

(

∂L

∂q̇A

))

XA dt = 0 ,

for all XA satisfying equation (1).

As before, we deduce that c̃ is a motion if and only if
(

∂L

∂qA
−

d

dt

(

∂L

∂q̇A

))

XA = 0 ,(2)

for all XA satisfying equation (1), which is just the statement of d’Alembert’s principle.

Therefore, c̃ is a motion for the nonholonomic system if and only if

d

dt

(

∂L

∂q̇A

)

−
∂L

∂qA
= −λiµiA , 1 ≤ A ≤ n ,(3)

for some Lagrange multipliers λ1, . . . , λm.

(iii) Vakonomic mechanics.

In vakonomic mechanics, a curve c̃ ∈ C̃2(x, y) is a motion if and only if dJ (c̃)(X̃) = 0, for

all X̃ ∈ Tc̃ C̃
2(x, y), i.e. the motions are the extremals of the restriction of the functional

to the curves satisfying the constraints. Now, using the Lagrange Multipliers Theorem

in an infinite dimensional context, we deduce (see [1, 19, 31, 35]) that c̃ is an admissible

motion if and only if there exist m functions λ1, . . . , λm , λi : [0, 1] −→ R such that

d

dt

(

∂L

∂q̇A

)

−
∂L

∂qA
= −λi

(

∂µiA
∂qB

q̇B −
∂µiB
∂qA

q̇B
)

−
dλi

dt
µiA , 1 ≤ A ≤ n .(4)

An alternative approach to vakonomic mechanics is the following. From (4) we deduce

that a curve c̃ = (qA(t)) in C̃2(x, y) is a solution of the vakonomic equations if and only if

there exist local functions λ1, . . . , λm on R such that c̄(t) = (qA(t), λi(t)) is an extremal

for the extended lagrangian

L : T (Q× R
m) −→ R , L = L + λiΦi ,

i.e. it satisfies the Euler-Lagrange equations


























d

dt
(
∂L

∂q̇A
) −

∂L

∂qA
= 0 , 1 ≤ A ≤ n ,

d

dt
(
∂L

∂λ̇i
) −

∂L

∂λi
= Φi(q

A, q̇A) = 0 , 1 ≤ i ≤ m ,

(see [1, 19, 31, 35] for details).
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III The constraint algorithm

First of all, let us recall the geometric formulation for lagrangian mechanics (see [30]). Let

S =
∂

∂q̇A
⊗ dqA be the canonical almost tangent structure on TQ and ∆ = q̇A

∂

∂q̇A
the Liouville

vector field on TQ. From the lagrangian L, we construct the Poincaré-Cartan 2-form ωL =

−dS∗(dL) and the energy EL = ∆(L) − L.

Then, the equations of motion can be equivalently written as

iXωL = dEL .(5)

Indeed, if the lagrangian L is regular, i.e. its Hessian matrix Hess(L) =

(

∂2L

∂q̇A∂q̇B

)

is not

singular, then ωL is symplectic, and (5) has a unique solution ΓL which is a second order

differential equation (SODE for short). The solutions of ΓL are just the ones of the Euler-

Lagrange equations. If L is not regular, then (5) has no solution in general, and even if a

solution exists, it will not be unique nor a SODE.

In order to treat with this kind of systems, Gotay and Nester [16, 17, 18] developed a con-

straint algorithm (a geometrization of the Dirac-Bergmann algorithm), applicable in the general

framework of presymplectic manifolds as is described in the following.

A presymplectic system is a triple, (M, ω, α), that consists of a smooth manifold M, a closed

2-form ω with constant rank and a closed 1-form α. We are interested in searching the possible

solutions of the equation

iXω = α .(6)

Let [ : TM −→ T ∗M be the map defined by [(X) = iXω. If ω is not symplectic, then [ is not

surjective and, consequently, (6) has no global solution on M in general.

Consider the points of M where (6) has a solution and assume that this set is a submanifold

M2 of M1 = M (this will be our case, since we are assuming that ω has constant rank). It

could still happen that the solutions on M2 are not tangent to M2. In consequence, we take a

submanifold M3 of M2 where the solutions are tangent to M2. Continuing with this process

repeatedly, we generate a sequence of submanifolds

. . . ↪→ Mi . . . ↪→ M2 . . . ↪→ M1 = M ,

in such a way that if the algorithm stabilizes for some k, i.e. Mk = Mk+1 ≡ Mf then, there

exists a vector field Γ on Mf such that

(iΓω = α)|Mf
.
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Notice that if we finish the process at the step k = 1, it will mean that there is a global solution

Γ on the whole of M.

Alternatively, the above submanifolds can be obtained as follows

Mi =
{

x ∈ M/ α(x)(z) = 0 , ∀z ∈ TxM
⊥
i−1

}

,

where

TxM
⊥
i−1 = {z ∈ TxM/ ω(x)(v, z) = 0 , ∀v ∈ TxMi−1} .

We call M2 the secondary constraint submanifold, M3 the tertiary constraint submanifold,

and in general Mi will be the i-ary constraint submanifold. If the algorithm stabilizes, then

Mf will be the final constraint submanifold. Accordingly, the (local) functions defining these

submanifolds will be termed secondary constraints, ternary constraints, and so on.

IV The lagrangian formalism

Let Q be an n-dimensional manifold representing the configuration space of a mechanical

system described by a lagrangian function L : TQ −→ R and subjected to linear nonholonomic

constraints given by a submanifold M of TQ.

We shall assume that the lagrangian is of natural type, that is L = T − U , where T is the

kinetic energy of a Riemannian metric g on Q, and U : Q −→ R is a potential energy.

In bundle coordinates L reads as

L(qA, q̇A) =
1

2
gAB(q)q̇Aq̇B − U(q) .

As we have seen above, the constraint submanifold M is locally defined as the zero set of m

independent linear nonholonomic constraints Φi(q
A, q̇A) = µiA(q)q̇A. For the sake of simplicity,

we shall assume that the constraints Φi are globally defined on the whole TQ. Later, we shall

consider the general case.

Consider the product manifold P = Q × R
m with local coordinates (qA, λi). As we have seen

in Section II, the equations of motion corresponding to the vakonomic problem given by L and

M can be formulated in terms of the extended lagrangian L : TP −→ R, L = L+ λiΦi.

In what follows, we will identify TP with TQ× TR
m, and denote by π1 : TQ× TR

m −→ TQ

and π2 : TQ × TR
m −→ TR

m the canonical projections of TQ × TR
m onto TQ and TR

m,

respectively.

The Poincaré-Cartan 2-form ωL associated to L is

ωL =

(

∂gAC
∂qB

q̇C + λi
∂µiA
∂qB

)

dqA ∧ dqB + µiAdq
A ∧ dλi + gBAdq

A ∧ dq̇B .
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Notice that ωL is not symplectic because of the singular caracter of L. Indeed,
∂L

∂λ̇i
= 0.

However, it still has constant rank as shows its Hessian matrix

Hess(L) =

















∂2L

∂q̇A∂q̇B
∂2L

∂λ̇i∂q̇B

∂2L

∂q̇A∂λ̇j
∂2L

∂λ̇i∂λ̇j

















=









Hess(L) 0

0 0









.

Therefore, we have

rank (ωL) = rank (Hess(L)) = rank (Hess(L)) = rank (ωL) = 2n .

We deduce that the triple (TP, ωL, dEL) is a presymplectic system, with EL = ∆(L) − L the

energy of L. In this presymplectic framework the equations of motion are written as

iXωL = dEL .(7)

Next, we will apply Gotay and Nester’s algorithm described in Section III to find a solution of

(7).

Put P1 = TP , then

P2 =
{

x ∈ P1/ 〈dEL, Z〉 (x) = 0 , ∀Z ∈ (TxP1)
⊥
}

,

where

(TxP1)
⊥ = {Z ∈ TxP1/ ωL(Z,W ) = 0, ∀W ∈ TxP1} = {Z ∈ TxP1/ [L(Z) = 0} .

Thus, to obtain P2 we need first to calculate ker [L.

A direct computation shows that

i ∂

∂λ̇i

ωL = 0 .

Moreover, we also have

iZiωL = 0 ,

where

Zi =
∂

∂λi
− gBCµiC

∂

∂q̇B
, 1 ≤ i ≤ m .

Therefore, since the vector fields {
∂

∂λ̇i
, Zi} are linearly independent and rank ωL = 2n, we

deduce that they generate ker [L, that is,

ker [L = span {Zi,
∂

∂λ̇i
} .
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Remark IV.1 It is not difficult to see that

dim (ker [L) = 2 dim(V (TP ) ∩ ker [L) ,

where V (TP ) is the vertical bundle over P . Therefore, L is a singular lagrangian of type II

accordingly to the classification in [8, 12].

Notice that EL = (π1)
∗(EL), where EL is the energy corresponding to the lagrangian L. In

what follows, we will write EL instead of (π1)
∗(EL), for brevity.

Now, in order to compute the constraint functions which define P2, we calculate (dEL)x

(

∂

∂λ̇i

)

and (dEL)x(Zi), 1 ≤ i ≤ m

(dEL)

(

∂

∂λ̇i

)

=
∂EL

∂λ̇i
= 0 ,

(dEL)(Zi) = Zi(EL) =

(

∂

∂λi
− gBCµiC

∂

∂q̇B

)(

∂L

∂q̇A
q̇A − L

)

= −gBCµiC
∂L

∂q̇B
+ gBCµiC

∂L

∂q̇B
− gBCµiCgAB q̇

A

= −µiAq̇
A ,

which are the original constraints.

Thus, we have

P2 = {x ∈ P1 / Φi(π1(x)) = 0, 1 ≤ i ≤ m} .

Next, we shall compute TP2. Take X a vector field tangent to P2, that is, if

X = XA
1

∂

∂qA
+X i

2

∂

∂λi
+XA

3

∂

∂q̇A
+X i

4

∂

∂λ̇i
,

we have

X(Φi) = XA
1 q̇

B ∂µiB
∂qA

+XA
3 µiA = 0 , ∀i .(8)

The matrix (µiA) has rank m, so we can assume that the submatrix (µij), 1 ≤ i, j ≤ m is

invertible, with inverse matrix (µji). Equation (8) can be written as

Xj
3µij +Xa

3µia = −XA
1 q̇

B ∂µiB
∂qA

,

where 1 ≤ i, j ≤ m and m+ 1 ≤ a ≤ n. Now, multiplying by (µji) we obtain that

Xj
3 = −µjiXA

1 q̇
B ∂µiB
∂qA

− µjiXa
3µia .
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Consequently, we deduce that TP2 is spanned by the vector fields

{
∂

∂λi
,
∂

∂λ̇i
,
∂

∂qA
− q̇B

∂µiB
∂qA

µji
∂

∂q̇j
,
∂

∂q̇a
− µjiµia

∂

∂q̇j
} .

Next, we want to compute TP⊥
2 . Consider a vector field Y

Y = Y A
1

∂

∂qA
+ Y i

2

∂

∂λi
+ Y A

3

∂

∂q̇A
+ Y i

4

∂

∂λ̇i
,

such that Y ∈ TP⊥
2 . After some calculations, we obtain that

Y A
1 = 0 ,

Y A
3 = −gEAµiEY

i
2 .

Then

dEL(Y ) = gAB q̇
BY A

3 = −gAB q̇
BgEAµiEY

i
2 = −q̇EµiEY

i
2 = ΦiY

i
2 = 0 ,(9)

on P2 and, therefore, P3 = P2. This means that the algorithm stabilizes at P2, and P2 is the

final constraint submanifold. Our aim in the rest of this section is to get explicit expressions

for the solutions of equation (7). For that purpose, take an arbitrary vector field Γ on TP

locally written as

Γ = AA ∂

∂qA
+ Bi

∂

∂λi
+ CA

∂

∂q̇A
+ Di ∂

∂λ̇i
,

and assume that it satisfies

iΓωL = dEL .

A straightforward computation shows that

iΓωL =

[

AB[(
∂gBC
∂qA

−
∂gAC
∂qB

)q̇C + λi(
∂µiB
∂qA

−
∂µiA
∂qB

)] − BiµiA − CBgAB

]

dqA

+ AAµiAdλ
i + AAgABdq̇

B ,

dEL =

[

1

2

∂gBC
∂qA

q̇C q̇B +
∂U

∂qA

]

dqA + gAB q̇
Bdq̇A .

Comparing the coefficients of dq̇B and dλi we deduce that

ABgAB = q̇BgBA , A
AµiA = 0 ,

which implies AA = q̇A, 1 ≤ A ≤ n, and

µiAq̇
A = 0, 1 ≤ i ≤ m .(10)

Comparing now the coefficients of dqA, we find that Bi and CB are related as follows

BiµiA + CBgAB = λiq̇D
(

∂µiD
∂qA

−
∂µiA
∂qD

)

+

(

1

2

∂gDC
∂qA

−
∂gAC
∂qD

)

q̇C q̇D −
∂U

∂qA
,
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or, equivalently,

CB = gAB q̇D
[

λi
(

∂µiD
∂qA

−
∂µiA
∂qD

)

+

(

1

2

∂gCD
∂qA

−
∂gAC
∂qD

)

q̇C
]

− gAB
∂U

∂qA
− gABµiAB

i .(11)

Moreover, since Γ has to be tangent to P2, we get

CBµjB + q̇Aq̇B
∂µjB
∂qA

= 0 .(12)

Introducing the expression for CB obtained in (11) into (12), we have

gABµjBµiAB
i = q̇Aq̇B

∂µjB
∂qA

+ µjBg
AB q̇D

[

λi
(

∂µiD
∂qA

−
∂µiA
∂qD

)

+

(

1

2

∂gCD
∂qA

−
∂gAC
∂qD

)

q̇C
]

− µjBg
AB ∂U

∂qA
.

But the matrix D = (Dij), with

Dij = gABµiAµjB ,(13)

is regular (see [26, 28]), so Bi is explicitly given as

Bi = Dij q̇Aq̇B
∂µjB
∂qA

+DijµjBg
AB q̇D

[

λk
(

∂µkD
∂qA

−
∂µkA
∂qD

)

+

(

1

2

∂gDC
∂qA

−
∂gAC
∂qD

)

q̇C
]

− DijµjBg
AB ∂U

∂qA
,(14)

where (Dij) is the inverse matrix of D.

Therefore, from (11) we obtain an explicit formula for CB

CB = gAB q̇D
[

λk
(

∂µkD
∂qA

−
∂µkA
∂qD

)

+

(

1

2

∂gCD
∂qA

−
∂gAC
∂qD

)

q̇C
]

− gAB
∂U

∂qA

− gABµiA

[

Dij q̇E q̇F
∂µjF
∂qE

+DijµjFg
EF q̇D[λk

(

∂µkD
∂qE

−
∂µkE
∂qD

)

+

(

1

2

∂gDC
∂qE

−
∂gEC
∂qD

)

q̇C ] −DijµjFg
EF ∂U

∂qE

]

.(15)

Summing up, a vector field Γ with local expression

Γ = q̇A
∂

∂qA
+ Bi

∂

∂λi
+ CA

∂

∂q̇A
+ Di ∂

∂λ̇i
,(16)

satisfies the conditions






(iΓωL = dEL)|P2
,

Γ ∈ TP2 ,
(17)

if and only if the coefficients Bi and CB satisfy (14) and (15), respectively. The parameters Di

remain undetermined and give rise to a family ΓD of vector fields satisfying the above system.
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Remark IV.2 The solutions we have obtained do not satisfy the SODE condition along P2

since S(Γ) 6= ∆, that is, Bi 6= λ̇i, 1 ≤ i ≤ m. In next sections, we will find a submanifold S of

P2 and a vector field Γ̃ on it such that (iΓ̃ωL = dEL)|S and (S(Γ̃) = ∆)|S hold simultaneously.

The existence of this submanifold can be ensured if certain admissibility condition is fullfilled

(see [16, 18]).

We are now in a position to make a first comparison between what we have obtained for

(TP, ωL, dEL) by means of the presymplectic formalism and the vakonomic formulation for the

original lagrangian L.

First of all, the final constraint submanifold P2 and M are closely related. Indeed, P2 and

M × TR
m are diffeomorphic in a natural way. Moreover, let Γ be a vector field on P2 such

that iΓωL = dEL. Since TP2 is diffeomorphic to TM × TTR
m, then Γ splits as Γ = (X,Z),

with X = Xλ : M −→ TM and Z = Z(q,q̇) : TR
m −→ TTR

m vector fields on M and TTR
m

depending on the parameters λ and (q, q̇), respectively.

The obstacle for the above splitting to be “clean”, that is, X being independent on λ and Z

being independent on (q, q̇), is the coupling of the coordinates (q, q̇) and λ in the vakonomic

equations, a fact that can also be seen in the explicit expressions for Bi = Bi(q, λ, q̇) and

CB = CB(q, λ, q̇) (see (14) and (15)). A look to these local expressions shows that if the crossed

terms
∂µiB
∂qA

−
∂µiA
∂qB

vanish, then we will be able to project “cleanly” Γ onto a vector field X

independent of parameters. Of course, this is just the case when the constraints are holonomic

[31].

On the other hand, this can be done also for some mechanical systems subjected to nonholo-

nomic constraints: for example, whenever we can get an expression for the Lagrange multipliers

(λi(t)) along solutions (qA(t), q̇A(t)). This is the case of the vertical rolling disk (see Exam-

ple VII.4). In fact, we have that Xλ0(t) = ΓL,M , where (λi0(t)) is a special curve of Lagrange

multipliers and ΓL,M is the nonholonomic vector field along M . Consequently, the solutions

of the nonholonomic problem may be regarded as a subset of the vakonomic ones [4, 31]. As

a by-product of the application of Gotay and Nester algorithm, we have found a geometric

characterization of this fact. However, it will not be true in general as pointed out in [31] and

the question of when this can be done is still unanswered.

V The hamiltonian formalism

In this section, we will discuss the vakonomic system within the framework of the cotangent

bundle T ∗P . First of all, note that the lagrangian L is almost regular, so we are just in the

assumptions of Gotay and Nester [16, 17]. Our interest in developing this formulation is to

12



classify the constraints appeared in the process following Dirac’s criterion and, then, to define

a Dirac bracket giving the evolution of dynamical variables.

Consider the Legendre transformation of L

FL : TP −→ T ∗P .

As is well known, the Legendre mapping is a fibered mapping over P , i.e. πP ◦FL = τP , where

πP : T ∗P −→ P is the canonical projection. In local coordinates the Legendre transformation

reads as

FL(qA, λi, q̇A, λ̇i) = (qA, λi,

(

∂L

∂q̇A

)

(qA,q̇A)

+ λi
(

∂Φi

∂q̇A

)

(qA,q̇A)

, 0) .

Therefore, if (qA, λi, p̂A, p̂i) are bundle coordinates in T ∗P we have

p̂A = gAB q̇
B + λiµiA , p̂i = 0 ,

along the image of FL.

Next we will prove that L is almost-regular according to the definition in [16, 17].

Proposition V.1 The following statements are true

(i) FL(TP ) = M1 is a submanifold of T ∗P ,

(ii) FL is a submersion on its image and its fibres are connected submanifolds of TP.

Therefore, L is almost-regular.

Proof: The Jacobian matrix of FL is














In 0 K 0

0 Im U 0

0 0 Hess(L) 0

0 0 0 0















,

where K =

(

q̇C
∂gBC
∂qA

+ λi
∂µiB
∂qA

)

and U = (µiA). Then, rankFL = 2n +m at every x ∈ TP ,

and from the Rank Theorem we deduce that M1 is a submanifold of T ∗P . Moreover, with this

differentiable structure the mapping FL : TP −→M1 is a submersion.

Next, we will prove that FL−1(y) = span {

(

∂

∂λi

)

πP (y)

}, for all y ∈M1. In this case, the fibres

of FL would be connected. Indeed, let x1, x2 ∈ FL−1(y). Then both are in the same fibre

of TP , i.e. τP (x1) = τP (x2), and from the definition of FL we deduce that FL(π1(x1)) =

13



FL(π1(x2)). Therefore π1(x1) = π1(x2) since FL is a diffeomorphism. Consequently, x1 and

x2 differ only in their components λ̇i. Thus, we have completed the proof. 2

Notice that M1 is locally defined by the equations p̂i = 0, for all i. Denote by ω1 = j∗1ωP , where

ωP = dqA ∧ dp̂A + dλi ∧ dp̂i is the canonical symplectic form on T ∗P and j1 : M1 −→ T ∗P is

the canonical inclusion. Then

ω1 = dqA ∧ dp̂A

is a closed two-form on M1 with constant rank 2n < dimM1.

Since L is almost regular, the energy EL is constant along the fibres of FL and it induces a

well-defined function h1 : M1 −→ R by the relation h1 ◦ FL = EL. In fact,

h1(q
A, λi, p̂A, 0) =

1

2
gAB(p̂A − λiµiA)(p̂B − λjµjB) + U(q) .

Thus, the system (M1, ω1, dh1) is presymplectic and we can apply to it the constraint algorithm.

It should be noticed that Gotay and Nester’s Equivalence Theorem (see [16, 17]) implies that

this algorithm will stabilize at a submanifold M2 of M1 so that the following diagram

P1 = TP
FL
−→ T ∗P

i1 ↑
FL1

↘ ↑ j1

P2 M1
FL2

↘ ↑ j2

M2

is conmutative. Here, i1 and j2 are the canonical inclusions, and FLk = FL|Pk are submersions

on their images Mk, for k = 1, 2. The primary constraints are those defining M1, that is, p̂i = 0.

In order to calculate the secondary constraints which in turn define M2, we first compute

ker ω1(y) = (TyM1)
⊥ = {ζ ∈ TyM1 / (ω1)y(ζ, η) = 0 , ∀η ∈ TyM1} .

In terms of the induced coordinate system on M1, the tangent space of M1 at y is locally

generated by

{

(

∂

∂qA

)

y

,

(

∂

∂λi

)

y

,

(

∂

∂p̂A

)

y

} .

If

ζ = ζA1

(

∂

∂qA

)

y

+ ζ i2

(

∂

∂λi

)

y

+ ζA3

(

∂

∂p̂A

)

y

∈ TyM1 ,

η = ηA1

(

∂

∂qA

)

y

+ ηi2

(

∂

∂λi

)

y

+ ηA3

(

∂

∂p̂A

)

y

∈ TyM1 ,
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then we have

(ω1)y(ζ, η) = (dqA ∧ dp̂A)y(ζ, η) = ζA1 η
A
3 − ζA3 η

A
1 = 0 , ∀ηA1 , η

A
3 .

Thus ζA1 = ζA3 = 0, which implies that

(TyM1)
⊥ = span {

(

∂

∂λi

)

y

} .

Then dh1

(

∂

∂λi

)

=

(

∂h1

∂λi

)

= −χi provides the new constraints

χi = µiAg
AB(p̂B − λjµjB) , 1 ≤ i ≤ m .

Consequently, M2 is defined by the constraints p̂i(y) = 0 and χi(y) = 0, 1 ≤ i ≤ m.

One can directly check that M2 = FL(P2). As we already know, M2 is the final constraint

submanifold, that is, M2 = Mf with the usual notations. Observe that we can introduce local

coordinates in M2 as follows. Since χi = 0, for all i, we have

λi = DijµjAg
ABp̂B , 1 ≤ i ≤ m .

Thus, we can take local coordinates (qA, p̂A) in M2. More precisely, the mapping

(qA, p̂A) 7→ (qA, DijµjAg
ABp̂B, p̂A, 0)

defines M2 as a submanifold of T ∗P . We summarize the above results in the following diagram

P1 = TP = T (Q× R
m)

FL
−→ T ∗P

i1 ↑
FL1

↘ ↑ j1

P2 ≡ 〈Φi = 0〉 M1 ≡ 〈p̂i = 0〉
FL2

↘ ↑ j2

M2 ≡ 〈p̂i = 0 , χi = 0〉

Remark V.2 Observe that ω2 = j∗2ωP is in fact a symplectic form on M2 since

rank (ω2) = 2n = dim M2 .

Then, we have that (M2, ω2, h2) is a symplectic hamiltonian system, where h2 denotes the

restriction of h1 to M2. In local coordinates,

h2 =
1

2
gABp̂B(p̂A −DikµkCµiAg

CDp̂D) + U .
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Let us denote by M̄ = FL(M) the submanifold of T ∗Q obtained by means of the Legendre

transformation associated to L. Indeed, M̄ is defined by the linear constraints µiAg
ABpB, where

(qA, pA) stand for the bundle coordinates in T ∗Q. Notice that M̄ is a vector subbundle of T ∗Q

since FL is a vector bundle isomorphism over Q. To end this section, we will investigate the

relation between M2 and M̄ , and will compare ω2 with ωQ, the canonical symplectic form on

T ∗Q.

Let γ : M × TR
m −→ P2 be the global diffeomorphism between M × TR

m and P2, which is

induced from the canonical diffeomorphism TQ × TR
m −→ T (Q × R

m). By means of γ, we

define the global mapping

δ : M̄ × R
m −→ M2

(ȳ, λ) 7−→ FL(γ(FL−1(ȳ), λ, 0)) .

In local coordinates we have

δ(qA, pA, λ
i) = (qA, λi, pA + λiµiA, 0).

Proposition V.3 δ is a diffeomorphism.

Proof: Indeed, it is differentiable and its inverse is

M2 −→ M̄ × R
m

(qA, p̂A) 7−→ (qA, p̂A − λiµiA, λ
i) ,

where λi = DijµjAg
ABp̂B. Obviously, δ−1 is differentiable too. 2

Via δ one obtains that

δ∗ω2 = ωQ − d(λiµiA) ∧ dqA .

VI The SODE problem

In this section we will discuss the problem of finding a vector field Γ̃ satisfying the equations






(iΓ̃ωL = dEL)|S

(SΓ̃ = ∆)|S ,

on some submanifold S of P2. That is, we are looking for a solution satisfying the SODE

condition, since our problem is variational and it requires second order equations.

First of all, let us recall that points in the same fibre of FL2 only differ one from each other in

their components λ̇i. Indeed, if y0 is a point in M2 with local coordinates (qA0 , λ
i
0, p̂0A, 0) then

we have

FL−1
2 (y0) =

{

(qA0 , λ
i
0, g

AB
0 (p̂0B − λi0µ0iB), λ̇i) / λ̇i ∈ R

}

⊆ P2
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This fact implies that, if

ΓDi
0

= q̇A
∂

∂qA
+ Bi(q, λ, q̇)

∂

∂λi
+ CA(q, λ, q̇)

∂

∂q̇A
+ Di

0

∂

∂λ̇i
,

is an arbitrary solution of the equations (17), then it is projectable by FL onto a vector field

Γ̄ tangent to M2 defined by

Γ̄(y) = FL∗(ΓDi
0

(x)) , x ∈ FL−1(y) ,

since Bi and CA do not depend on λ̇i. Moreover, since Γ̄ is such that (iΓ̄ω1 = dh1)|M2
, we

deduce

iΓ̄ω2 = dh2 ,

and Γ̄ is the hamiltonian vector field associated to h2, i.e. Γ̄ = Γh2
. For each y ∈ M2, with

local coordinates (qA, λi, p̂A, 0) we have

Γ̄(y) = FL∗(ΓDi
0

(x)) = gAB(p̂B − λiµiB)

(

∂

∂qA

)

y

+ Bi(x)

(

∂

∂λi

)

y

+





(

∂gAD
∂qB

q̇D + λi
∂µiA
∂qB

)

y

gBC(p̂C − λiµiC) + (BiµiA)(x) + (CBgAB)(x)





(

∂

∂p̂A

)

y

= +gAB(p̂B − λiµiB)

(

∂

∂qA

)

y

+ Bi(x)

(

∂

∂λi

)

y

+
∂L

∂qA

(

∂

∂p̂A

)

y

,

where x is an arbitrary point in FL−1(y).

Now, we define the mapping s : M2 −→ P2 by putting

s(y) = s(qA, λi, p̂A, 0) = (qA, λi, gAB(p̂B − λiµiB),Bi(x)) , y ∈M2 , x ∈ FL−1(y) ,

where λi = DijµjAg
ABp̂B.

It is not difficult to see that s is well defined and that it does not depend on the choice of

the local coordinates on M2. In fact, one can define s by taking the value of ΓDi
0

at x and

then project the result by the canonical projection from TP onto P (see [16, 18]). Moreover,

we have that s(y) ∈ FL−1
2 (y), for each y ∈ M2 so s is a differentiable section of FL2. Then,

S = s(M2) ⊆ P2 is a submanifold of P2, and hence of TP as well. Observe that on this

submanifold, ΓiD satisfies the SODE condition: indeed, we have

(SΓD − ∆)|S =

(

(

Bi − λ̇i
) ∂

∂λ̇i

)

|S

= 0 .

However, in general, one can not ensure that ΓD is tangent to S.
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This problem is solved by transporting the vector field Γ̄ from M2 to S by using the global

diffeomorphism s : M2 −→ S, that is, we define

Γ̃ = s∗Γ̄ .

Therefore, Γ̃ will verify the SODE condition because of the form of s and, in addition, the

equation

(iΓ̃ωL = dEL)|S .

Next, we will obtain a local expression for Γ̃. Let x be a point in S; since s is injective, there

is a unique point y ∈M2 such that s(y) = x. Then,

Γ̃(x) = s∗y(Γ̄(y)) .

As we know from the above discussion, q̇Ax = gAB(p̂B − λiµiB)y and λ̇ix = Bix, so that we have

Γ̃x = q̇Ax

(

∂

∂qA

)

x

+ λ̇ix

(

∂

∂λi

)

x

+

(

q̇Ax q̇
D
x (gCD

∂gBC

∂qA
)x − q̇Ax λ

i
xg

BC
x

(

∂µiC
∂qA

)

x

− (λ̇igBCµiC)x

+ gBAx [

(

∂gEA
∂qD

q̇E + λi
∂µiA
∂qD

)

x

q̇Dx + (λ̇iµiA)x + (CDgAD)x ]

)(

∂

∂q̇B

)

x

+

(

q̇Ax

(

∂Bi

∂qA

)

x

+ λ̇jx

(

∂Bi

∂λj

)

x

+
∂L

∂qA

(

∂Bi

∂p̂A

)

x

)(

∂

∂λ̇i

)

x

.

This expression can be simplified as follows

Γ̃x = q̇Ax

(

∂

∂qA

)

x

+ λ̇ix

(

∂

∂λi

)

x

+ CBx

(

∂

∂q̇B

)

x

+

(

q̇Ax

(

∂Bi

∂qA

)

x

+ λ̇jx

(

∂Bi

∂λj

)

x

+ ˙̂pA

(

∂Bi

∂p̂A

)

x

)(

∂

∂λ̇i

)

x

= q̇Ax

(

∂

∂qA

)

x

+ λ̇ix

(

∂

∂λi

)

x

+ CBx

(

∂

∂q̇B

)

x

+ Ḃix

(

∂

∂λ̇i

)

x

,

taking into account that

q̇AgCDq̇
D ∂g

BC

∂qA
+ q̇Dq̇EgBA

∂gEA
∂qD

= q̇Dq̇E
∂

∂qD

(

gBCgCE
)

= 0 .

Remark VI.1 We have obtained a vector field Γ̄ on M2, and a vector field Γ̃ on S, both vector

fields solving the dynamics of the singular lagrangian L. It should be noticed that, since the

equations of motion for L are the same that the equations of motion for the vakonomic problem,

we have obtained a sort of reduction of the latter problem. Indeed, the integral curves of Γ̄ (or

equivalently, of Γ̃) give the vakonomic dynamics. But M2 (or, if we want, S) has dimension 2n

and we have started with a state system TP with dimension 2n + 2m.

18



Recall that we have proved Γ̄ = Γh2
. In addition, the vector field Γ̃ on S is also a hamiltonian

vector field. In fact, Γ̃ is the hamiltonian vector field corresponding to the restriction of EL

and with respect to the restriction of ωL to S. Both hamiltonian vector fields are related by

the symplectomorphism s.

VII Classification of the constraints according to Dirac

The application of Dirac-Bergmann-Gotay-Nester algorithm has produced the following con-

straints

(i) the primary constraints, p̂j = 0, 1 ≤ j ≤ m,

(ii) and the secondary constraints, χj = 0, 1 ≤ j ≤ m,

which together define the final constraint submanifold M2.

Accordingly with Dirac’s terminology [15], the constraints can be classified into first class and

second class constraints. Let us recall that a constraint is said to be first class if its brackets

with all the other constraints vanish; otherwise, it is said to be second class.

Here the bracket is the canonical one provided by the canonical symplectic form ωP on T ∗P

{f̄ , ḡ} =
∂f̄

∂qA
∂ḡ

∂p̂A
+
∂f̄

∂λi
∂ḡ

∂p̂i
−
∂f̄

∂p̂i

∂ḡ

∂λi
−

∂f̄

∂p̂A

∂ḡ

∂qA
,

for all pair of functions f̄ , ḡ : T ∗P −→ R.

We construct the matrix C = (Cαβ), with Cαβ = {ϕα, ϕβ}, where 1 ≤ α ≤ 2m and ϕα = p̂α

for 1 ≤ α ≤ m and ϕα = χα−m if m + 1 ≤ α ≤ 2m. Then we have

(Cαβ) =





{p̂i, p̂j} {p̂i, χj}

{χi, p̂j} {χi, χj}



 =





0 Dij

−Dij Nij



 ,

with

Nij = {χi, χj} = p̂Cg
AB



µjA
∂
(

µiDg
CD
)

∂qB
− µiA

∂
(

µjDg
CD
)

∂qB





+ gABλk
(

µiA
∂Dkj

∂qB
− µjA

∂Dki

∂qB

)

.

A straightforward computation shows that the matrix C is invertible with inverse

C−1 = (Cαβ) =





D−1ND−1 −D−1

D−1 0



 .
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Therefore, all the constraints are second class. Thus, the Dirac bracket is

{f̄ , ḡ}D = {f̄ , ḡ} − {f̄ , ϕα}C
αβ{ϕβ, ḡ} ,

for all pair of functions f̄ and ḡ on T ∗P .

An important observation is the following. Since the constraints become Casimir functions with

respect to the Dirac bracket, then it can be restricted to M2. Indeed, for all pair of functions

f, g ∈ C∞(M2) the bracket {f̄ , ḡ}D|M2
does not depend on the choice of the extensions f̄ , ḡ to

T ∗P . Consequently, we will denote {f, g}∗ = {f̄ , ḡ}D|M2
.

As Dirac proved, the bracket { , }D provides the evolution of any observable, that is,

˙̄f = {f̄ , h̄}D ,

for some convenient extension h̄ of the projected hamiltonian h1 ∈ C∞(M1). In particular,

{f, h2}
∗ gives the evolution of f : M2 −→ R.

As we have noticed in Section V, (M2, ω2) is a symplectic submanifold of T ∗P . Let us denote by

{ , }M2
the Poisson bracket induced by ω2. We are interested in knowing which is the relation

between both brackets, { , }∗ and { , }M2
. This is solved in the following

Proposition VII.1 The bracket { , }∗ coincides with { , }M2
, that is, we have that

{f, g}∗ = {f, g}M2
,

for all f , g ∈ C∞(M2).

Proof: As (M2, ω2) is a symplectic submanifold of T ∗P , we have the following descomposition

TM2
(T ∗P ) = TM2 ⊕ TM⊥

2 ,

with associated projectors

P : TM2
(T ∗P ) −→ TM2 ,

Q : TM2
(T ∗P ) −→ TM⊥

2 .

It is proved in [20] that our Dirac bracket is precisely

{f̄ , ḡ}D = ωP (P(Xf̄),P(Xḡ)) ,

for f̄ , ḡ ∈ C∞(T ∗P ). Let us denote by Yf the hamiltonian vector field on M2 associated to a

function f : M2 −→ R with respect to ω2. A careful computation shows that j2∗Yf = P(Xf̄ ),

where f̄ is an extension to T ∗P of f ∈ C∞(M2). Consequently, we have

{f, g}∗ = ωP (P(Xf̄ ),P(Xḡ)) = ωP (j2∗Yf , j2∗Yg) = ω2(Yf , Yg) = {f, g}M2
.
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2

If we denote by π : M̄ × R
m −→ M̄ the canonical projection, we can define a Poisson bracket

along π̃ = π ◦ δ−1 as follows

{f, g}vak = {f ◦ π̃, g ◦ π̃}∗ ,

which is a function defined on M2. Therefore, we have a bracket

{ , }vak : C∞(M̄) × C∞(M̄) −→ C∞(M2)

(f, g) 7−→ {f, g}vak ,

which is in fact a bracket along π̃. This bracket { , }vak enjoys similar properties to those of

ordinary Poisson brackets.

Definition VII.2 The bracket { , }vak on M̄ along π̃ will be called the vakonomic bracket.

The vakonomic bracket produces a function on M2 from two functions defined on M̄ , since we

need to specify the corresponding Lagrange multipliers λi in the equations by means of the

above diffeomorfism between M2 and M̄ × R
m. A careful computation shows that, in local

coordinates, the expression for the vakonomic bracket is

{f, g}vak = {f ◦ π̃, g ◦ π̃}∗

=
∂(f ◦ π̃)

∂qA
∂(g ◦ π̃)

∂p̂A
−
∂(f ◦ π̃)

∂p̂A

∂(g ◦ π̃)

∂qA
+
∂f̄

∂λi
DikNjlD

lj ∂ḡ

∂λj
,(18)

where f̄ , ḡ ∈ C∞(T ∗P ) are arbitrary extensions of f ◦ π̃ and g ◦ π̃, respectively.

Moreover, if Γ̄ is the “reduced” vakonomic vector field on M2, then, for any f : M̄ −→ R, we

have

{f,H|M̄
}vak = {f ◦ π̃, H|M̄

◦ π̃}∗ = Γ̄(f ◦ π̃) ≡ ḟ ,

where H : T ∗Q −→ R is the hamiltonian defined by EL, that is, H ◦ FL = EL.

Remark VII.3 It should be noticed that M2 has a vector bundle structure over M̄ with rank

m. Indeed, it is a vector subbundle of pr1 : T ∗P ≡ T ∗Q× R
2m −→ T ∗Q, that is,

M̄ T ∗Q

M2 T ∗P ≡ T ∗Q× R
2m

-

-

? ?

π̃ pr1
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In this way, a vakonomic motion (q(t), λ(t)) in M2 can be viewed as a motion in the total

space of that vector bundle, with base components q(t) in M̄ and fiber components λ(t) in R
m.

Roughly speaking, the Lagrange multipliers can be considered as a sort of internal variables in

addition to position variables.

Example VII.4 The vertical rolling disk. Let us consider the following problem for a disk

of radius R and unit mass m = 1 which rolls on a horizontal plane.

The configuration space for this system can be identified with Q = R
2×S1×S1. By (x, y) ∈ R

2

we denote the coordinates of the point of contact of the disk with the plane and (θ, ϕ) ∈ S1×S1

give, respectively, the angle between the disk and the x axis, and the angle of rotation between

a fixed diameter in the disk and the y axis.

Given q0, q1 ∈ Q, i.e. initial and final position variables, we want to find the trajectories of

the disk connecting such points that minimize the energy expenditure. Of course, we want the

disk to roll without slipping. This situation can be seen as an optimal control problem [19].

A problem of optimal control is described by the following data: a configuration space B giving

the states variables of the system, a fibre bundle π : N −→ B whose fibres describe the control

variables, a vector field Y : N −→ TB along the projection π, and a “lagrangian” function

L : N −→ R. Now the solutions of the optimal control problem will be those paths γ : I −→ N

such that π ◦ γ has fixed end-points, which extremize the action

∫

γ
L(γ(t))dt

and satisfy the differential equation

d

dt
(π ◦ γ) = Y ◦ γ

which rules the evolution of the state variables.

It is easy to show that this is indeed a vakonomic problem on the manifold N . The constraint

submanifold M ⊂ TN , given by the differential equation above, is

M = {vn ∈ TN / π∗(vn) = Y (n)} .

In the problem under consideration, we identify B = Q, N = TQ, and π : TQ −→ Q as the

natural projection τQ. The lagrangian L : TQ −→ R is given by,

L =
1

2
(ẋ2 + ẏ2 + I1θ̇

2 + I2ϕ̇
2) ,
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with I1 , I2 the moments of inertia (notice that the potential energy is not included since it is

constant). The vector field along τQ is

Y : TQ −→ TQ

(x, y, θ, φ, d1, d2, d3, d4) 7−→ (x, y, θ, φ, R cos θd4, R sin θd4, d3, d4) .

Notice that Y is simply a tensor (1, 1) on the manifold Q.

In fact, in this framework, we are considering the velocities as the “control” variables. Solv-

ing this optimal control problem is precisely the same as considering the vakonomic problem

associated to the vertical rolling disk for the extended lagrangian L : T (Q× R
2) −→ R

L = L+ λφ+ µψ ,

where

φ = ẋ sin θ − ẏ cos θ ,

ψ = ẋ cos θ + ẏ sin θ − Rϕ̇ ,

are the constraint functions determining M . Note that we have chosen a linear combination of

the usual constraints

φ̄ = ẋ−Rϕ̇ cos θ ,

ψ̄ = ẏ − Rϕ̇ sin θ .

In the next section, we will discuss how this change of constraints affects to the final result.

In addition, as is stated in [4, 31], the vakonomic solutions for this problem are also solutions

of the nonholonomic problem if the initial conditions for the Lagrange multipliers are properly

chosen.

We have that

ωL = dx ∧ dẋ + sin θdx ∧ dλ+ cos θdx ∧ dµ+ (λ cos θ − µ sin θ)dx ∧ dθ

+ dy ∧ dẏ − cos θdy ∧ dλ+ sin θdy ∧ dµ+ (λ sin θ + µ cos θ)dy ∧ dθ

+ I1dθ ∧ dθ̇ + I2dϕ ∧ dϕ̇− Rdϕ ∧ dµ ,

is the Poincaré-Cartan 2-form in local coordinates.

The final constraint submanifold is

P2 =
{

(x, y, θ, ϕ, λ, µ, ẋ, ẏ, θ̇, ϕ̇, λ̇, µ̇) ∈ T (Q× R
2) / φ = 0 , ψ = 0

}

.
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Let Γ be a general solution of equation iΓωL = dEL and tangent to P2. In local coordinates,

we have

Γ = ẋ
∂

∂x
+ ẏ

∂

∂y
+ θ̇

∂

∂θ
+ ϕ̇

∂

∂ϕ
+ Bλ

∂

∂λ
+ Bµ

∂

∂µ

+ Cx
∂

∂ẋ
+ Cy

∂

∂ẏ
+ Cθ

∂

∂θ̇
+ Cϕ

∂

∂ϕ̇
+ Dλ

∂

∂λ̇
+ Dµ

∂

∂µ̇
.

The coefficients satisfy the following equations

Cx = −Bλ sin θ − Bµ cos θ − θ̇(λ cos θ − µ sin θ) ,

Cy = Bλ cos θ − Bµ sin θ − θ̇(λ sin θ + µ cos θ) ,

Cθ =
R

I1
λϕ̇ ,

Cϕ =
R

I2
Bµ ,

and the tangency conditions

Γ(φ) = Cx sin θ − Cy cos θ +Rθ̇ϕ̇ = 0 ,

Γ(ψ) = Cx cos θ + Cy sin θ − RCϕ = 0 .

Therefore, we get




1 0

0
(

1 + R2

I2

)









Bλ

Bµ



 =





θ̇(Rϕ̇+ µ)

−λθ̇



 ,

which leads to






Bλ = Rθ̇ϕ̇+ µθ̇ ,

Bµ = aλθ̇ ,

where a = −

(

1 +
R2

I2

)−1

. In turn, the expressions for the other coefficients of Γ become

Cx = −(1 + a)λθ̇ cos θ − Rϕ̇θ̇ sin θ ,

Cy = −(1 + a)λθ̇ sin θ +Rϕ̇θ̇ cos θ ,

Cθ =
R

I1
λϕ̇ ,

Cϕ =
Ra

I2
λθ̇ .

Continuing with the described process, we have that the submanifold S is given by

S =
{

(x, y, θ, ϕ, λ, µ, ẋ, ẏ, θ̇, ϕ̇, λ̇, µ̇) ∈ T (Q× R
2) / φ = 0 , ψ = 0 ,Bλ = λ̇ ,Bµ = µ̇

}

,
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and Γ̃ is

Γ̃ = ẋ
∂

∂x
+ ẏ

∂

∂y
+ θ̇

∂

∂θ
+ ϕ̇

∂

∂ϕ
+ λ̇

∂

∂λ
+ µ̇

∂

∂µ

+ Cx
∂

∂ẋ
+ Cy

∂

∂ẏ
+ Cθ

∂

∂θ̇
+ Cϕ

∂

∂ϕ̇
+ Dλ

∂

∂λ̇
+ Dµ

∂

∂µ̇
,

with

Dλ = −λθ̇2 +
R2

I1
λϕ̇2 +

R

I1
µλϕ̇ ,

Dµ = aRϕ̇θ̇2 + aµθ̇2 +
aR

I1
λ2ϕ̇ .

Observe that the equations for the Lagrange multipliers






λ̇ = θ̇(Rϕ̇+ µ̇) ,

µ̇ = aλθ̇ ,

can be integrated to give






λ = A sin θ − B cos θ ,

µ = A cos θ +B sin θ −Rϕ̇ ,

where A and B are constants which depend on the initial conditions λ(0), µ(0). This allows

us to project Γ̃(A,B) to a vector field X(A,B) on M giving different vakonomic solutions for each

choice of (A,B). In particular

X(0,0) = ẋ
∂

∂x
+ ẏ

∂

∂y
+ θ̇

∂

∂θ
+ ϕ̇

∂

∂ϕ
− Rϕ̇θ̇ sin θ

∂

∂ẋ
+Rϕ̇θ̇ cos θ

∂

∂ẏ

is just the nonholonomic vector field, ΓL,M , corresponding to the vertical rolling disk (see the

discussion in the end of Section IV).

Now, the Legendre transformation FL : T (Q× R
2) −→ T ∗(Q× R

2) is given by

FL(x, y, θ, ϕ, λ, µ, ẋ, ẏ, θ̇, ϕ̇, λ̇, µ̇) = (x, y, θ, ϕ, λ, µ, p̂x, p̂y, p̂θ, p̂ϕ, p̂λ, p̂µ) ,

where

p̂x = ẋ + λ sin θ + µ cos θ ,

p̂y = ẏ − λ cos θ + µ sin θ ,

p̂θ = I1θ̇ ,

p̂ϕ = I2ϕ̇−Rµ ,

p̂λ = 0 ,

p̂µ = 0 .
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So the presymplectic system (M1, ω1, h1) becomes

M1 = FL(T (Q× R
2)) ≡ R

10 ,

ω1 = dx ∧ dp̂x + dy ∧ dp̂y + dθ ∧ dp̂θ + dϕ ∧ dp̂ϕ ,

h1 =
1

2

(

(p̂x − λ sin θ − µ cos θ)2 + (p̂y + λ cos θ − µ sin θ)2 +
1

I1
p̂2
θ +

1

I2
(p̂ϕ +Rµ)2

)

.

Applying Gotay-Nester’s algorithm we get the secondary constraints

χλ = −λ− p̂y cos θ + p̂x sin θ ,

χµ = a−1µ+ p̂y sin θ + p̂x cos θ −
R

I2
p̂ϕ ,

through which we obtain the symplectic hamiltonian system (M2, ω2, h2)

M2 = FL(P2) ≡ R
8 ,

ω2 = dx ∧ dp̂x + dy ∧ dp̂y + dθ ∧ dp̂θ + dϕ ∧ dp̂ϕ ,

h2 =
1

2

(

(1 + a) cos2θp̂2
x + (1 + a) sin2θp̂2

y +
1

I1
p̂2
θ

−
a

I2
p̂2
ϕ + (1 + a) sin 2θp̂xp̂y − 2

Ra

I2
cos θp̂xp̂ϕ − 2

Ra

I2
sin θp̂yp̂ϕ

)

.

As we have said, the natural bracket associated to the 2-form ω2 allows us to construct the

vakonomic bracket. This is, for any f , g : M̄ −→ R we have

{f, g}vak = {f ◦ π̃, g ◦ π̃}M2
,

where π̃ : M2 −→ M̄ is

π̃(z) = (x, y, θ, ϕ, (1 + a) cos2 θp̂x + (1 + a) sin θ cos θp̂y −
Ra

I2
cos θp̂ϕ,

(1 + a) sin θ cos θp̂x + (1 + a) sin2 θp̂y −
Ra

I2
sin θp̂ϕ,

p̂θ,−a(R cos θp̂x +R sin θp̂y + p̂ϕ)) .

If H|M̄ is the restriction of H to M̄ , since H|M̄ ◦ π̃ = h2 we have

{f,H|M̄}vak = {f ◦ π̃, h2}
∗ =

∂(f ◦ π̃)

∂x

(

(1 + a) cos2 θp̂x + (1 + a) sin θ cos θp̂y −
2Ra

I2
cos θp̂φ

)

+
∂(f ◦ π̃)

∂y

(

(1 + a) sin2 θp̂y + (1 + a) sin θ cos θp̂x −
2Ra

I2
sin θp̂φ

)

+
∂(f ◦ π̃)

∂θ

p̂θ
I1

−
∂(f ◦ π̃)

∂φ

(

a

I2
p̂φ +

Ra

I2
cos θp̂x −

Ra

I2
sin θp̂y

)

−
1

2

∂(f ◦ π̃)

∂p̂θ

(

−(1 + a) sin 2θp̂2
x

+ (1 + a) sin 2θp̂2
y + (1 + a)2 cos 2θp̂xp̂y +

2Ra

I2
sin θp̂xp̂φ −

2Ra

I2
cos θp̂yp̂φ

)

.

26



VIII Consistency of the local construction

In the former sections we have assumed that the constraint functions Φi were globally defined

on the whole of TQ. Under this assumption, we have defined the extended lagrangian L on

TP and, by means of the constraint algorithm, we have obtained an equivalent description of

vakonomic dynamics in terms of the vector fields Γ̃ and Γ̄, on S and M2, respectively. An

alternative description was provided by the bracket { , }vak.

In this section, we will discuss the validity of the above results when a change of constraints or

a change of local coordinates is performed. We accomplish the two tasks at the same time.

Suppose that V and V̄ are two coordinate neighbourhoods in the configuration manifold Q

such that V ∩ V̄ 6= ∅, and denote by (qA) and (q̄A) the corresponding coordinate functions. Let

Φi : TV −→ R , Φi = µiAq̇
A ,

Φ̄j : T V̄ −→ R , Φ̄j = µ̄jB ˙̄q
B
,

be two sets of constraints defining M ∩ TV and M ∩ T V̄ , as in Section II. Notice that both

sets of constraints are obtained by taking two local basis {ωi} and {ω̄i} of the codistribution

Mo on V and V̄ , respectively.

Then, for each one, we have the extended lagrangians

L : T (V × R
m) −→ R , L = L + λiµiAq̇

A ,

L̄ : T (V̄ × R
m) −→ R , L̄ = L + λiµ̄iA ˙̄q

A
,

and we can apply the constraint algorithm. In this way, we obtain the constraint submanifolds

P2 and P̄2

P2 ≡ (TV ∩M) × TR
m ↪→ P1 ≡ T (V × R

m) ,

P̄2 ≡ (T V̄ ∩M) × TR
m ↪→ P̄1 ≡ T (V̄ × R

m) .

Assume now that

ωi = µiA(q)dqA , ω̄i = µ̄iA(q̄)dq̄A .

Then, there exist differentiable functions

Λj
i : V ∩ V̄ −→ R

2m ,

Λ̄k
j : V ∩ V̄ −→ R

2m ,

which give the matrices of the change of basis at each point in V ∩ V̄

Λj
iωj = ω̄i , Λ̄k

j ω̄k = ωj , Λj
i Λ̄

k
j = δki .
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Consequently, we have

Λj
iµjA = µ̄iB

∂q̄B

∂qA
,

Λ̄k
j µ̄kA = µjB

∂qB

∂q̄A
.

As a first result we deduce that

Φ̄i = Λj
iΦj ,

Therefore, P2 ∪ P̄2 can be glued to form a new submanifold of P1 ∪ P̄1, which is in turn a

submanifold of T (Q× R
m).

Remark VIII.1 In spite of this, there is no way to extend L or L̄ to the whole of P1 ∪ P̄1, so

we will have to consider the process for each neigbourhood.

Next, define the transformation

Λ̄ : P1 ∩ P̄1 −→ P1 ∩ P̄1

(qA, λi, q̇A, λ̇i) 7−→ (q̄A, Λ̄j
iλ

i, ˙̄q
A
, Λ̄j

i λ̇
i) ,

which permits us to relate the extended lagrangians as

L̄|P1∩P̄1
◦ Λ̄ = L+ Λ̄j

iλ
iΦ̄j = L+ λiΦi = L|P1∩P̄1

.

This implies that on P1 ∩ P̄1 we have

S∗(Λ̄∗dL̄) = S∗(d(Λ̄∗L̄)) = S∗(dL) ,

and therefore the Poincaré-Cartan two-forms verify

ωL = Λ̄∗(ωL̄) ,

on P1 ∩ P̄1. Since the energy associated to both extensions is the same, EL, we deduce that if

ΓD is a solution on P2 for the constrained system defined by L, then Λ̄∗(ΓD) is a solution for

the constrained system defined by L̄. In other words, if ΓD satifies the equation

(iΓD
ωL = dEL)|P2

,

then we will have

(iΛ̄∗ΓD
ωL̄ = dEL̄)|P̄2

.

In terms of their integral curves, we have that an integral curve of a fixed vector field ΓDi
0

of

the family of solutions ΓD is transformed by Λ̄ into an integral curve of Γ̄D̄j
0

on P2 ∩ P̄2, where

D̄j
0 ◦ Λ̄ = Λ̄j

iD
i
0 + q̇Aλ̇i

∂Λ̄j
i

∂qA
.
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Indeed, if

γ(t) = (γA(t), γi(t), γ̃A(t), γ̃i(t)) ,

is an integral curve of ΓDi
0

on P2 ∩ P̄2, then

γ̄(t) = (γA(t)
∂q̄B

∂qA
, γi(t)Λ̄j

i (t), γ̃
A(t)

∂q̄B

∂qA
, γ̃i(t)Λ̄j

i (t)) ,

will be an integral curve of Γ̄D̄j
0

on P2 ∩ P̄2. It is very important to observe that, although

different, the projections of γ(t) and γ̄(t) to M coincide.

Remark VIII.2 If S (resp. S̄) denotes as above the submanifold of P2 (resp. P̄2) where a

SODE solution Γ̃ (resp. ¯̃Γ) exists, then

Λ̄∗Γ̃ = ¯̃Γ ◦ Λ̄ ,(19)

holds on points in S ∩ S̄, that is, Γ̃ and ¯̃Γ are Λ̄-related on the overlapping. This can be seen

as follows. Recall that Γ̃ = ΓDj
0

∈ ΓD with Di
0 = ΓDj

0

(Bi). Since Bi does not depend on λ̇i, we

have that ΓDj
0

(Bi) = ΓDj(B
i) for all ΓDj ∈ ΓD and we can compute Di

0 choosing any member

of the family ΓD. The same is true for the family Γ̄D̄. Then, taking ΓDj and Γ̄D̄k such that

Λ̄∗ΓDj = Γ̄D̄k ◦ Λ̄, we can check that

D̄i
0 = Γ̄D̄k(B̄

i) = Γ̄D̄k(λ̇
i) = ΓDj(Λ̄

i
jλ̇

j) = Λ̄i
jD

j
0 + q̇Aλ̇j

∂Λ̄i
j

∂qA
,

or, in other words, equation (19) holds.

Remark VIII.3 Given a “vakonomic motion”, c̃(t) = (qA(t)), there are different curves in

P2 ∩ P̄2 that project to (c̃(t), ˙̃c(t)) ∈ M . Indeed, if we take (qA0 , q̇
A
0 ) ∈ M ∩ TV ∩ T V̄ and

(λi0, λ̇
i
0) as initial conditions for the Lagrange multipliers, we can consider the integral curve of

Γ̃ starting from (qA0 , λ
i
0, q̇

A
0 , λ̇

i
0). Now, the curve γ̄ = Λ̄◦γ will be an integral curve of ¯̃Γ starting

from (qA0 , Λ̄
j
i (q

A
0 )λi0, q̇

A
0 , Λ̄

j
i (q

A
0 )λ̇i0). Both curves project to the same solution of the vakonomic

equations of motion. Therefore, in order to determine an unique curve on M × TR
m whose

projection is (c̃(t), ˙̃c(t)), we are forced to specify not only the initial conditions for the Lagrange

multipliers, but also the set of constraint functions such that (qA0 , λ
i
0, q̇

A
0 , λ̇

i
0) ∈ P2.

We have seen what happens in the lagrangian formalism when changing of constraint functions.

Next, we accomplish the same task in the hamiltonian context. As a consequence, we will give

later a relation of the above integral curves with the solutions of vakonomic equations of motion.
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By the Legendre transformations FL and FL̄ associated to L and L̄, respectively, we obtain

the presymplectic systems (M1, ω1, h1) and (M̄1, ω̄1, h̄1), where

M1 = FL(P1) , ω1 = j∗1(ω) , h1 ◦ FL = EL , h1 =
1

2
gAB(p̂A − λiµiA)(p̂B − λjµjB) + U ,

M̄1 = FL̄(P̄1) , ω̄1 = j̄∗1(ω) , h̄1 ◦ FL̄ = EL̄ , h̄1 =
1

2
ḡAB(ˆ̄pA − λiµ̄iA)(ˆ̄pB − λjµ̄jB) + U ,

with the obvious notations.

Notice that M1 ∪ M̄1 can be provided of a differentiable structure such that it is a submanifold

of T ∗(V ∪ V̄ ) × R
m. We also have that the restriction of the standard symplectic form of

T ∗(Q × R
m) to M1 ∪ M̄1 is the natural extension of the 2-forms ω1, ω̄1. However, there is no

canonical extension to M1 ∪ M̄1 of the projected hamiltonians h1 and h̄1.

Define the transformations

Λ̄ : M1 ∩ M̄1 −→ M1 ∩ M̄1

(qA, λi, p̂A, 0) 7−→ (q̄A, Λ̄j
iλ

i, p̂B
∂qB

∂q̄A
, 0) ,

such that the following diagram is commutative

P1 ∩ P̄1
FL
−→ M1 ∩ M̄1

Λ̄ ↓ ↓ Λ̄

P1 ∩ P̄1
FL̄
−→ M1 ∩ M̄1

(20)

We have

Λ̄∗(ω̄1) = ω1 , h̄1 ◦ Λ̄ = h1 .

Applying the algorithm to both presymplectic systems, we obtain the secondary constraint

submanifods
M2 = {y ∈M1 / χi(y) = 0} , χi = µiAg

AB(p̂B − λjµjB) ,

M̄2 = {y ∈ M̄1 / χ̄j(y) = 0} , χ̄j = µ̄jAḡ
AB(ˆ̄pB − λkµ̄kB) .

Observe that

χi(y) = −

(

∂h1

∂λi

)

y

= −

(

∂(h̄1 ◦ Λ̄)

∂λi

)

y

= −Λ̄k
i (y)

(

∂h̄1

∂λk

)

Λ̄(y)

= Λ̄k
i (χ̄k(Λ̄(y)) ,

that is,

Λi
jχi = χ̄j ◦ Λ̄ .

As a consequence, the set M2 ∪ M̄2 does not define in general a submanifold of M1 ∪ M̄1 ⊆

T ∗((V ∪ V̄ ) × R
m). However, we have a nice relation between both submanifolds, indeed,

Λ̄(M2 ∩ M̄1) = M̄2 ∩M1 .

It is important to observe that M2∩M̄1 is an open submanifold of M2. Therefore, on restricting

the symplectic form ω2 to M2 ∩ M̄1, we do not lose its symplectic character.
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Remark VIII.4 A careful computation shows that Λ̄|M2∩M̄2
is just the identity. Consequently,

we have, for example, that

(h̄2)|M2∩M̄2
= (h2)|M2∩M̄2

.

In addition, using (20) and the relations

FL(ΓD) = Γ̄M2
, FL̄(Γ̄D̄) = Γ̄M̄2

, Λ̄∗ΓD = Γ̄D̄ ◦ Λ̄ ,

we deduce that the vector fields Γ̄M2
and Γ̄M̄2

fulfill along M2 ∩ M̄1

Λ̄∗Γ̄M2
= Γ̄M̄2

◦ Λ̄ .(21)

We see that the integral curves of ΓM2
and Γ̄M̄2

on M2∩M̄2 are, in principle, different. However,

one can easily check that their projections onto M̄ by

π̃ : M2 −→ M̄ , (qA, λi, p̂A, 0) 7→ (qA, p̂A − λiµiA) ,

˜̄π : M̄2 −→ M̄ , (q̄A, λi, ˆ̄pA, 0) 7→ (q̄A, ˆ̄pA − λiµ̄iA) ,

coincide, since

˜̄π ◦ Λ̄|M2∩M̄1
= π̃|M2∩M̄1

.

We will now investigate the relation between the corresponding Dirac brackets, and more

interesting, about the induced brackets on the final constraint submanifolds M2 and M̄2

{ , }D|M2
=
(

{ , } − { , ϕα}C
αβ{ϕβ , }

)

|M2

,

{ , }D|M̄2
=
(

{ , } − { , ϕ̄α}C̄
αβ{ϕ̄β , }

)

|M̄2

.

Recall that Λ̄∗(ω̄1)|M1∩M̄1
= (ω1)|M1∩M̄1

. This fact implies that Λ̄∗(ω̄2)|M̄2∩M1
= (ω2)|M2∩M̄1

.

Consequently, we have for each pair of functions f , g : M̄2 −→ R that

{f, g}∗̄ ◦ Λ̄|M2∩M̄1
= {f̃ , g̃}∗ ◦ k ,(22)

where k : M2 ∩ M̄1 ↪→M2 is the canonical inclusion and f̃ , g̃ : M2 −→ R are extensions to M2

of Λ̄|M2∩M̄1
◦ f|M̄2∩M1

, Λ̄|M2∩M̄1
◦ g|M̄2∩M1

, respectively.

As a consequence, when defining the vakonomic brackets for functions f , g on M̄ we have the

following two possibilities

{f, g}vak = {f ◦ π̃, g ◦ π̃}M2
,

{f, g}vak = {f ◦ ˜̄π, g ◦ ˜̄π}M̄2
.

However, the relation ˜̄π ◦ Λ̄|M2∩M̄1
= π̃|M2∩M̄1

and (22) imply that

{f, g}vak ◦ k = {f ◦ π̃, g ◦ π̃}M2
◦ k = {f ◦ ˜̄π, g ◦ ˜̄π}M̄2

◦ Λ̄|M2∩M̄1
= {f, g}vak ◦ Λ̄|M2∩M̄1

,

which is coherent with the above formula Λ̄∗Γ̄M2
= Γ̄M̄2

◦ Λ̄.
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Remark VIII.5 Therefore, although different, both brackets give the same valid information

about the evolution of a dynamical variable along “vakonomic curves” on M̄ . In fact, given a

“vakonomic” curve on M̄ , c̄(t) = (qA(t), pA(t)), we take γ(t) = (qA(t), λi(t), p̂A(t), 0) on M2∩M̄1

and Λ̄ ◦ γ(t) = (q̄A(t), Λ̄j
iλ

i(t), ˆ̄pA(t), 0) on M̄2 ∩M1 projecting onto it. Then, the evolution of

f onto this curve on M̄ will be

d

dt
(f(qA(t), pA(t))) =

d

dt
(f ◦ ˜̄π(q̄A(t), Λ̄j

iλ
i(t), ˆ̄pA(t), 0)) =

d

dt
(f ◦ π̃(qA(t), λi(t), p̂A(t), 0)) ,

that is,
¯̇f |c̄ ≡ Γ̄|M̄2

(f ◦ ˜̄π)|Λ̄◦γ = Γ̄M2
(f ◦ π̃)|γ ≡ ḟ|c̄ ,

or, equivalently,
¯̇f ≡ {f,H|M̄}vak ◦ Λ̄ = {f,H|M̄}vak ≡ ḟ .

Example VIII.6 The vakonomic particle. We consider the case of a particle of unit mass

moving through the space Q = R
3 subjected to the global nonholonomic constraint Φ =

ż− yẋ. In order to illustrate the precedent discussion, we will take, instead of Φ, the following

constraints
φ : TU −→ R , φ(x, y, z, ẋ, ẏ, ż) = x(ż − yẋ) ,

ψ : TV −→ R , ψ(x, y, z, ẋ, ẏ, ż) = z(ż − yẋ) ,

where
U = {(x, y, z) ∈ R

3 / x 6= 0} ,

V = {(x, y, z) ∈ R
3 / z 6= 0} .

Here, the lagrangian L is the kinetic energy L =
1

2
(ẋ2 + ẏ2 + ż2), so the extended lagrangians

are

Lφ : T (U × R) −→ R , Lφ =
1

2
(ẋ2 + ẏ2 + ż2) + λ(xż − xyẋ) ,

Lψ : T (V × R) −→ R , Lψ =
1

2
(ẋ2 + ẏ2 + ż2) + λ(zż − zyẋ) .

Since
x

z
ψ = φ in TU ∩ TV , the transformation Λ̄ is given by

Λ̄ : T ((U ∩ V ) × R) −→ T ((U ∩ V ) × R)

(x, y, z, λ, ẋ, ẏ, ż, λ̇) 7−→ (x, y, z,
x

z
λ, ẋ, ẏ, ż,

x

z
λ̇) .

The 2-forms of Poincaré-Cartan are respectively

ωLφ = dx ∧ dẋ− xydx ∧ dλ− λxdx ∧ dy + dy ∧ dẏ

+ dz ∧ dż + λdz ∧ dx+ xdz ∧ dλ ,

ωLψ = dx ∧ dẋ− zydx ∧ dλ− λzdx ∧ dy − λydx ∧ dz

+ dy ∧ dẏ + dz ∧ dż + zdz ∧ dλ .
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Let Γφ ,Γψ be the vector fields on P φ
2 , P

ψ
2 satisfying

iΓφωLφ = dEL , iΓψωLψ = dEL .

Then, the coefficients must fulfill the following equations














Cφx = (λẏ + yBφλ)x+ λż

Cφy = −λxẋ

Cφz = −λẋ− Bφλx















Cψx = (λẏ + yBψλ )z + λyż

Cψy = −λzẋ

Cψz = −λyẋ− Bψλ z

.

The tangency conditions Γφ(φ) = 0, Γψ(ψ) = 0 are reduced to

Cφz − ẏẋ− yCφx = 0 , Cψz − ẏẋ− yCψx = 0 .

It is easy to see now that in each case we obtain

Bφλ = −λ
ẋ

x
−
ẏ(ẋ + λxy)

x(1 + y2)
,

Bψλ = −λ
ż

z
−
ẏ(ẋ+ λzy)

z(1 + y2)
,

so that we have






























Cφx = λxẏ −
yẏ(ẋ+ λxy)

1 + y2

Cφy = −λxẋ

Cφz =
ẏ(ẋ + λxy)

1 + y2































Cψx = λyż −
yẏ(ẋ + λzy)

1 + y2

Cψy = −λzẋ

Cψz =
ẏ(ẋ+ λzy)

1 + y2

.

Consequently, we have determined the families ΓφD and ΓψD. If we denote by Sφ, Sψ the sub-

manifolds of P φ
2 , P ψ

2 , respectively,

Sφ = {y ∈ T (U × R
3) / λ̇ = −λ

ẋ

x
−
ẏ(ẋ + λxy)

x(1 + y2)
} ,

Sψ = {y ∈ T (V × R
3) / λ̇ = −λ

ż

z
−
ẏ(ẋ + λzy)

z(1 + y2)
} ,

we have proved that there is a vector field Γ̃φ (resp. Γ̃ψ) of ΓφD (resp. ΓψD) satisfying the SODE

condition and tangent to Sφ (resp. Sψ). These vector fields are determined by

Dφ
λ = −λ̇

(

ẋ

x
+

yẏ

1 + y2

)

+
(

ẋ

x

)2
(

λ+
ẏ

1 + y2

)

+
2yẋẏ2

x(1 + y2)2
+ λ

ẏ2(y2 − 1)

(1 + y2)2

− Cφx

[

ẏ

x(1 + y2)
+
λ

x

]

− Cφy

[

ẋ

x(1 + y2)
+

λy

1 + y2

]

,

Dψ
λ = −λ̇

(

ż

z
+

yẏ

1 + y2

)

+
(

ż

z

)2
(

λ+
ẏ

y(1 + y2)

)

+
2yẏ2(ẋ + λzy)

(1 + y2)2
− λ

ẏ2

(1 + y2)2

−
λ

z
Cψz − Cψx

ẏ

z(1 + y2)
− Cψy

[

ẋ

z(1 + y2)
+

λy

1 + y2

]

.
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A straightforward but tedious computation shows that

Λ̄∗Γ̃φ = Γ̃ψ ◦ Λ̄ .

We pass now to the hamiltonian description of the problem. The Legendre transformations are

FLφ : T (U × R) −→ T ∗(U × R)

(x, y, z, λ, ẋ, ẏ, ż, λ̇) 7−→ (x, y, z, λ, ẋ− λxy, ẏ, ż + λx, 0) ,

FLψ : T (V × R) −→ T ∗(V × R)

(x, y, z, λ, ẋ, ẏ, ż, λ̇) 7−→ (x, y, z, λ, ẋ− λzy, ẏ, ż + λz, 0) .

Therefore, we have that

Mφ
1 = FLφ(T (U × R)) = {x 6= 0 , p̂λ = 0} ≡ R

7/{x = 0} ,

Mψ
1 = FLψ(T (V × R)) = {z 6= 0 , p̂λ = 0} ≡ R

7/{z = 0} ,

with Poincaré-Cartan 2-forms and hamiltonian functions given by

ωφ = dx ∧ dp̂x + dy ∧ dp̂y + dz ∧ dp̂z ,

hφ1 =
1

2

[

(p̂x + λxy)2 + p̂2
y + (p̂z − λx)2

]

,

ωψ = dx ∧ dp̂x + dy ∧ dp̂y + dz ∧ dp̂z ,

hψ1 =
1

2

[

(p̂x + λzy)2 + p̂2
y + (p̂z − λz)2

]

.

It is inmediate to see that hψ1 ◦ Λ̄ = hφ1 . The corresponding secondary constraints are

χφ = −
∂hφ1
∂λ

= x(−(p̂x + λxy)y + p̂z − λx) ,

χψ = −
∂hψ1
∂λ

= z(−(p̂x + λzy)y + p̂z − λz) ,

and, in fact, we verify that
z

x
χφ = χψ ◦ Λ̄. The final constraint submanifolds in the hamiltonian

side are

Mφ
2 =

{

w ∈Mφ
1 / λ =

p̂z − yp̂x
x(1 + y2)

}

≡ R
6/{x = 0} ,

Mψ
2 =

{

w ∈Mψ
1 / λ =

p̂z − yp̂x
z(1 + y2)

}

≡ R
6/{z = 0} ,

with 2-forms and hamiltonians

ωφ = dx ∧ dp̂x + dy ∧ dp̂y + dz ∧ dp̂z ,

ωψ = dx ∧ dp̂x + dy ∧ dp̂y + dz ∧ dp̂z ,

hφ2 = hψ2 =
1

2

(

(p̂x + yp̂z)
2

1 + y2
+ p̂2

y

)

.

34



Note that ωφ and ωψ are not the same 2-form, because they are defined on different manifolds,

that is, Mφ
2 and Mψ

2 , respectively.

To define the vakonomic brackets, we have

π̃φ : Mφ
2 −→ M̄

(x, y, z, p̂x, p̂y, p̂z) 7−→ (x, y, z, p̂x + y p̂z−yp̂x
1+y2

, p̂y, p̂z −
p̂z−yp̂x
1+y2

) ,

π̃ψ : Mψ
2 −→ M̄

(x, y, z, p̂x, p̂y, p̂z) 7−→ (x, y, z, p̂x + y p̂z−yp̂x
1+y2

, p̂y, p̂z −
p̂z−yp̂x
1+y2

) .

Given f , g : M̄ −→ R, we have on Mφ
2 ∩Mψ

1 that

{f, g}φvak = {f ◦ π̃φ, g ◦ π̃φ}Mφ
2

= {f ◦ π̃ψ, g ◦ π̃ψ}Mψ
2

◦ Λ̄ = {f, g}ψvak ◦ Λ̄ .
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