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Abstract

This paper presents control and coordination algo-
rithms for networks of autonomous vehicles. We focus
on groups of vehicles performing distributed sensing
tasks where each vehicle plays the role of a mobile tun-
able sensor. We design distributed gradient descent al-
gorithms for a class of utility functions which encodes
optimal coverage and sensing policies. These utility
functions are studied in geographical optimization, vec-
tor quantization, and sensor allocation contexts. The
algorithms exploit the computational geometry of spa-
tial structures such as Voronoi diagrams.

1 Introduction

Motivation: The objective of this paper is the design
of control and coordination algorithms for groups of ve-
hicles. We focus on vehicles that perform distributed
sensing tasks and refer to them as active sensor net-
works. Such systems are being developed for applica-
tions in remote autonomous surveillance, exploration,
information gathering, and automatic monitoring of
transportation systems. For active sensor networks,
we envision the need for a distributed control and co-
ordination architecture: a wireless network provides
the vehicles with the ability to share some informa-
tion, but no overall leader might be present to coor-

dinate the group. As the vehicle network evolves in
time, the ad-hoc communication graph and neighbor-
hood relationships change. It is interesting therefore to
design distributed algorithms for ad-hoc multi-vehicle
networks.

References: The technical approach proposed in this
paper relies on methods from computational geom-
etry [1], facility location [2], and distributed algo-
rithms [3]. We exploit a formulation of a vector quanti-
zation problem, whose solution is closely related to the
computational geometric notion of centroidal Voronoi
partition [4]. This problem and its variations are also
related to the p-median and p-center problem in facility
location [2, 5].

More generally, this problem is related to a number of
technological areas including data compression in im-
age processing (vector quantization), optimal quadra-
ture rules (integration), grid generation for finite differ-
ences methods (PDE discretization), clustering analy-
sis, optimal resource placement, facility location and
combinatorial optimization, mesh optimization meth-
ods (mesh relaxation, Laplacian smoothing), and sta-
tistical pattern recognition (learning vector quantiza-
tion).

Contribution and paper organization: We con-
sider a coverage optimization problem for an active
sensor network. To characterize the quality of service
provided by a spatially distributed active sensor net-
work, we introduce a notion of coverage based on lo-



cational optimization. With this motivation, Section 2
reviews certain locational optimization problems and
their solutions as centroidal Voronoi tessellations. In
Section 3, we provide a continuous-time version of the
classic Lloyd algorithm from vector quantization and
apply it to the setting of multi-vehicle networks. We
consider an interesting worst-case setting, referred to
as the p-center problem in facility location, and design
a similar coverage control law.

In Section 4, we describe in some detail a distributed
version of the Lloyd algorithm and discuss a support-
ing infrastructure required for its implementation in
an ad-hoc network. Next, in Section 5, we design den-
sity functions that lead the multi-vehicle network to
predetermined geometric patterns. In this sense, the
proposed coverage control scheme can be regarded as a
formation control algorithm. We then consider the set-
ting of time-varying density functions and investigate
target tracking problems. Finally, we extend the pro-
posed coverage control scheme to the vehicle models
with higher order dynamics than a simple integrator.
Section 6 presents control designs for second-order dy-
namics, and mobile wheeled dynamics. We present our
conclusions and directions for future research in Sec-
tion 7.

2 From location optimization to centroidal

Voronoi partitions

Locational optimization & facility location

In this section we describe a collection of known facts
about a meaningful optimization problem. Refer-
ences include the theory and applications of centroidal
Voronoi partitions, see [4], and the discipline of facility
location, see [2].

Let Q be a convex polygon in R2; we shall also con-
sider the extension to convex polyhedra in RN . We
call a map φ : Q→ R+ a distribution density function
if it represents a measure of information or probability
that some event take place overQ. In equivalent words,
we can consider Q to be the bounded support of the
function φ. Let P = (p1, . . . , pn) be the location of n
sensors moving in the space Q. Because of noise and
loss of resolution, the sensing performance at point q
taken from ith sensor at the position pi degrades with
the Euclidean distance ‖q − pi‖ between q and pi; we
describe this degradation with a non-decreasing func-

tion f : R+ → R+. Accordingly, f (‖q − pi‖) provides
a quantitative assessment of how poor the sensing per-
formance is. This assumption on the sensing perfor-
mance is well-suited for various electromagnetic and
sound sensors that have signal-to-noise ratios inversely
proportional to distance.

We consider the task of minimizing the location opti-
mization function

H(P,W) =
n
∑

i=1

∫

Wi

f(‖q − pi‖)dφ(q), (1)

where we let W = {W1, . . . ,Wn} be a partition of Q,
and we assume that the ith sensor is responsible for
measurements over its “dominance region” Wi. Note
that the function H is to be minimized with respect to
both (1) the sensor location P , and (2) the assignment
of the dominance regions W. This problem is referred
to as a facility location problem and in particular as a
continuous p-median problem in [2].

Voronoi partitions

One can easily see that, at fixed sensors location, the
optimal partition of Q is the Voronoi partition V(P ) =
{V1, . . . , Vn} generated by the points (p1, . . . , pn):

Vi = {q ∈ Q| ‖q − pi‖ ≤ ‖q − pj‖ ∀j 6= i}.

We refer to [1, 5] for comprehensive treatments on
Voronoi diagrams, and briefly present some relevant
concepts. Since Q is a convex polyhedron in a finite
dimensional Euclidean space, the boundary of each Vi

is a convex polygon. When the two Voronoi regions Vi

and Vj are adjacent, pi is called a (Voronoi) neighbor
of pj (and vice-versa). It is known that (i) the nearest
vehicle pj to pi is a neighbor, (ii) the average number
of neighbors on Q ⊂ R2 is six. In what follows, we
shall write

HV = H(P,V(P )).

Remarkably, one can show [4, 6] that

∂HV
∂pi

(P ) =
∂H

∂pi
(P,V(P ))

=

∫

Vi

∂

∂pi
f (‖q − pi‖) dφ(q), (2)

and deduce some smoothness properties of HV . Since
the Voronoi partition V depends at least continuously
on P = (p1, . . . , pn), and assuming f is a continuous
function, the function HV is at least continuously dif-
ferentiable.
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Centroidal Voronoi partitions

Let us recall some basic quantities associated to a re-
gion V ⊂ RN and a mass density function ρ. The
(generalized) mass, centroid (or center of mass), and
polar moment of inertia are defined as

MV =

∫

V

ρ(q) dq, CV =
1

MV

∫

V

q ρ(q) dq,

JV,p =

∫

V

‖q − p‖2 ρ(q) dq.

We refer to [7] for closed form expressions for area,
centroid, and polar moment of inertia for uniform den-
sities over RN ; see also [6] for expressions in the R2

setting.

Let us consider again the locational optimization prob-
lem (1), and suppose now we are strictly interested in
the setting

H(P,W) =

n
∑

i=1

∫

Wi

‖q − pi‖
2dφ(q), (3)

that is, we consider the setting f(‖q − pi‖) = ‖q −
pi‖

2. Under this assumption, an application of the
parallel axis theorem leads to simplifications for both
the function HV and its partial derivative:

HV(P ) =
n
∑

i=1

JVi,CVi
+

n
∑

i=1

MVi
‖pi − CVi

‖2

∂HV
∂pi

(P ) = 2MVi
(pi − CVi

).

It is useful to write HV as the sum of two terms and
compute their respective partials as

HV,1 =
n
∑

i=1

JVi,CVi
,

∂HV,1

∂pi
= 0,

and

HV,2 =
n
∑

i=1

MVi
‖pi − CVi

‖2,

∂HV,2

∂pi
= 2MVi

(pi − CVi
).

Therefore, the (not necessarily unique) local minimum
points for the location optimization problem are de-
scribed as follows. The critical points for HV(P ) are

centroids, i.e., the point pi satisfies two properties si-
multaneously, it is the generator for the Voronoi cell Vi

and it is its centroid. In other words

CVi
= argminpi

HV(P )

HV,1 = min(p1,...,pn)HV(P ).

Accordingly, the critical partitions and points forH are
centroidal Voronoi partitions; see [4]. This discussion
provides a proof alternative to the one given in [4] for
the necessity of centroidal Voronoi partitions as solu-
tions to the continuous p-median location problem.

3 Coverage control: a continuous-time

Lloyd descent

In this section, we describe algorithms to compute lo-
cation of sensors that minimize the cost H. We pro-
pose a continuous-time version of the classic Lloyd al-
gorithm; see [8] for a reprint of the original report, [9]
for a historical overview, and [4, 5] for numerous ap-
plications in other technological areas. In our setting,
both the positions and partitions evolve in continuous
time, whereas Lloyd algorithm for vector quantization
is usually designed in discrete time. Similarly to the
original Lloyd’s scheme, the proposed algorithm is a
gradient descent flow.

Assume the sensors location obeys a first order dynam-
ical behavior described by

ṗi = ui.

Consider HV a cost function to be minimized and im-
pose that the location pi follows a gradient descent.
In equivalent control theoretical terms, consider HV a
Lyapunov function and stabilize the multi-robot sys-
tem to one of its local minima via a dissipative LgV
control. Formally, we set

ui = −k(pi − CVi
), (4)

where k is a positive gain, and where we assume that
the partition V(P ) = {V1, . . . , Vn} is continuously up-
dated.

Lemma 3.1 (Continuous-time Lloyd descent).
For the closed loop induced by equation (4), the sen-
sors location P = (p1, . . . , pn) converges asymptotically
to a critical point of the cost function HV . The cost
function HV converges to a critical value HV,1 with ex-
ponential convergence rate 2k.
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Proof. Since HV(P ) = HV,1+HV,2(P ), the closed loop
is a gradient flow for the cost function HV,2(P ). We
have

d

dt
HV,2(P ) =

n
∑

i=1

∂HV,2

∂pi
ṗi

= −2k
n
∑

i=1

MVi
‖pi − CVi

‖2 = −2kHV,2.

Note that this gradient descent is not guaranteed to
find the global minimum. For example, in the vector
quantization and signal processing literature [9], it is
known that for bimodal distribution density functions,
the solution to the gradient flow reaches local minima
where the number of generators allocated to the two
region of maxima are not optimally partitioned.

Despite the difficulty in obtaining global minima ofHV ,
we regard the continuous-time Lloyd descent as at least
an interesting heuristic. To study the performance of
this heuristic, we implemented it in Mathematica. The
algorithm is implemented as a single centralized pro-
gram; it computes the bounded Voronoi diagram using
the Mathematica package ComputationalGeometry,
and computes mass, centroid, and polar moment of
inertia of polygon via the numerical integration rou-
tine NIntegrate. Careful attention was paid to numer-
ical accuracy issues in the computation of the Voronoi
diagram and in the integration. We illustrate the per-
formance of the closed loop in Figure 1.

Generalized settings, worst case design, and the
p-center problem

Different performance functions f in equation (1) and
different distance powers in equation (3) correspond to
different optimization problems. However, the Voronoi
partition computed with respect to the Euclidean met-
ric remains the optimal partition. In general, it is not
possible anymore to decompose HV into the sum of
terms similar to HV,1 and HV,2. Nevertheless, it is still
possible to implement the gradient flow via the expres-
sion for the partial derivative (2).

More generally, various distance notions can be used to
define performance functions and accordingly compute
the optimal partition. We refer to [10, 11] for a discus-
sion on locational optimization via weighted Voronoi

partitions. According to the definition of performance
function, one can then define various notions of “center
of a region” (any notion of geometric center, mean, or
average is an interesting candidate). These can then
be adopted in designing coverage algorithms.

Choosing between these possible avenues of investiga-
tion, let us here focus on an interesting variation on the
original problem. The location optimization problem
for the function in equation (1) can be stated as

min
p1,...,pn

E

[

min
i∈{1,...,n}

‖q − pi‖
2

]

,

where the expected value is computed with respect
to φ regarded as a probability density function. As
mentioned above, the facility location literature [2, 12]
refers to this optimization problem as the continuous
p-median problem.

In addition to the p-median problem, it is instructive
to consider the worst case problem

min
p1,...,pn

[

max
q∈Q

[

min
i∈{1,...,n}

‖q − pi‖
2

]]

.

This optimization is referred to as the p-center problem
in [12, 13]. It corresponds to a version of the sphere
packing problem: how to cover a region with (possibly
overlapping) disks of minimum radius disks. If D1 ⊂
R2 is unit disk, the problem reads:

min
∪i(RD1+pi)⊇Q

R.

It is immediate to derive an heuristic for the p-center
problem exactly similar to the Lloyd algorithm: each
vehicle moves toward the center of the minimum span-
ning circle containing its own Voronoi polygon, i.e., the
center of the circle of minimum radius enclosing the
polygon. Note that the center of the minimum span-
ning circle for a given convex polygon can be computed
via a convex problem [14], or via the closed form algo-
rithm in [15]. It is interesting to note that no conver-
gence proof appears to be available for this heuristic;
see [13].

In what follows, we shall restrict our attention to the
p-median problem and on centroidal Voronoi tessella-
tions.
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Figure 1: Lloyd continuous-time algorithm on a convex polygonal environment, with Gaussian density φ =
exp(5.(x2 − y2)) centered about the gray point in figure. The left (respectively, right) figure illustrates the
initial (respectively, final) locations and Voronoi partition. The central figure illustrates the gradient descent
flow.

4 A distributed implementation

In this section we show how the Lloyd algorithm can be
implemented in a distributed fashion. By distributed
we mean that the algorithm is run on a group of agents
performing the same sequence of instructions and shar-
ing information in a predetermined way. We refer
to [3] for a comprehensive treatment on distributed
algorithms.

In its distributed form, the coverage algorithm is a
feedback mechanism in the sense that it allows the net-
work to adapt to changes in the number of nodes due
to agents departures, arrivals or failures. It is also a
natural way of obtaining scalability with respect to the
number of agents. Note that we consider for simplic-
ity the setting of synchronous networks, and leave the
extensions to asynchronous networks to future works.

Distributed algorithms for groups or networks of mo-
bile agents can be regarded as local interaction rules;
e.g., see [16] and references therein. Behavioral rules
are then studied in terms of emerging behaviors they
induce for the overall network. By casting the coverage
control laws in distributed fashion, we show how a cov-
erage behavior emerges from a local Lloyd interaction
rule.

Because the communication and computation in a dis-
tributed network typically take place over discrete
time, we assume the agents follow a first order dynam-
ics in discrete time with bounded input:

pi(t+ 1) = pi(t) + ui(t), ‖ui‖ ≤ 1.

A distributed version of Lloyd algorithm for the solu-
tion of the optimization problem (1) is as follows:

Name: Coverage behavior
Goal: distributed optimal agent location
Assumes: pi(t+ 1) = pi(t) + ui, ‖ui‖ ≤ 1
Requires: (i) own Voronoi cell computation,

(ii) centroid computation

For all i, agent i performs:

1: determine own Voronoi cell Vi

2: determine centroid CVi
of Vi

3: set ui = (CVi
− pi)/(1 + ‖CVi

− pi‖)

A key requirement of this implementation of Lloyd al-
gorithm is that each agent must be able to compute
its own Voronoi cell. To do so, each agent needs to
know the relative location (distance and bearing) of
each Voronoi neighbor. Therefore, this implementa-
tion of the coverage algorithm is distributed only to
the extent that Voronoi neighbors can be computed in
a distributed fashion.

Let us therefore sketch a distributed algorithm to com-
pute the Voronoi cell of an agent; we do so following the
lines of [17]. The algorithm is based on basic properties
of Voronoi diagrams; e.g., see [1]. We assume that each
vehicle has the ability to detect the relative location of
other vehicles within a certain distance. The objective
is to determine the smallest distance Ri for vehicle i
which provides sufficient information to compute the
Voronoi cell Vi. We start by noting that Vi is a subset
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of the convex polygon

W (pi, Ri) = Q ∩
(

∩j:‖pi−pj‖≤Ri
Sij

)

, (5)

where the half planes Sij are

{q ∈ RN : 2q · (pi − pj) ≥ (pi + pj) · (pi − pj)}.

The equality Vi = W (pi, Ri) holds when all Voronoi
neighbors of pi are within distance Ri from pi. This
is guaranteed to happen provided Ri is twice as large
as the maximum distance between pi and the vertices
of W (pi, Ri). The minimum adequate sensing radius is
therefore Ri,min = 2maxq∈W (pi,Ri,min) ‖pi − q‖.

Remark 4.1. The ability of locating neighbors plays a
central role in numerous (distributed) algorithms for
localization, media access, routing, and power con-
trol in ad-hoc wireless communication networks; e.g.,
see [18, 19, 20] and references therein. Therefore, any
motion control scheme might be able to obtain this
information from the underlying communication layer.

Instead of assuming that each vehicle can observe the
relative location of neighbors within a certain radius,
one might assume that the agents can query an ad-hoc
communication network for this type of information.
For example, the work in [18] provides a synchronous
distributed algorithms based on a 1-hop communica-
tion exchange for a wireless network.

5 Density function design

In this section, we investigate interesting ways of de-
signing density functions and solving problems appar-
ently unrelated to coverage.

Geometric patterns and formation control

Here we suggest the use of decentralized coverage algo-
rithms as formation control algorithms, and we present
various density functions that lead the multi-vehicle
network to predetermined geometric patterns. In par-
ticular, we present simple density functions that lead to
segments, ellipses, polygons, or uniform distributions
inside convex environments.

Consider a planar environment, let k be a large positive
gain, and denote q = (x, y) ∈ Q ⊂ R2. Let a, b, c be
real numbers, consider the line ax + by + c = 0, and
define the density function

φ1(q) = exp(−k(ax+ by + c)2).

Similarly, let (xc, yc) be a reference point in R2, let
a, b, r be positive scalars, consider the ellipse a(x −
xc)

2 + b(y − yc)
2 = r2, and define the density function

φ2(q) = exp
(

− k(a(x− xc)
2 + b(y − yc)

2 − r2)2
)

.

We illustrate this density function in Figure 2.

Finally, define the smooth ramp function SRk(x) =
x(arctan(kx)/π + (1/2)), and the density function

φ3(q) =

exp(−k SRk(a(x− xc)
2 + b(y − yc)

2 − r2)).

This density function leads the multi-vehicle network
to obtain a uniform distribution inside the ellipsoidal
disk a(x − xc)

2 + b(y − yc)
2 ≤ r2. We illustrate this

density function in Figure 3.

It appears straightforward to generalize these types of
density functions to the setting of arbitrary curves or
shapes. The proposed algorithms are to be contrasted
with the classic approach to formation control based
on rigidly encoding the desired geometric pattern. We
refer to [21] for previous work on algorithms for geo-
metric patterns, and to [22, 23] for formation control
algorithms.

Tracking in time-varying environments

Next, we consider environments in which the den-
sity function is allowed to depend on time. The
time-dependence might model an example situation
where a target of interest enters the environment
under observation. In this case, we would define
(xtarget(t), ytarget(t)) as the target location and define

φ(q, t)

= exp
(

−k(x− xtarget(t))
2 − k(y − ytarget(t))

2
)

.

Given a time-varying distribution density function
φ(q, t), we define a time-varying locational optimiza-
tion function

HV(P, t) =
n
∑

i=1

∫

Vi

‖q − pi‖
2φ(q, t)dq.
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Figure 2: Coverage control with “circular” density function φ2. The parameter values are: k = 500, a = 1.4,
b = .6, xc = yc = 0, r2 = .3.

We can compute its time derivative as

d

dt
HV(P, t) =

d

dt
HV,1(t) +

d

dt
HV,2(P, t)

=
∑

i

(

d

dt
JVi,CVi(t)

(t) + ṀVi
‖pi − CVi

‖2

+MVi
(pi − CVi

)′(ṗi − ĊVi
)
)

,

where, at fixed Vi, we compute

ṀVi
=

∫

Vi

φ̇(q, t)dq,

ĊVi
=

1

MVi

(
∫

Vi

qφ̇(q, t)dq − ṀVi
CVi

)

.

Considering a first order dynamics, we design a feed-
back plus feedforward control law as

ṗi = ĊVi
−

(

k +
ṀVi

MVi

)

(p− CVi
), (6)

to obtain the closed loop behavior:

d

dt
HV =

d

dt
HV,1 − kHV,2.

Now, assume the time-varying density function is char-
acterized by a constant optimal value for the locational
optimization function, i.e., assume that HV,1 is con-
stant and that d

dt
HV,1 = 0. Under this assumption,

the control law in equation (6) obtains perfect track-
ing in the following sense: the vehicles asymptotically
converge to form a (moving) centroidal Voronoi tessel-
lation or, if starting from one such tessellation, their
configuration remains optimal at all time.

6 Variations in vehicle dynamics

In this section we consider vehicles systems described
by more general linear and nonlinear dynamical mod-
els.

Second order dynamics

We start by considering second order systems described
by an equation of motion of the form p̈i = ui. For
such systems, we devise a proportional derivative (PD)
control via,

ui = −2kpropMVi
(pi − CVi

)− kderivṗi,

where kprop and kderiv are scalar positive gains. The
closed loop induced by this control law can be analyzed
with the Lyapunov function

E = kpropHV +
1

2

n
∑

i=1

ṗ2
i ,

and its derivative along the closed loop: Ė =
−kderiv

∑n
i=1 ṗ

2
i . Convergence to a centroidal Voronoi

tessellation is obtained invoking the classic LaSalle’s
invariance principle.

Mobile wheeled dynamics

Next, we consider a classic model of mobile wheeled
dynamics and we propose a feedback law based on the
design in [24]. Assume the ith vehicle has configuration

7



Figure 3: Coverage control to a ellipsoidal disk. The density function parameters are as in Figure 2.

(θi, xi, yi) ∈ SE(2) evolving according to

θ̇i = ωi

ẋi = vi cos θi

ẏi = vi sin θi,

where (ωi, vi) are the control inputs for vehicle i.

Note that the definition of (θi, vi) is unique up to the
discrete action (θi, vi) 7→ (θi + π,−vi). We use this
symmetry to require the equality (cos θi, sin θi) · (pi −
CVi

) ≤ 0 for all time t. Should the equality be violated
at some time t = t0, we shall redefine θi(t

+
0 ) = θi(t

−
0 )+

π and vi as −vi from time t = t0 onwards.

We consider the control law

ωi = 2kprop arctan
(− sin θi, cos θi) · (pi − CVi

)

(cos θi, sin θi) · (pi − CVi
)

vi = −kprop(cos θi, sin θi) · (pi − CVi
),

where kprop is a positive gain. This law differs from the
original stabilizing strategy in [24] only in the fact that
no final angular position is preferred. We illustrate the
performance of this control law in Figure 4. Stability of
the multi-vehicle network is guaranteed since, for each
vehicle, the proposed control law leads to decreasing
error ‖pi − CVi

‖2 for all time.

7 Conclusions

We have presented a novel approach to coordination
algorithms for multi-vehicle networks. The scheme can
be thought of as an interaction law between agents and
as such it is implementable in a distributed fashion.

Numerous extensions appear worth pursuing. We plan
to investigate the setting of non-convex environments

and non-isotropic sensors. Furthermore, we plan to
consider more general sensing tasks, such as target
identification, and uncontrollable vehicle dynamics,
such as aircraft.
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