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Abstract. We develop tools for studying the control of underactuated mechanical systems
that evolve on a configuration space with a principal fiber bundle structure. Taking the viewpoint
of affine connection control systems, we derive reduced formulations of the Levi-Civita and the
nonholonomic affine connections, along with the symmetric product, in the presence of symmetries
and nonholonomic constraints. We note that there are naturally two kinds of connections to be
considered here, affine and principal connections, leading to what we term a “connection within
a connection”. These results are then used to describe controllability tests that are specialized to
simple, underactuated mechanical systems on principal fiber bundles, including the notion of fiber
configuration controllability. We present examples of the use of these tools in studying the planar
rigid body with a variable direction (vectored) thruster and the snakeboard robot.
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1. Introduction. In the area of control for mechanical systems, there is a newly
emerging body of work that utilizes the special Lagrangian structure of such systems
to help focus the control analysis [5, 6, 8, 12, 20, 21]. This perspective, in which the
dynamics of simple mechanical systems is interpreted using an affine connection, has
led to new insights into both control and motion planning for a number of under-
actuated mechanical systems. In this paper, we study the effect of symmetries and
constraints on the tools that are used in studying affine connection control systems,
namely the affine connection and the symmetric product.

In studying the controllability of a mechanical system, classical tools from non-
linear control theory [27] suggest that one compute the closure by the Lie bracket of
all the control inputs and the drift vector field. When the control inputs enter in as
forcing terms for second-order ODE’s, such as is the case with forces or torques, this
procedure requires the system to be transformed into a first-order form. The draw-
back of this, however, is that the conversion requires that one treat the velocities as a
part of the state, and more importantly that the intrinsic structure of the mechanical
system as a second-order Lagrangian system is covered up. However, work by Lewis
and Murray [21] has shown that a proper geometric interpretation of simple mechan-
ical systems can be achieved through the use of the affine connection formalism and
the symmetric product that derives from it.

Bullo, Leonard, and Lewis later applied these results to underactuated Lagrangian
systems evolving on a Lie group [6, 7]. They took advantage of the special Lie group
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structure to derive algorithms for generating the control inputs that lead to motion
along the directions generated through the operation of the symmetric product. This
work serves as a starting point for this paper, in which we explore a generalization
of these ideas to systems that evolve on principal fiber bundles, which are locally the
product of a Lie group and a general smooth manifold.

We also note that there has been extensive work in the area of understanding
the role of symmetries in mechanical systems (e.g., see [2, 4, 9, 10, 16, 23, 24, 25]
and references therein). We focus on one aspect of such systems, where internal
shape variables play an important role in determining the motion of a system along
a Lie group. Lagrangian reduction provides powerful tools for analyzing mechanical
systems on fiber bundles. Generally (as is the case for our examples), the Lie group
describes the position and orientation of the system, while the remaining variables
constitute an internal shape space. Some examples of the shape variables that result
are the thruster angle of a blimp [35, 36], the leg angle of a robot leg [21], or the
wheel direction angles of a snakeboard [30, 31]. Through a local trivialization, we
can use the internal symmetries of the system to decouple the dynamics into two
parts, vertical and horizontal, and connect them with a mechanical connection (or
constraints) [4, 31]. Likewise, we can apply the same technique to the computation of
covariant derivatives by finding the vertical and horizontal parts, and then use the Lie
bracket and symmetric product to take advantage of the geometric structure of the
system, leading to simplified tests of configuration accessibility and controllability.
When nonholonomic constraints are present, the situation is further complicated,
though it was shown by Lewis [20] that one can use a nonholonomic affine connection
that directly extends the controllability results.

Our motivation for studying this class of systems comes from robotics, where it
has been noted that robotic locomotion systems possess this structure – the dynamics
evolve on a product bundle between a Lie group and a general “shape” manifold [15,
28, 31]. This leads us to consider mechanical systems on principal fiber bundles,
in which the motion of the system is generated through a complex interaction of
thrusts/forces and internal changes in the shape or configuration of the robot. There
is an extensive literature studying such systems, including kinematic versions [15],
dynamic systems that evolve purely on Lie groups [6], and dynamic systems with
nonholonomic constraints [28, 30]. An important quantity for such robotic systems
that is highlighted here is the notion of fiber controllability, introduced by Kelly and
Murray [15] for driftless, kinematic systems. The notion of fiber controllability stems
from the fact that for many robotic systems of this form, one only cares that the robot
be able to control its position and orientation, without regard to the configuration
of its internal shape. Thus, the emphasis is on understanding whether a system is
controllable only along the fiber (position and orientation). We extend this notion to
dynamic systems with symmetries living on trivial principal fiber bundles.

The paper is organised as follows. In Section 2 we give some background on
simple mechanical control systems and the role of symmetries. In Section 3 we study
the reduced version of the Levi-Civita affine connection, and hence the symmetric
product, for principal fiber bundles. We present the computations in terms of local
forms of the quantities that arise, including the mechanical connection and the locked
inertia tensor, since these allow for a reduced and compact representation. We follow
up this derivation in Section 4 with a parallel formulation of the nonholonomic affine
connection that arises when constraints are present. In Section 5, we describe how
these results extend previous notions of configuration controllability to fiber bundles,
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and introduce a new concept of fiber controllability. In Section 6, we demonstrate
the use of these tools in two motivating examples: the underactuated rigid body (or
planar blimp) and the snakeboard. Finally, Section 7 is devoted to some concluding
remarks.

2. Background on Simple Mechanical Control Systems. In this section we
describe the geometric framework utilized in the study of mechanical control systems.
We follow [20, 21] in the exposition of affine connection control systems. The reader
is referred to [1, 17] for more details on notions such as principal bundles or affine
connections.

2.1. Affine Connection Control Systems. Let Q be a n-dimensional mani-
fold. We denote by TQ the tangent bundle of Q, by X(Q) the set of vector fields on
Q and by C∞(Q) the set of smooth functions on Q. A simple mechanical control
system is defined by a tuple (Q,G, V,F), where Q is the manifold of configurations of
the system, G is a Riemannian metric on Q (the kinetic energy metric of the system),
V ∈ C∞(Q) is the potential function and F = {F 1, . . . , Fm} is a set of m linearly
independent 1-forms on Q, which physically correspond to forces or torques.

The dynamics of simple mechanical control systems is classically described by the
forced Euler-Lagrange’s equations

d

dt

(

∂L

∂q̇

)

−
∂L

∂q
=

m
∑

i=1

ui(t)F
i , (2.1)

where L(q, q̇) = 1
2G(q̇, q̇) − V (q) is the Lagrangian of the system.

Alternatively, one can express the control equations 2.1 using the natural affine
connection associated to the metric G, the Levi-Civita connection. An affine con-
nection [17] is defined as an assignment

∇ : X(Q) ×X(Q) −→ X(Q)
(X,Y ) 7−→ ∇XY

which is R-bilinear and satisfies ∇fXY = f∇XY and ∇X (fY ) = f∇XY + X(f)Y ,
for any X , Y ∈ X(Q), f ∈ C∞(Q). In local coordinates,

∇XY =

(

∂Y a

∂qb
Xb + Γa

bcX
bY c

)

∂

∂qa
,

where Γa
bc(q) are the Christoffel symbols of the affine connection defined by

∇ ∂

∂qb

∂

∂qc
= Γa

bc

∂

∂qa
. (2.2)

For simple mechanical control systems, the Levi-Civita connection ∇G associated
to the metric G is determined by the formula

2G(Z,∇XY ) = X(G(Z, Y )) + Y (G(Z,X)) − Z(G(Y,X))

+ G(X, [Z, Y ]) + G(Y, [Z,X ]) − G(Z, [Y,X ]) , X, Y, Z ∈ X(Q) . (2.3)

One can compute the Christoffel symbols of ∇G to be

Γa
bc =

1

2
Gad

(

∂Gdb

∂qc
+
∂Gdc

∂qb
−
∂Gbc

∂qd

)

,
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where (Gad) denotes the inverse matrix of (Gda = G( ∂
∂qd ,

∂
∂qa )). Instead of the input

forces F 1, . . . , Fm, we shall make use of the vector fields Y1, . . . , Ym, defined as Yi =
]G(F i), where ]G = [−1

G and [G : TQ −→ T ∗Q is the musical isomorphism given

by [G(X)(Y ) = G(X,Y ). In local coordinates, we have that Y a
i = GabF i

b , for each
1 ≤ i ≤ m. Roughly speaking, this corresponds to considering the effect of the
controls on “accelerations” rather than on forces. The control equations 2.1 for the
mechanical system may then be recasted as

∇G
ċ(t)ċ(t) = −gradV +

m
∑

i=1

ui(t)Yi(c(t)) , (2.4)

where gradV = ]G(dV ). Observe that we can use a general affine connection in eq. 2.4
instead of the Levi-Civita connection without changing the structure of the equation.
This is particularly interesting, since nonholonomic mechanical control systems also
give rise to equations of the form of eq. 2.4, as we review in the following [20]. This
observation is actually very powerful, since controllability analyses based on a general
affine connection (cf. Section 5) are valid for both unconstrained and constrained
control systems.

A constrained mechanical control system (Q,G, V,F ,D) is a simple me-
chanical control system (Q,G, V,F) subject to the constraints given by the (n − l)-
dimensional (nonholonomic) distribution D on Q. In a local description, D can be
defined by the vanishing of l independent constraint functions ωj(q)q̇, 1 ≤ j ≤ l. The
application of Lagrange-d’Alembert’s principle leads to the constrained equations of
motion

d

dt

(

∂L

∂q̇

)

−
∂L

∂q
=

m
∑

i=1

ui(t)F
i +

l
∑

j=1

λjωj , (2.5)

which, together with the constraint equations ωj(q)q̇ = 0, describe the dynamics
of the nonholonomic system. Here, the λj are the Lagrange multipliers. The term
∑l

j=1 λ
jωj represents the “reaction force” due to the constraints.

The second order equation 2.5 can alternatively be written as

{

∇G
ċ(t)ċ(t) = λ(t) − gradV +

∑m
i=1 ui(t)Yi(c(t))

ċ(t) ∈ Dc(t) ,
(2.6)

where now λ is seen as a section of D⊥, the G-orthogonal complement to D, along
the curve c. Letting P : TQ −→ D, Q : TQ −→ D⊥ denote the complementary
G-orthogonal projectors, we can define an affine connection

∇XY = ∇G
XY + (∇G

XQ)(Y ) = P(∇G
XY ) + ∇G

X (Q(Y )) ,

such that the nonholonomic control equations 2.6 can be rewritten as

∇ċ(t)ċ(t) = −P(gradV ) +
m
∑

i=1

ui(t)P(Yi(c(t))) , (2.7)

and where we select the initial velocity in D (cf. [20] for details). Observe that the
inputs Yi act on the system only through their D-component. Indeed, the Lagrange
multiplier λ ∈ D⊥ absorbs their D⊥-components. The connection ∇ is called the
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nonholonomic affine connection [3, 19, 20, 33]. Note that equations 2.4 and 2.7
have the same structure.

It can be easily deduced from its definition that ∇ restricts to D, that is,

∇XY = P(∇G
XY ) ∈ D , for all Y ∈ D , X ∈ X(Q) .

This kind of affine connection, which restricts to a given distribution, has been studied
in [19]. In particular, such a behaviour implies that the distribution D is geodesically
invariant, that is, for every geodesic c(t) of ∇ starting from a point in D, ċ(0) ∈ Dc(0),
we have that ċ(t) ∈ Dc(t).

As we shall see later, a key tool in the controllability analysis and description of
mechanical control systems is the symmetric product 〈· : ·〉 associated to an affine
connection ∇ (see [13, 21, 34]). Given X , Y ∈ X(Q), define

〈X : Y 〉 = ∇XY + ∇Y X .

The symmetric product characterizes geodesically invariant distributions. Indeed,
one can prove that D is geodesically invariant for the nonholonomic connection if and
only if 〈X : Y 〉 ∈ D, ∀X , Y ∈ D (see [19]). Recently, Bullo [5] has shown that the
evolution of mechanical control systems when starting from rest can be described by
a series involving repeated symmetric products of the input vector fields, extending
the possibilities of use of the symmetric product to the design of motion control
algorithms.

2.2. Principal fiber bundles. The notion of principal fiber bundle is present
in many locomotion and robotic systems, since they commonly exhibit translational
and rotational symmetries. Examining the configuration space Q, one can observe
that there exists a splitting Q = G×M between variables describing the position and
orientation of the robot, i.e., the pose coordinates g ∈ G, and variables describing the
internal shape of the system, the shape coordinates r ∈M . This exactly corresponds
to the case of a trivial principal fiber bundle, decomposed into fiber space, G, and
base space, M , respectively.

Geometrically, this situation is described as follows. Assume there is a Lie group
G acting on Q

Φ : G×Q −→ Q
(g, q) 7−→ Φ(g, q) = Φg(q) = gq .

The orbit through a point q is OrbG(q) = {gq | g ∈ G}. We denote by g the Lie
algebra of G. For any element ξ ∈ g, let ξQ denote the corresponding infinitesimal
generator of the group action on Q. Then,

Tq(OrbG(q)) = {ξQ(q) | ξ ∈ g} .

If the action Φ is free and proper, we can endow the quotient space Q/G ∼= M with
a manifold structure such that the canonical projection π : Q −→ M is a surjective
submersion. Then, we have thatQ(M,G, π) is a principal bundle with bundle spaceQ,
base space M , structure group G and projection π. Note that the kernel of π∗(= Tπ)
consists of the vertical tangent vectors, i.e., the vectors tangent to the orbits of G in
Q. We denote the bundle of vertical vectors by V , with Vq = Tq(OrbG(q)), q ∈ Q.

Throughout the paper, we will usually deal with general principal fiber bundles,
unless otherwise stated. Locally, one can always trivialize Q and work with Q ⊃
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π−1(U) ≡ G × U , where U ⊂ M is an open subset of M . In the bundle coordinates
(g, r), the projection reads π(g, r) = r and the Lagrangian L can be written as

L(q, q̇) =
1

2
(ġT ṙT )G

(

ġ
ṙ

)

− V (g, r) ,

where we note the abuse of notation resulting from changing between ġ as an argument
in TG and as a vector (the same stands for G seen as a bilinear form or as a matrix). In
the remainder of the paper, we will often make use of the same notation for coordinate-
free and matrix formulas. The precise meaning should be clear from the context.

A principal connection on Q(M,G, π) can be defined as a G-invariant distrib-
ution H on Q satisfying TqQ = Hq ⊕ Vq, ∀q ∈ Q. The subspace Hq of TqQ is called
the horizontal subspace at q determined by the connection.

Alternatively, a principal connection can be characterized by a g-valued 1-form
A on Q satisfying the following conditions

(i) A(ξQ(q)) = ξ for all ξ ∈ g,
(ii) A((Φg)∗X) = Adg(A(X)) for all X ∈ TQ.

The horizontal subspace at q is then given by Hq = {vq ∈ TqQ | A(vq) = 0}. In
coordinates, using (i) and (ii) we can write

A(g, r, ġ, ṙ) = A(g(e, r, ξ, ṙ)) = AdgA(e, r, ξ, ṙ)

= Adg(A(e, r, ξ, 0) + A(e, r, 0, ṙ)) = Adg(ξ +A(r)ṙ) .

Note that A depends only on the shape variables. It is called the local form of the
connection A.

Given a principal connection, we have that every vector v ∈ TqQ can be uniquely
written as v = vhor + vver , with vhor ∈ Hq and vver = A(v)Q(q) ∈ Vq. The curvature
B of the principal connection A is a g-valued 2-form on Q defined as follows: for each
q ∈ Q and u, v ∈ TqQ

B(u, v) = dA(uhor, vhor) = −A([uhor, vhor]) .

The curvature measures the lack of integrability of the horizontal distribution and
plays a fundamental role in the theory of geometric phases (see [17] for a comprehen-
sive treatment). In a local representation, the curvature can be written

B((gξ, v), (gη, w)) = (B(r)(v, w)) = Ba
αβv

αwβAdgea ,

where {ea}
k
a=1 is a basis of the Lie algebra g and

Ba
αβ =

∂Aa
α

∂rβ
−
∂Aa

β

∂rα
+ cabcA

b
αA

c
β .

The cabc are the structure constants of the Lie algebra defined by [eb, ec] = cabcea.
An additional derivative operator related to a principal connection will appear

in the derivations below. Let κ be a
⊗

ν g
∗-valued function on Q, κ : Q −→

⊗

ν g
∗.

Define then the derivative of κ along A, Dκ : TQ −→
⊗

ν g
∗, by

Dκ(q̇)(ξ1, . . . , ξν) = dκ(q̇)(ξ1, . . . , ξν) +
ν
∑

k=1

κ(q)(ξ1, . . . , adAq̇ξk , . . . , ξν) .
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If the mapping κ is G-equivariant, κ(g, r) = Ad∗
g−1κloc(r), where κloc(r) = κ(e, r),

meaning

κ(g, r)(ξ1, . . . , ξν) = κloc(r)(Adg−1 ξ1, . . . , Adg−1ξν) ,

then one can see that

Dκ(ġ, ṙ) = Ad∗g−1Dκloc(ṙ) .

In bundle coordinates, Dκloc(ṙ)(ξ1, . . . , ξν) = (Dκloc)αa1...aν
ṙαξa1

1 . . . ξaν
ν , where

(Dκloc)αa1...aν
=
∂(κloc)a1...aν

∂rα
+

ν
∑

k=1

(κloc)a1...dk...aν
Ae

αc
dk
eak

2.3. Systems with symmetry. In the reduction of unconstrained mechanical
systems with symmetry, it naturally arises a principal connection, called the me-
chanical connection Amech. Assume that the control system (Q,G, V,F) is invari-
ant under the action of a Lie group G, that is, Φ∗

gG = G, Φ∗
gV = V and Φ∗

gF
i = F i,

for 1 ≤ i ≤ m and all g ∈ G (note that it may happen that a particular element of
the control system be invariant under the action of a larger Lie group H , G ⊆ H , but
we are only considering Lie groups which leave invariant all the components of the
problem). The horizontal subspace of the mechanical connection is then given by the
orthogonal complement of the vertical bundle V with respect to the kinetic energy
metric G, H = V⊥. An explicit formula for its associated 1-form is the following.
Define the locked inertia tensor at configuration q ∈ Q, I(q) : g −→ g∗ by

〈I(q)ξ, η〉 = G(ξQ(q), ηQ(q)) .

In local coordinates, this can be expressed as I(r, g) = Ad∗
g−1I(r)Adg−1 . I(r), the

local form of I, has the interpretation of the inertia of the system when frozen at
shape r. If we further defined the momentum map J : TQ −→ g∗ by 〈J(q̇), ξ〉 =
〈∂L

∂q̇
(q̇), ξQ(q)〉, then the mechanical connection is just Amech(q̇) = I(q)−1J(q̇).

The invariance of the metric and the potential function implies also that L(g, r, ġ, ṙ) =
L(e, r, g−1ġ, ṙ) = `(r, ṙ, ξ), where ξ = g−1ġ. The function ` : TQ/G −→ R is given by

`(r, ṙ, ξ) =
1

2
(ξT ṙT ) Ĝ

(

ξ
ṙ

)

− V (r) ,

where Ĝ stands for the reduced metric [28]

Ĝ =

(

I(r) I(r)A(r)
A(r)T I(r) m(r)

)

. (2.8)

Here, A denotes the local form of the mechanical connection. This reduced metric is
block diagonalized if we write it in terms of the shape variables (r, ṙ) and the locked
body angular velocity, Ω = ξ +A(r)ṙ. Indeed, one can see that Ĝ takes the form

G̃ =

(

I(r) 0
0 m(r) −AT (r)I(r)A(r)

)

=

(

I(r) 0
0 ∆(r)

)

.

We will see below that the terms I and ∆ plays a central role in deriving a local
expression for the Levi-Civita affine connection.
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The study of nonholonomic systems with symmetry has by now many contribu-
tions, starting from the work by Koiller on the kinematic case [16] and going through
the use of the Hamiltonian formalism [2], Lagrangian reduction [4], the geometry of
the tangent bundle [9, 10] or Poisson methods [23], among others. We review here
some of the results found in [4, 28] for such systems which will be relevant for estab-
lishing later the decomposition for the nonholonomic affine connection.

Assume that the constrained mechanical control system is invariant under the
action of a Lie groupG, meaning that both (Q,G, V,F) and the constraint distribution
D are invariant. Assume further that D + V = TQ (the so-called dimension assump-
tion [4]). We are interested in knowing which symmetry directions (i.e. tangent to
the action of the Lie group) are compatible with the constraints. Consequently, we
consider the intersection Sq = Vq ∩ Dq at each q ∈ Q. Since S ⊂ V , we can con-
sider a bundle gD −→ Q whose fiber is given by gq = {ξ ∈ g : ξQ(q) ∈ Sq}. The
nonholonomic momentum map is then defined as

Jnh : TQ −→ gD
∗

(q, q̇) 7−→ Jnh(q, q̇) : gq → R

ξq 7−→ 〈∂L
∂q̇

(q̇), ξq
Q(q)〉 .

This momentum map can be used to “augment” the constraints and provide a prin-
cipal connection on Q −→ Q/G, the so-called nonholonomic principal connection [4].
The horizontal subspace at q ∈ Q of this connection is given by the orthogonal com-
plement of S in the constraint distribution, Hq = S⊥

q ∩ Dq .

Alternatively, let {e1(r), . . . , es(r), es+1(r), . . . , ek(r)} ∈ g be a basis of g such
that the first s elements span g(r,e) and both set of generators are orthogonal in the
kinetic energy metric restricted to V . Denote by ∂ei

∂rα =
∑k

a=1 γ
a
iαea, a notation which

will be useful later. Define the momentum

pi = 〈
∂`

∂ξ
, ei(r)〉 , 1 ≤ i ≤ s .

Now consider the map

Asym : TqQ −→ Sq

(q, q̇) 7−→ (Ĩ−1(q)Jnh(q, q̇))Q ,

where Ĩ(q) : gD −→ gD
∗

is the locked inertia tensor relative to gD. Notice that Asym

maps S onto itself. Additionally, let Akin : TqQ −→ S⊥
q be the orthogonal projection

relative to the kinetic energy metric. The constraints plus the momentum can be
written

Akin(q)q̇ = 0 , Asym(q)q̇ = (Ĩ−1(q)p)Q .

The nonholonomic connection 1-form is then given by

Anh = Akin +Asym .

It is an instructive exercise to verify that Anh satisfies indeed conditions (i) and (ii)
defining a principal connection (cf. Section 2.2). This principal connection plays a
fundamental role in the reduction of nonholonomic systems with symmetry [4].
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3. Decomposition of the Levi-Civita connection under symmetry. Given
a mechanical control system with symmetry, it seems reasonable that the controlla-
bility tests can be simplified by taking into account the symmetry properties of the
problem. In order to do that, we will obtain decompositions of the Levi-Civita connec-
tion and the nonholonomic affine connection according to the principal fiber bundle
structure of the configuration space Q. This will be the subject of the following two
sections.

Let (Q,G, V,F) be a simple mechanical control system invariant under the action
of a Lie group G. The following simple lemma [14] will be helpful.

Lemma 3.1. The Levi-Civita connection associated to a left-invariant metric H
on the Lie group G is given by

∇H
gξgη =

1

2
g
(

[ξ, η] − ]H
(

ad∗ξ[Hη + ad∗η[Hξ
))

,

where gξ stands for (Lg)∗ξ and so on. Consequently, the symmetric product associated
to ∇H takes the form

〈gξ : gη〉H = −g ]H
(

ad∗ξ[Hη + ad∗η[Hξ
)

.

Now, we come to the main result of this section, where we derive the properties of
the “connection within a connection”. Emphasis is placed on the role of I , A and ∆
in determining ∇G .

Proposition 3.2. Given G-invariant vector fields on Q, X = (gξ, v) and Y =
(gη, w), with ξ(r), η(r) ∈ g and v, w ∈ TM , the covariant derivative of Y along X
can be expressed as

∇G
XY = g

{(

∇I
ΩΨ

∇∆
v w

)

−
1

2

(

I−1L
∆−1S

)}

, (3.1)

where

L = −D(IΩ)(·, w) −D(IΨ)(·, v) + I([Ω,Ψ] − [ξ, η] + ξrw − ηrv −A[v, w])

+ 2 I(A(∇G
XY )M ) ∈ g∗ ,

S = I(Ω, B(w, ·)) + I(Ψ, B(v, ·)) +DI(·)(Ω,Ψ) ∈ T ∗M ,

and Ω = ξ + Av, Ψ = η +Aw, ξr ≡ ∂ξ
∂r

, ηr ≡ ∂η
∂r

Proof. As we have recalled above, the Levi-Civita connection can be characterized
as the unique affine connection verifying eq. 2.3. Let Z be a G-invariant vector field,
Z = (gµ, u). The invariance of the metric implies

G(Z, Y ) = Ĝ ((µ, u) , (η, w)) = G̃ ((Θ, u) , (Ψ, w)) ,

where Θ = µ+Aw. The first three terms in eq. 2.3 can be expanded in a similar way,

X(G(Z, Y )) = X(ΘT IΨ + uT ∆w) = v(ΘT IΨ) + v(uT ∆w) .

For the remaining ones, we have that

G(X, [Z, Y ]) = G̃ ((Ω, v) , ([µ, η] + ηru− wµr +A[u,w], [u,w]))

= ΩT I [µ, η] + ΩT I(ηru− wµr +A[u,w]) + vT ∆[u,w] .
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As a result, eq. 2.3 can be written as 2G(Z,∇G
XY ) = 〈(δ, γ), (µ, u)〉, where δ = δ1 +δ2,

γ = γ1 + γ2 and

δ1 = ξT I [·, η] + ηT I [·, ξ] − ·T I [η, ξ]

δ2 = ·T v(IΨ) + ·Tw(IΩ) + (Av)T I [·, η] + (Aw)T I [·, ξ] − ·T I(ξrw − ηrv +A[w, v])

γ1 = v(·T ∆w) + w(·T ∆v) − ·(wT ∆v) + vT ∆[·, w] + wT ∆[·, v] − ·T ∆[w, v]

γ2 = v((A·)T IΨ) + w((A·)T IΩ) − ·(ΨT IΩ) + ΩT I(ηr · +A[·, w])

+ ΨT I(ξr · +A[·, v]) − (A·)T I([η, ξ] + ξrw − ηrv +A[w, v]) .

On the other hand, we have that

2G(Z,∇G
XY ) = 2 (µT , uT )

(

I IA
AT I m

)(

(∇G
XY )g

(∇G
XY )M

)

As both expansions for G(Z,∇G
XY ) are valid for any Z, we can conclude that

2

(

(∇G
XY )g

(∇G
XY )M

)

=

(

I IA
AT I m

)−1(
δ
γ

)

(3.2)

=

(

I−1 +A∆−1AT −A∆−1

−∆−1AT ∆−1

)(

δ
γ

)

.

Noting that δ1 = 2I∇I
ξη (see Lemma 3.1) and γ1 = 2∆∇∆

v w, we can further develop
the right-hand side of eq. 3.2 as

(

I−1 0
0 ∆−1

)(

δ
γ

)

+

(

A∆−1AT −A∆−1

−∆−1AT 0

)(

δ
γ

)

=

2

(

∇I
ξη

∇∆
v w

)

+

(

I−1 0
0 ∆−1

){(

δ2
γ2

)

+

(

IA∆−1AT −IA∆−1

−AT 0

)(

δ
γ

)}

.

In this way, we get
(

(∇G
XY )g

(∇G
XY )M

)

=

(

∇I
ξη

∇∆
v w

)

−
1

2

(

I−1 0
0 ∆−1

)(

L′

S

)

,

where L′ = −δ2 − IA∆−1S + IA∆−1γ1 and S = AT δ − γ2. To complete the proof,
we only have to identify these terms in a more geometrical manner, which we do in
the following.

We begin with S. Noting that

Ab
β

∂vβ

∂rα
+
∂ξb

∂rα
−
∂Ωb

∂rα
= −

∂Ab
β

∂rα
vβ ,

we can rewrite γ2 as

γ2 = vβAb
α

∂(IΨ)b

∂rβ
+ wβAb

α

∂(IΩ)b

∂rβ
− Ψb ∂Iba

∂rα
Ωa

+(IΨ)b

{

∂Ab
α

∂rβ
−
∂Ab

β

∂rα

}

vβ + (IΩ)b

{

∂Ab
α

∂rβ
−
∂Ab

β

∂rα

}

wβ

−Ab
αIbac

a
deη

dξe −Ab
αIba

{

∂ξa

∂rβ
wβ −

∂ηa

∂rβ
vβ +Aa

β [w, v]β
}

.
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Substituting into the expression for S, one obtains after some computations

−S = (IΨ)b

{

∂Ab
α

∂rβ
−
∂Ab

β

∂rα
+Ac

βE
b
αc

}

vβ + (IΩ)b

{

∂Ab
α

∂rβ
−
∂Ab

β

∂rα
+Ac

βE
b
αc

}

wβ

−Ψb ∂Iba
∂rα

Ωa − ΩdIdbE
b
αeΨ

e − ΨdIdbE
b
αeΩ

e

= −I(Ψ, B(v, ·)) − I(Ω, B(w, ·)) −DI(·)(Ω,Ψ) ,

where Eb
αc = cbdcA

d
α. Now we turn our attention to L′. Note that

L′ = IA∆−1(γ1 − S) − δ2

= 2IA(∇∆
v w −

1

2
∆−1S) − δ2 = 2IA(∇G

XY )M − δ2 .

Moreover, we have

δ2 = vα ∂(IΨ)a

∂rα
+ wα ∂(IΩ)a

∂rα
+Ad

αv
αIdbc

b
aeη

e +Ad
αw

αIdbc
b
aeξ

e

−Iba

{

∂ξb

∂rβ
wβ −

∂ηb

∂rβ
vβ +Ab

β [w, v]β
}

.

Adding and substracting (IΨ)bE
b
αav

α and (IΩ)bE
b
αaw

α and re-grouping, we obtain

δ2 = D(IΨ)(·, v) +D(IΩ)(·, w) + 2I∇I
ΩΨ − 2I∇I

ξη

−I(·, [Ω,Ψ]) + I(·, [ξ, η]) − I(·, ξrw − ηrv +A[w, v]) .

Finally, we can write

(∇G
XY )g = ∇I

ξη −
1

2
I−1L′

= ∇I
ΩΨ −

1

2
I−1L ,

where L is as above.

As a consequence of this proposition, we have the following interesting result.

Corollary 3.3. The symmetric product associated to the Levi-Civita connection
∇G of two G-invariant vector fields, X = (gξ, v) and Y = (gη, w) is given by

〈X : Y 〉G = g

{(

〈Ω : Ψ〉I
〈v : w〉∆

)

−

(

I−1Ls

∆−1S

)}

, (3.3)

where

Ls = −D(IΩ)(·, w) −D(IΨ)(·, v) + IA
(

〈v : w〉∆ − ∆−1S
)

∈ g∗

S = I(Ω, B(w, ·)) + I(Ψ, B(v, ·)) +DI(·)(Ω,Ψ) ∈ T ∗M ,

and 〈· : ·〉I , 〈· : ·〉∆ denote the symmetric products defined by the Levi-Civita connec-
tions ∇I and ∇∆, respectively.

We shall return to these results in Section 6 in computing the symmetric product
in specific examples.



12 J. Cortés, S. Mart́ınez, J.P. Ostrowski, H. Zhang

4. Decomposition of the nonholonomic affine connection under symme-
try. Let (Q,G, V,F ,D) be a constrained mechanical control system invariant under
the action of a Lie group G. As expected, the invariance of the Levi-Civita connection
and the nonholonomic distribution D can be combined to find a decomposition of the
nonholonomic affine connection similar to that of Proposition 3.2.

First, notice that if D is generated by a basis of G-invariant vector fields Xi, 1 ≤
i ≤ n− l, the projector P : TQ −→ D with respect to the orthogonal decomposition
TQ = D ⊕D⊥ is given by

P(Z) =
∑

i,j

CijG(Xi, Z)Xj , Z ∈ X(Q) ,

where (Cij) is the inverse matrix of (Cij = G(Xi, Xj)). A geometrically revealing
choice of generators of D making use of the exposition in Section 2.3 is the following.
Recall that the nonholonomic principal connection Anh induces a decomposition of
the tangent bundle, TQ = H⊕ V . This in particular implies that

D = H⊕ S .

On the one hand, we know that S(r,e) = span{e1(r)Q, . . . , es(r)Q}. Furthermore, the

generators of H(r,e) are of the form (−Aṙ, ṙ), where A denotes the local form of Anh.
Hence, we have that

D(r,g) = gD(r,e) = g span {(−Aṙ, ṙ) , (ei, 0)} .

For these vector fields we compute

G (g (ei, 0) , g (ej , 0)) = eT
i Iej = eT

i Ĩej

G (g (−A(ṙ), ṙ) , g (ej , 0)) = −(Aṙ)T Iej + (Aṙ)T Iej = (Ãṙ)T Iej = 0

G (g (−A(ṙ), ṙ) , g (−A(ṙ), ṙ)) = (Aṙ)T IAṙ − (Aṙ)T IAṙ − (Aṙ)T IAṙ + ṙTmṙ

= ṙT (m+AT
IA−AT

IA−AT IA)ṙ = ṙT ∆̃ṙ ,

where Ã = A−A, ∆̃ = m−AT IA+ ÃT IÃ and we have used the fact that Ãṙ ∈ S⊥.
Hence, we can write the matrix C as

C =

(

Ĩ 0

0 ∆̃

)

.

Now, we are in a position to prove the following result.
Proposition 4.1. Given G-invariant vector fields, X = (gξ, v) ∈ TQ, Y =

(gη, w) ∈ D on Q, with ξ(r), η(r) ∈ g and v, w ∈ TM the nonholonomic affine
connection ∇ can be expressed as

∇XY = g

{

(

Asym(∇I
Ω̄
Ψ̄)

∇∆̃
v w

)

−
1

2

(

Ĩ−1L̃+ 2A(∇XY )M

∆̃−1S̃

)}

, (4.1)

where

L̃ = −D(IΩ̄)(·, w) −D(IΨ̄)(·, v) + I(Ãv, γ·w − [·, η]) + I(Ãw, γ·v − [·, ξ])

+ I([Ω̄, Ψ̄] − [ξ, η] + ξrw − ηrv −A[v, w]) ∈ gD
∗
,

S̃ = I(Ψ̄, B(v, ·)) + I(Ω̄, B(w, ·)) + I(Ãw,B(v, ·)) + I(Ãv,B(w, ·))

−D(IΨ̄)(Ã·, v) −D(IΩ̄)(Ã·, w) +DI(·)(Ω̄ + Ãv, Ψ̄ + Ãw) −DI(·)(Ãv, Ãw)

− I([ξ, η], Ã·) − I(ηrv − ξrv, Ã·) − I(A[v, w], Ã·) ∈ T ∗M ,
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and D, B denote, respectively, the local forms of the derivative along and the curvature
of the nonholonomic connection Anh and Ω̄ = ξ +Av, Ψ̄ = η +Aw.

Proof. Since Y ∈ D, ∇XY = P(∇G
XY ) =

∑

CijG(Xi,∇
G
XY )Xj . We first com-

pute

G
(

g (ei, 0) ,∇G
XY
)

= eT
i I
{

(∇G
XY )g +A(∇G

XY )M

}

(4.2)

G
(

g (−Aṙ, ṙ) ,∇G
XY
)

= (Ãṙ)T I(∇G
XY )g + ṙT (m−AT IA)(∇G

XY )M (4.3)

= (Ãṙ)T I
{

(∇G
XY )g +A(∇G

XY )M

}

+ ṙT ∆(∇G
XY )M

Let us denote (∇G
XY )g +A(∇G

XY )M = ∇̃G
XY for brevity. In terms of Ω̄, Ψ̄ and using

Proposition 3.2 it can be expanded as

∇̃G
XY = ∇I

Ω̄Ψ̄ −
1

2
I−1

{

−D(IΩ̄)(·, w) −D(IÃv)(·, w) −D(IΨ̄)(·, v)

− D(IÃw)(·, v) − I(Ãw, [·, Ω̄]) − I(Ãv, [·, Ψ̄])

+ I([Ω̄, Ψ̄] − [ξ, η] + ξrw − ηrv −A[v, w], ·)
}

Before plugging this expression into eq. 4.2, notice that

−D(IÃv)(ei, w) − I(Ãv, [ei, Ψ̄]) = I(Ãv, γiw − [ei, η]) ,

where we have used the fact that ei ∈ S and Ãv ∈ S⊥. After substituting, we find
that eq. 4.2 can be expressed as G

(

g (ei, 0) ,∇G
XY
)

= 〈I(∇I
Ω̄
Ψ̄, ·) − 1

2 L̃, ei〉, where

L̃ = −D(IΩ̄)(·, w) −D(IΨ̄)(·, v) + I(Ãv, γ·w − [·, η]) + I(Ãw, γ·v − [·, ξ])

+I([Ω̄, Ψ̄] − [ξ, η], ·) − I(ηrv − ξrw +A[v, w], ·)

On the other hand, it is easy to see that

∆(∇G
XY )M = ∆∇∆

v w −
1

2
S

= ∆̃∇∆̃
v w −D∇D

v w −
1

2
S = ∆̃∇∆̃

v w −

(

D∇D
v w +

1

2
S
)

,

where D = ÃT IÃ and D∇D
v w is a shorthand notation to denote the expression eq. 2.3

for the symmetric tensor D. Then, we can rewrite (4.3) as

ṙT

(

∆̃∇∆̃
v w −

(

D∇D
v w +

1

2
S− ÃT I∇̃G

XY

))

.

Therefore ∇XY becomes

∇XY = P(∇G
XY ) =

(

g(∇XY )g
(∇XY )M

)

,

with

(∇XY )g = Ĩ−1

{

I(∇I
Ω̄Ψ̄, ·) −

1

2
L̃
}

−A(∇XY )M

= Asym(∇I
Ω̄Ψ̄) −

1

2
Ĩ−1L̃−A(∇XY )M ,

(∇XY )M = ∇∆̃
v w − ∆̃−1

(

D∇D
v w +

1

2
S− ÃT I∇̃G

XY

)

,
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where we have used the fact that Asym(ζ) ≡ Asym(ζQ(e, r)) = Ĩ−1I(ζ), for ζ ∈ g. To
end the proof, let us write explicitely the terms in (∇XY )M . Adding and substracting
terms in the expression for 2D∇D

v w, we can find that

2D∇D
v w = vβ ∂Ã

a
α

∂rβ
IabÃ

b
γw

γ +D(IÃw)(Ã·, v) − I(Ãv, [Aw, Ã·])

+wβ ∂Ã
a
α

∂rβ
IabÃ

b
γv

γ +D(IÃv)(Ã·, w) − I(Ãw, [Av, Ã·])

−wβvγ
∂Ãa

βIabÃ
b
γ

∂rα
+ ÃT IÃ[v, w]

= D(IÃw)(Ã·, v) +D(IÃv)(Ã·, w) + I(Ãw)B(·, v) + I(Ãw)B(v, ·)

+I(Ãv)B(·, w) + I(Ãv)B(w, ·) −DI(Ãv, Ãw) + ÃT IÃ[v, w] .

On the other hand,

S = I(Ω, B(w, ·)) + I(Ψ, B(v, ·)) +DI(·)(Ω,Ψ)

= I(Ω, B(w, ·)) + I(Ψ, B(v, ·)) +DI(·)(Ω,Ψ) + I(Ω, [Ã·,Ψ]) + I(Ψ, [Ã·,Ω]) ,

and the term ÃT I∇̃G
XY can be written as

−ÃT I∇̃G
XY = −ÃT I∇I

ΩΨ +
1

2

(

−D(IΨ)(Ã·, v) −D(IΩ)(Ã·, w)

+ I([Ω,Ψ] − [ξ, η], Ã·) − I(ηrv − ξrv, Ã·) − ÃT IA[v, w]
)

.

Summing up these terms, we get the expression for S̃ stated in the proposition.
Corollary 4.2. The symmetric product associated to ∇ of two G-invariant

vector fields, X = (gξ, v) ∈ D and Y = (gη, w) ∈ D is given by

〈X : Y 〉 = g

{

(

Asym(〈Ω̄ : Ψ̄〉I )
〈v : w〉∆̃

)

−

(

Ĩ−1L̃s
+A

(

〈v : w〉∆̃ − ∆̃−1S̃s
)

∆̃−1S̃s

)}

,

(4.4)

where

L̃s
= −D(IΩ̄)(·, w) −D(IΨ̄)(·, v) + I(Ãv, γ·w − [·, η]) + I(Ãw, γ·v − [·, ξ]) ∈ gD

∗

S̃s
= I(Ψ̄, B(v, ·)) + I(Ω̄, B(w, ·)) + I(Ãw,B(v, ·)) + I(Ãv,B(w, ·)) −D(IΨ̄)(Ã·, v)

−D(IΩ̄)(Ã·, w) +DI(·)(Ω̄ + Ãv, Ψ̄ + Ãw) −DI(·)(Ãv, Ãw) ∈ T ∗M .

and 〈· : ·〉∆̃ denotes the symmetric product defined by the Levi-Civita connection ∇∆̃.

5. Controllability analysis. The point in the approach of Lewis and Murray
to simple mechanical control systems is precisely to know what is happening to con-
figurations, rather than to states, since in many of these systems configurations may
be controlled, but not configurations and velocities at the same time. The basic ques-
tion they pose is “what is the set of configurations that are attainable from a given
configuration starting from rest?”

Consider the control equation

∇ċ(t)ċ(t) =

m
∑

i=1

ui(t)Yi(c(t)) , (5.1)
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where the affine connection ∇ can be either the Levi-Civita affine connection associ-
ated to a kinetic energy metric or the nonholonomic affine connection for a constrained
system (recall that in the latter case we select ċ(0) ∈ D and Yi denotes the projec-
tion by P to D of the ith input vector field). Notice that we are considering now
that V ≡ 0. The absence of the potential makes the picture considerably more clear
while capturing the essential aspects of the analysis. On the other hand, a potential
function could be incorporated to the controllability tests along the lines of [21].

Take q0 ∈ Q and let U ⊂ Q be a neighbourhood of q0. Define

RU
Q(q0, T ) = {q ∈ Q | there exists a solution (c, u) of (5.1) such that

ċ(0) = 0q0
, c(t) ∈ U for t ∈ [0, T ] and ċ(T ) ∈ TqQ}

and denote by RU
Q(q0,≤ T ) = ∪0≤t≤TR

U
Q(q0, t).

We shall focus our attention on the following notions of accessibility and control-
lability [21].

Definition 5.1. The system (5.1) is locally configuration accessible (LCA)
at q0 ∈ Q if there exists T > 0 such that RU

Q(q0,≤ t) contains a non-empty open set
of Q, for all neighbourhoods U of q0 and all 0 ≤ t ≤ T . If this holds for any q0 ∈ Q
then the system is called locally configuration accessible.

Definition 5.2. The system (5.1) is small-time locally configuration con-
trollable (STLCC) at q0 ∈ Q if there exists T > 0 such that RU

Q(q0,≤ t) contains
a non-empty open set of Q to which q0 belongs, for all neighbourhoods U of q0 and all
0 ≤ t ≤ T . If this holds for any q0 ∈ Q then the system is called small-time locally
configuration controllable.

Given the input vector fields Y = {Y1, . . . , Ym}, let us denote by Sym(Y) the
distribution obtained by closing the set Y under the symmetric product and by Lie(Y)
the involutive closure of Y . With these ingredients, one can prove

Theorem 5.3. ([21]) The control system (5.1) is locally configuration accessible
at q if Lie(Sym(Y))q = TqQ.

If P is a symmetric product of vector fields in Y , we let γi(P ) denote the number
of occurrences of Yi in P . The degree of P will be γ1(P )+ · · ·+ γm(P ). We say that
P is bad if γi(P ) is even for each 1 ≤ i ≤ m. Otherwise, we say that P is good. The
following theorem gives sufficient conditions for STLCC.

Theorem 5.4. Suppose that the system (5.1) is LCA at q and that every bad sym-
metric product P at q in Y can be written as a linear combination of good symmetric
products at q of lower degree than P . Then it is STLCC at q.

Remark 5.5. This theorem was proved in [21], as an application to mechanical
systems of previous work by Sussmann [32] on general control systems with drift.
There has been some effort in trying to obtain sufficient and necessary conditions
for configuration controllability. A conjecture that remains open is that the system
(5.1) is STLCC at q if and only if there exists a basis of vector fields generating the
input distribution which satisfies the sufficient conditions of the theorem. Lewis [18]
proved the validity of the conjecture for the one-input case. Recently, Cortés and
Mart́ınez [11] have proved that it is also valid for underactuated systems by one
control.

The exposed controllability analysis can be further refined for mechanical con-
trol systems with symmetry, taking into account the results of the previous sections.
Assume that the control system (5.1) is invariant under the action of a Lie group
G. Let us denote by B = {B1, . . . , Bm} the representants of the input vector fields
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Y = {Y1, . . . , Ym} at g× TM , that is,

Yi(r, g) = gBi(r, e) = g

(

ξi(r)
vi

)

, 1 ≤ i ≤ m.

Due to the invariance of the system we have that 〈Yi : Yj〉 = 〈gBi : gBj〉 ≡ g〈Bi : Bj〉
for all 1 ≤ i, j ≤ m. The explicit expression in bundle coordinates for this symmetric
product is given by Corollaries 3.3 and 4.2. Note also that the Lie brackets [Yi, Yj ]
can be written as

[Yi, Yj ] ≡ g[Bi, Bj ] = g

(

[ξi, ξj ]g +
∂ξj

∂r
vi −

∂ξi

∂r
vj

[vi, vj ]M

)

As a result, we have the following version of the former results.

Theorem 5.6. Let the control system (5.1) be invariant under the action of a
Lie group G.

(i) The system is LCA at q = (r, g) ∈ OrbG(r, e) if Lie(Sym(B))(r,e) = g×TrM .
(ii) Suppose that the system is LCA at (r, e) and that every bad symmetric prod-

uct P at (r, e) in B can be written as a linear combination of good sym-
metric products at (r, e) of lower degree than P . Then (5.1) is STLCC at
q ∈ OrbG(r, e).

These simplified tests of the accessibility and controllability properties of mechan-
ical control systems under symmetry are indeed quite useful in practical examples,
since they remove completely the dependence on the Lie group elements g ∈ G from
the computations. In examples such as the blimp, the underwater vehicle, the snake-
board or the roller racer, where symmetry plays an important role, this property may
be a definitive advantage.

An additional important simplification from the computational point of view
stems from the fact that for many dynamic robotic locomotion systems, the set of
inputs at disposal consists of the full tangent bundle of the shape space M . This
essentially corresponds to the observation that the system can adjust its shape as
desired. For such problems, we can state the following result.

Theorem 5.7. Let the control system (5.1) be invariant under the action of a Lie
group G. Additionally assume that the system is fully actuated in the shape space, i.e.
the set of input forces consist of F 1 = dr1, . . . , Fm = drm, where m now also denotes
the dimension of M . Then, the locked body angular velocities of the input vector fields
all vanish, Ωi = 0, 1 ≤ i ≤ m. Moreover, in the presence of nonholonomic constraints,
the projections of the input vector fields to D also have Ω̄i = 0, 1 ≤ i ≤ m.

Proof. It is not difficult to verify that the input vector fields are of the form
(

−gA∆−1ṙ,∆−1ṙ
)

. Then, Ωi = 0 follows. On the other hand, their projections to

the constraint distribution D can be written as (−gA∆̃−1ṙ, ∆̃−1ṙ), which implies that
Ω̄i = 0.

As a consequence of Theorem 5.7, the necessary calculations in the controllability
analysis of the successive symmetric products involving the input vector fields (cf.
Corollary 3.3) or their projections to D (cf. Corollary 4.2) are further simplified. In
fact, for two vector fields X = (gξ, v) and Y = g(η, w) having vanishing associated
locked body angular velocities Ω = 0, Ψ = 0, we have by Corollary 3.3 that

〈X : Y 〉G = g

(

−A 〈v : w〉∆
〈v : w〉∆

)

,
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which also has vanishing locked body angular velocity. On the other hand, for two
vector fields X = (gξ, v) ∈ D and Y = g(η, w) ∈ D having Ω̄ = 0, Ψ̄ = 0 respectively,
we have by Corollary 4.2 that

〈X : Y 〉 = g

(

−Ĩ−1L̃s
−A

(

〈v : w〉∆̃ − ∆̃−1S̃s
)

〈v : w〉∆̃ − ∆̃−1S̃s

)

,

with L̃s
= I(Ãv, γ·w−[·, η])+I(Ãw, γ·v−[·, ξ]) and S̃s

= I(Ãw,B(v, ·))+I(Ãv,B(w, ·)).
Notice also that the tests we have obtained here for principal fiber bundles are the

natural extension of the results developed in [7] for mechanical control systems on Lie
groups. The major difference is that on Lie groups, G-invariance implies that the tests
are expressed in g in a purely algebraic way, whereas on principal fiber bundles we
have to take into account the role of the shape space M and therefore differentiation
is still required.

Another interesting aspect for this kind of mechanical control systems is the
adaptation of the concept of weak controllability for kinematic systems defined
in [15]. This notion essentially means controllability in the fiber, without regards to
the intermediate or final positions of the shape variables. This type of controllability is
meaningful for locomotion systems, where the group elements correspond to positions
and orientation (and therefore are the most interesting variables to control) and one
really does not care about the shapes the system is describing. In the following, we
discuss it for the second order dynamical problems we are considering.

Assume then that we are dealing with a trivial principal fiber bundle, that is,
the decomposition Q = G ×M holds globally. Let V τ denote any subset of Q such
that τ(V τ ) is an open subset of G, where τ : Q ≡ G×M −→ G denotes the natural
projection. Let q0 = (r0, g0) and U ⊂ Q as before. Then we have

Definition 5.8. The system (5.1) is locally fiber configuration accessible
(LFCA) at q0 ∈ Q if there exists T > 0 such that RU

Q(q0,≤ t) contains a non-empty
subset V τ of Q, for all neighbourhoods U of q0 and all 0 ≤ t ≤ T . If this holds for
any q0 ∈ Q then the system is called locally fiber configuration accessible.

Definition 5.9. The system (5.1) is small-time locally fiber configuration
controllable (STLFCC) at q0 ∈ Q if there exists T > 0 such that RU

Q(q0,≤ t)
contains a non-empty subset V τ of Q such that g0 ∈ τ(V τ ), for all neighbourhoods
U of q0 and all 0 ≤ t ≤ T . If this holds for any q0 ∈ Q then the system is called
small-time locally fiber configuration controllable.

From the discussion above, one can prove the following:
Theorem 5.10. Let the mechanical control system (5.1) be invariant under G.
(i) The system is LFCA at q = (r, g) if τ∗Lie(Sym(B))(r,e) = g.
(ii) Suppose that the system is LFCA at q and that the projection through τ of

every bad symmetric product P at q in B, τ∗P , can be written as a linear
combination of projections through τ of good symmetric products at q of lower
degree than P . Then (5.1) is STLFCC at q.

Proof. Along the zero section of TQ, q 7−→ 0q, we have that the decomposition
T0q

TQ ≡ TqQ⊕TqQ holds, where the first factor corresponds to configurations and the
second one to velocities. Then, from [21], we know that the accessibility distribution
C corresponding to the full control system (that is, considering as states both the
configurations and the velocities) can be decomposed as C0q

= Chor(q)⊕Cver(q), with

Chor(q) = Lie(Sym(Y))q and Cver(q) = Sym(Y)q . If τ∗Lie(Sym(B))(r,e) = g, we can
conclude that TgG ⊂ Chor(q) and hence the system (5.1) is LFCA at q. The other
claim follows from the invariance of the system and Sussmann’s result in [32].
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6. Examples.

6.1. The blimp. Consider a rigid body moving in SE(2) with a thruster to
adjust its pose (see Figure 6.1). The original motivation for this problem is the blimp
system developed by Zhang and Ostrowski [35] restricted to the vertical plane. The
control inputs are the thruster force F 1 and a torque F 2 that actuates its orientation
with respect to the body axis {Xb, Y b}. The acting point of the thruster is assumed
to be located along the body’s long axis, at a distance h from the center of mass.

The configuration of the blimp is determined by a tuple (x, y, θ, γ), where (x, y)
is the position of the center of mass, θ is the orientation of the blimp with respect to
the fixed basis {Xf , Y f} and γ denotes the orientation of the thrust with respect to
the body basis {Xb, Y b}. The configuration manifold is then Q = SE(2) × S1.

h

θ
X

X

F 2

Yb

f

b

F 1 γ

Y f

Fig. 6.1. A planar blimp with rotating thruster

For simplicity, we assume the thruster is massless. Then, the Riemannian metric
of the system is

G = m(dx⊗ dx+ dy ⊗ dy) + (J1 + J2)dθ ⊗ dθ + J2dγ ⊗ dγ + J2(dθ ⊗ dγ + dγ ⊗ dθ) ,

where m denotes the mass of the blimp, J1 is its moment of inertia and J2 is the
inertia of the thruster. The Lagrangian of the system is the kinetic energy associated
to this metric, that is

L =
1

2
m(ẋ2 + ẏ2) +

1

2
J1θ̇

2 +
1

2
J2(γ̇ + θ̇)2 .

Finally, the input forces are given by

F 1 = cos(θ + γ)dx+ sin(θ + γ)dy − h sin γdθ , F 2 = dγ .

The corresponding input vector fields can be computed to be

Y1 =
1

m
cos(θ + γ)

∂

∂x
+

1

m
sin(θ + γ)

∂

∂y
−

h

J1
sin γ

∂

∂θ
+

h

J1
sin γ

∂

∂γ
,

Y2 = −
1

J1

∂

∂θ
+
J1 + J2

J1J2

∂

∂γ
.

This simple mechanical control system is invariant under the left multiplication of the
Lie group G = SE(2),

Φ : G×Q −→ Q
((a, b, α), (x, y, θ, γ)) 7−→ (x cosα− y sinα+ a, x sinα+ y cosα+ b, θ + α, γ) .
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The reduced representation of the input vector fields at g× TM is given by

B1 =
1

m
cos γ

∂

∂x
+

1

m
sin γ

∂

∂y
−

h

J1
sin γ

∂

∂θ
+

h

J1
sin γ

∂

∂γ
,

B2 = −
1

J1

∂

∂θ
+
J1 + J2

J1J2

∂

∂γ
.

Let {ex, ey, eθ} be the canonical basis of the Lie algebra se(2). Given the metric
G, we can readily identify from its reduced form (2.8) the local form of the mechanical
connection and the inertia tensor

I =





m 0 0
0 m 0
0 0 J1 + J2



 , A =





0
0
J2

J1+J2



 .

As the shape space is one-dimensional and Bmech is skew-symmetric, we deduce that
Bmech = 0. Some computations yields that DI also vanishes. Consequently, S = 0.
In addition,

D(Iη)(ξ, v) =





















m∂η1

∂γ

m∂η2

∂γ

(J1 + J2)
∂η3

∂γ







T

+
mJ2

J1 + J2





η2

−η1

0





T



















ξ1

ξ2

ξ3



 v .

Note that ∆ =
(

J1J2

J1+J2

)

. Therefore, the Christoffel symbols of ∇∆ vanish and

〈v : w〉∆ =
∂w

∂γ
v +

∂v

∂γ
w .

Summing up, we conclude that Ls in eq. 3.3 for X = (gξ, v), Y = (gη, w) is given by

Ls = −











m
(

∂ξ1

∂γ
w + ∂η1

∂γ
v
)

m
(

∂ξ2

∂γ
w + ∂η2

∂γ
v
)

(J1 + J2)
(

∂ξ3

∂γ
w + ∂η3

∂γ
v
)











−
mJ2

J1 + J2





Ω2w + Ψ2v
−Ω1w − Ψ1v

0





Following Lemma 3.1 we can compute the symmetric product defined by ∇I

〈Ω : Ψ〉I =





−Ω2Ψ3 − Ω3Ψ2

Ω1Ψ3 + Ω3Ψ1

0



 .

With these ingredients, we are now ready to perform the controllability analysis along
the lines of Section 5. Consider the following symmetric brackets

〈B1 : B1〉G = h2

J2

1

sin(2γ)









0
0
−1
1









, 〈B1 : B2〉G =











− 1
mJ2

sin γ
1

mJ2

cos γ

−h(J1+J2)
J2

1
J2

cos γ
h(J1+J2)

J2

1
J2

cos γ











,

〈B2 : B2〉G = 0 , 〈B2 : 〈B1 : B1〉G〉G = 2 h2

J2

1

J1+J2

J1J2

cos(2γ)









0
0
−1
1









.
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Note that {B1, B2, 〈B1 : B2〉G , 〈B1 : B1〉G , 〈B2 : 〈B1 : B1〉G〉G} span g× TM at every
point (e, r) and hence the system is locally configuration accessible. However, the
bad bracket 〈B1 : B1〉G is not in general a linear combination of the lower order good
brackets B1 and B2. Therefore, we can not conclude that the system is STLCC.
In any case, at γ = 0, we have that 〈B1 : B1〉G(e, 0) = 0 and we can assure that
the system is small time locally configuration controllable at (g, 0), for all g ∈ G.
However, if we restrict our attention to fiber configuration controllability, we can see
that τ∗〈B1 : B1〉G ∈ span{τ∗B2} and therefore the blimp is STLFCC. Physically, fiber
controllability corresponds to the fact that we can use the shape torque to control the
orientation angle θ to a desired value, but not θ and γ simultaneously.

6.2. The snakeboard. The Snakeboard [22, 28] is a variant of the skateboard in
which the passive wheel assemblies can pivot freely about a vertical axis. By coupling
the twisting of the human torso with the appropriate turning of the wheels (where the
turning is controlled by the rider’s foot movement), the rider can generate a snake-like
locomotion pattern without having to kick off the ground.

A simplified model is shown in Figure 6.2. We assume that the front and rear
wheel axles move through equal and opposite rotations. This is based on the obser-
vations of human snakeboard riders who use roughly the same phase relationship. A
momentum wheel rotates about a vertical axis through the center of mass, simulating
the motion of a human torso.

(x,y)
front wheels

l

ψ

φ
θ

back wheels
−φ

Fig. 6.2. The snakeboard model

The position and orientation of the snakeboard is determined by the coordinates
of the center of mass (x, y) and its orientation θ. The shape variables are (ψ, φ), so the
configuration space is Q = SE(2) × S1 × S1. The physical parameters for the system
are the mass of the board, m; the inertia of the rotor, Jr; the inertia of the wheels
about the vertical axes, Jw; and the half-length of the board, l. A key component of
the snakeboard is the use of the rotor inertia to drive the body. To keep the rotor and
body inertias on similar scales, we make the additional simplifying assumption [4, 30]
that the inertias of the system satisfy J + Jr + 2Jw = ml2.

The Riemannian metric of this system is

G = m(dx⊗ dx+ dy ⊗ dy) + (J + Jr + 2Jw)dθ ⊗ dθ

+ Jr(dθ ⊗ dψ + dψ ⊗ dθ) + Jrdψ ⊗ dψ + 2Jwdφ⊗ dφ .

The control torques are assumed to be applied to the rotation of the wheels and the
rotor. Hence, we consider

F 1 = dψ , F 2 = dφ .
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Observe that the snakeboard is an example of the type of dynamic locomotion systems
we mentioned earlier, since the set of control inputs fully actuate the shape variables,
span{F 1, F 2} = T ∗M . The corresponding input vector fields via the diffeomorphism
]G are

Y1 = −
1

J + 2Jw

∂

∂θ
+

ml2

Jr(J + 2Jw)

∂

∂ψ
, Y2 =

1

2Jw

∂

∂φ
.

The assumption that the wheels do not slip in the direction of the wheels axles
yields the following two nonholonomic constraints

− sin(θ + φ)ẋ + cos(θ + φ)ẏ − l cosφ θ̇ = 0 ,

− sin(θ − φ)ẋ + cos(θ − φ)ẏ + l cosφ θ̇ = 0 .

A quick set of calculations shows that this constrained mechanical system is invari-
ant under the left multiplication in the Lie group SE(2). The intersection S = V ∩D
can be seen to be one-dimensional. Moreover, we have that S(e,r) = e1Q, where
e1 = l cosφex − sinφeθ. We complete the basis by adding two elements generating
S⊥

(e,r)

e2 = ey , e3 =
1

l
tanφex + eθ .

Taking into account the discussion of the preceding sections, we can identify the
following elements

I =





m 0 0
0 m 0
0 0 ml2



 , A =





0 0
0 0
Jr

ml2
0



 , A =





− Jr

2ml
sin(2φ) 0
0 0

Jr

ml2
sin2 φ 0



 .

Our choice of generators of D(e,r) following Section 2.3 is then

D(r,e) = span

{

∂

∂ψ
+

Jr

ml2
sinφe1,

∂

∂φ
, e1

}

.

The projections to D of the input vector fields under the orthogonal decomposition
TQ = D ⊕D⊥ are

B1 = P(B1) =
ml2

Jr(ml2 − Jr sin2 φ)

(

∂

∂ψ
+

Jr

ml2
sinφe1

)

,

B2 = P(B2) =
1

2Jw

∂

∂φ
.

For the sake of completeness, we have computed the terms L̃s
∈ gD and S̃s

in eq. 4.4
for any G-invariant vector fields X = (gξ, v) and Y = (gη, w), although we already
pointed out in Section 5 (cf. Theorem 5.7) that the amount of calculations for the
controllability tests can be made quite lighter taking into account the fact that Ω̄i = 0
for Bi, i = 1, 2.

L̃s
= −

{

ml cosφ
2
∑

α=1

(

∂Ψ̄1

∂rα
vα +

∂Ω̄1

∂rα
wα

)

−ml2 sinφ
2
∑

α=1

(

∂Ψ̄3

∂rα
vα +

∂Ω̄3

∂rα
wα

)

+Jr cosφ(v2w1 + w2v1) +
Jr

2l
sin(2φ) sinφ(w1ξ2 + v1η2)

}

e∗1 ,

S̃s
= −

J2
r

2ml2
sin(2φ)

(

w1v2 + w2v1

−2v1w1

)

.
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The controllability analysis yields the following results at the point 0 = (0, 0, 0, 0, 0)

〈B1 : B1〉(0) = 0 , 〈B1 : B2〉(0) = 1
2Jwml

ex ,

〈B2 : B2〉(0) = 0 , [B1,B2](0) = 1
2Jwml

ex ,

[B2, [B1,B2]](0) = − 1
2J2

wml2
eθ, [B2, [B1, [B2, [B1,B2]]]](0) = − 1

4J3
wm2l3

ey − 1
2J3

wm2l4
eθ.

Note that {B1,B2, 〈B1 : B2〉, [B2, [B1,B2]], [B2, [B1, [B2, [B1,B2]]]]} span g×T(0,0)M , so
the system is locally configuration accessible at (g, 0, 0), for all g ∈ G. Moreover, the
bad symmetric products 〈B1 : B1〉 and 〈B2 : B2〉 vanish at 0 and the remaining ones
are either 0 or in span{B2(0), 〈B1 : B2〉(0)}, so we can conclude that the snakeboard
is STLCC at (g, 0, 0), for all g ∈ G.

7. Conclusions. We have developed a new set of tools that can be used in the
study of simple mechanical systems evolving on principal fiber bundles. These tools
have direct application to a large class of problems in robotic locomotion. Using the
Lie group symmetries that are associated with an invariant mechanical system on a
principal fiber bundle, we have given an explicit formulation of the affine connection
in terms of the mechanical and nonholonomic connections, for unconstrained and
constrained systems, respectively. This formulation can greatly reduce the amount
of computation necessary to derive controllability tests, as was observed during the
analysis of the snakeboard system.

We have defined a new notion of fiber configuration controllability, which can
be used to focus the analysis on the important components of a locomotion system,
namely the fiber variables of position and orientation. The tools developed in this
paper were applied to two systems, the planar rigid body and the snakeboard robot.

We are currently working on applying these tools to motion planning for such
systems (see [26]). Recent work by Bullo et al. [6] suggests an excellent avenue for
applying the affine connection in a motion planning framework. We will also explore
connections of these tools to steering for dynamic systems, as for example was done
by Ostrowski [29] using the reduced equations for the snakeboard [31].
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