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We examine the problem of the consistency of the second-order differential equa-
tions associated with optimal control problems. This problem can be treated in a
presymplectic framework by means of a constraint algorithm. Two cases may arise:
the regular one, already considered in the literature, and the degenerate one. The
main contribution of this paper is the proposal of a discrete transition law for the
optimal trajectories that reach a singular point. This discrete law respects both the
geometry and the dynamical structure of the optimal control problem.
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1. Introduction

As is well known, the application of tools from modern differential geometry in the
fields of mechanics and control theory has meant a great advance in these research areas.
In this spirit, we address here the consistency problem of the second-order differential
equations describing the solution curves for optimal control problems. These equations
can be obtained through either Pontryagin’s Maximum Principle or constrained varia-
tional optimization, and constitute necessary conditions for optimality. Geometrically,
the optimal control problem can be formulated as a vakonomic Hamiltonian system.
This allows to give a precise mathematical interpretation of the consistency problem by
means of a constraint algorithm, which eventually leads to a final submanifold where
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a well-defined optimal dynamics exists. We identify two overall situations: the regular
case, in which the subsets obtained by this constraint algorithm have all a differentiable
structure, and the degenerate case, in which this does not hold true. Note the difference
in terminology with respect to classical optimal control theory [3], where the regular case
precisely corresponds to the final constraint submanifold being the first one.

We focus on the study of the degenerate situation. Related work includes [9], where
singular linear-quadratic optimal problems are considered, and [8, 21], where singular
situations are treated for unconstrained and nonholonomically constrained Lagrangian
systems. Here, we deal with (possibly nonlinear) general constraint functions and we do
not make any assumption on the nature of the cost function. Building on previous work
on ideas related to the Transition Principle [5, 21, 22], we propose a discrete law for the
optimal trajectories which reach the singular set. In order to do so, we assume that the
singularities are of fold type. We describe the structure of the singular set and identify a
special class of curves, that we term characteristics, which are key in the description of
the discrete law. We prove that the value of the momentum map of a Lie group action
is preserved along the characteristics and define the notion of decisive points of a given
singular point. Our results are illustrated in an optimal growth theory example [23].
We also motivate the need for further research by showing that the optimal control of
nonholonomic systems with symmetry may exhibit singularities which are not fold.

The paper is organized as follows. Section 2. presents the geometric presymplectic
framework suitable to deal with optimal control problems, along with examples coming
from optimal growth theory and nonholonomic systems with symmetry. We examine
the consistency of the optimal equations, and identify the regular and the degenerate
cases. Section 3. presents the treatment of the latter one. Under suitable transversality
conditions, we study the structure of the singular set and define the characteristic curves.
We also introduce an appropriate dynamic relative vector field which enables us to define
the notion of decisive points. Finally, we propose a version of the Transition Principle
in this context. We apply the developments to the optimal growth problem, and show
that the singularities of the class of nonholonomic systems with symmetry are not of fold
type. Section 4. presents some conclusions and directions for future research.

2. A geometric formulation for optimal control problems

Roughly speaking, an optimal control problem in its simplest form consists of achiev-
ing a motion between two desired points q0, q1 in the configuration space Q, while
extremizing certain functional determined by a cost function C : TQ→ R and satisfying
certain differential and algebraic constraints. The great variety of examples range from
the motion of robotic platforms to the behavior of economic growth models. The cost
function can be associated, for instance, with energy expenditure or with net increment
of certain capital good, whereas the constraints usually correspond to the differential
equations governing the dynamics of the problem. The objective is then to extremize the
functional J =

∫ 1

0 Cdt, among all twice differentiable curves c(t) joining c(0) = q0 and
c(1) = q1, and satisfying the constraints. These elements, the functional and the con-
straints, are precisely the ingredients on which vakonomic dynamics is based [2]. This
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dynamics, also termed constrained variational optimization [17], is obtained through
the application of a constrained variational principle. In many situations, an optimal
control problem can be recasted as a vakonomic problem. The standard way in which
optimal control problems are treated is deriving necessary conditions in the form of dif-
ferential equations that the possible solution curves must satisfy in order to be optimal.
This is usually done by means of Pontryagin’s Maximum Principle, although constrained
variational optimization also yields the same result. In both cases, the problem of the
consistency of the optimal equations may arise.

The intrinsic formulation for optimal control problems developed in [6, 17] (see
also [12, 16]) will be the framework where our discussion will take place. Consider the
Whitney sum T ∗Q⊕TQ, with projections pr1 : T ∗Q⊕TQ→ T ∗Q, pr2 : T ∗Q⊕TQ→ TQ.
Assume that the constraints are given by a submanifold M of TQ, locally defined by

q̇α = Ψα(qA, q̇a) , 1 ≤ α ≤ m, m+ 1 ≤ a ≤ n , 1 ≤ A ≤ n .

Consider the submanifold W0 = pr−1
2 (M) = T ∗Q ×Q M , and denote π1 = pr1|W0

,
π2 = pr2|W0

. Define on W0 the presymplectic 2-form ω = π∗1ωQ, where ωQ is the
canonical symplectic form on T ∗Q. Observe that rankω = 2n. Define also the function

HW0 = 〈π1, π2〉 − π∗2 C̃ ,

with C̃ :M → R the restriction of C to M . If (qA) are local coordinates on a neighbor-
hood U of Q, (qA, q̇a) coordinates on TU ∩M and (qA, λA) the induced coordinates on
T ∗U , then we have induced coordinates (qA, λA, q̇a) on T ∗U ×Q (TU ∩M). Locally,

HW0(q
A, λA, q̇

a) = λaq̇
a + λαΨα − C̃(qA, q̇a) , ω = dqA ∧ dλA .

The dynamics of the vakonomic system is determined by studying the solutions of

iXω = dHW0 . (1)

The presymplectic system (W0, ω,HW0) is called vakonomic Hamiltonian system. Being
the system presymplectic, we apply the Gotay-Nester constraint algorithm [10] to it.
First, consider the points W1 of W0 where (1) has a solution,

W1 = {x ∈ T ∗Q×QM | dHW0(x)(V ) = 0, ∀V ∈ kerω(x)} .
Locally, kerω = 〈∂/∂q̇a〉, and the constraints defining W1 are

ϕa = λa + λα
∂Ψα

∂q̇a
− ∂C̃

∂q̇a
= 0 , m+ 1 ≤ a ≤ n . (2)

Note that dimW1 = 2n. The equations of motion on W1 are q̇A = ∂HW0/∂λA, λ̇A =
−∂HW0/∂q

A, which are equivalent to

q̇α = Ψα(qA, q̇a) , λ̇α =
∂C̃

∂qα
− λβ

∂Ψβ

∂qα
,
d

dt

(
∂C̃

∂q̇a
− λα

∂Ψα

∂q̇a

)
=
∂C̃

∂qa
− λβ

∂Ψβ

∂qa
. (3)

These are the equations usually encountered in the literature for optimal control prob-
lems [6, 17]. Under a suitable transformation, it can be shown that they also correspond
to the classical equations of vakonomic dynamics [2].
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2.1. Examples

Here we present some examples to illustrate how the above exposed formalism can
be employed to derive the equations of a constrained optimization problem.

Optimal growth theory

Consider the following example inspired upon closed von Neumann systems [23]. Let
F (K1,K2,K3, K̇1, K̇2, K̇3) be a transformation function relating the capital goodsK1,K2,
K3 and the net capital formations K̇1, K̇2, K̇3 of the form

F (K1,K2,K3, K̇1, K̇2, K̇3) = K̇3 − K̇3
1 (1 +K2

2 )− K̇3
2 (1 +K2

1 ) .

Consider the cost function C(K1,K2,K3, K̇1, K̇2, K̇3) = K̇2. The problem consists of
maximizing the functional∫ T

0

K̇2 dt subject to F (K1,K2,K3, K̇1, K̇2, K̇3) = 0 ,

with appropriate initial conditions. To derive the optimal equations, let (K1,K2,K3) ∈
Q = R3 and take coordinates (K1,K2,K3, K̇1, K̇2, λ1, λ2, λ) onW0 � R8. The constraint
F = 0 can be rewritten as

K̇3 = Ψ(K1,K2, K̇1, K̇2) = K̇3
1(1 +K2

2) + K̇3
2 (1 +K2

1 ) .

The Hamiltonian function then reads HW0 = λ1K̇1 + λ2K̇2 + λΨ− K̇2. The constraints
defining the submanifold W1 are

λ1 = −λ ∂Ψ
∂K̇1

, λ2 = 1− λ
∂Ψ
∂K̇2

.

Equations (3) take the form

K̇3 = K̇3
1 (1 +K2

2 ) + K̇3
2(1 +K2

1) , λ̇ = 0 , (4)

3K̇1K̈1(1 +K2
2 ) + 3K̇2

1K2K̇2 = K1K̇
3
2 , 3K̇2K̈2(1 +K2

1) + 3K̇2
2K1K̇1 = K2K̇

3
1 .

Note that K̈1 and K̈2 are not determined whenever K̇1 = 0 and K̇2 = 0, respectively.

Optimal control of nonholonomic systems with symmetry

Let Q be the configuration space of a mechanical system, and L : TQ→ R its Lagrangian
function. The interaction of the system with its environment is modeled by a distribution
D on Q, which establishes the allowed velocities. Assume that a Lie group G acts freely
and properly on Q, leaving both the Lagrangian L and the constraints D invariant. This
geometric picture is common to a wide variety of locomotion and robotic systems [13, 19].
The system is then endowed with a principal fiber bundle structure, π : Q → B, with
fiber G. We call B = Q/G the shape space, a terminology inherited from locomotion
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systems, where r ∈ B denotes the internal shape of the system and g ∈ G its position
and orientation. Locally, Q can be seen as the trivial bundle B ×G (in locomotion, this
trivialization is commonly global).

g−1ġ = −A(r)ṙ + I(r)−1p , (5)

ṗ =
1
2
ṙTσṙṙ(r)ṙ + pTσpr(r)ṙ +

1
2
pTσpp(r)p , (6)

M(r)r̈ = −C(r, ṙ) +N(r, ṙ, p) + τ . (7)

Here, a nonholonomic momentum p is defined along the kinematic symmetry directions,
with an associated governing equation (6) called the momentum equation [4]. A is the
nonholonomic connection and τ represents the control forces applied to the system.

Assume that the shape space is fully controllable, that is, equation (7) can be rewritten
as r̈ = u. Given a positive definite quadratic function C(ṙ), we consider the following
optimal control problem [14]: given q0, q1 ∈ Q, find the curves r(t) ∈ B which steer
the system from q0 to q1 while minimizing

∫ 1

0 C(ṙ)dt, where r = π(q), subject to the
constraints (5) and the momentum equation (6). To deal with this problem, we treat
p as a set of independent variables and the momentum equation as an additional set of
constraints (cf. [14]). Then, the configuration space is Q̃ = Q×Rk, with k the number of
momentum directions. The function C can naturally be extended to T Q̃. The constraint
submanifold M ⊂ T Q̃ is determined by (5) and (6). One has dimM = 2n+ k − dimG.
Note that the constraints are nonlinear in general, due to the presence of σṙṙ(r) in (6).

Now, we locally identify T ∗Q̃ with T ∗(Q/G)×T ∗G×T ∗Rk. We further trivialize T ∗G
by left translations, T ∗G ∼= G × g∗, λg = (g, λ = L∗

gλg). Following the above exposed
framework, the Hamiltonian reads

H = λaṙ
a + λβ(−Aβ

a ṙ
a + Iβipi) + λi

(
1
2
σiab ṙ

aṙb + σjiapj ṙ
a +

1
2
σjli pjpl

)
− 1

2
Cabṙ

aṙb ,

where 1 ≤ β ≤ dimG, 1 ≤ i, j, l ≤ k and 1 ≤ a, b ≤ dimQ/G. The first constraint
submanifold, W1, is locally determined by the equations

ϕa = λa − λβAβ
a + λi(σiabṙb + σjiapj)− Cabṙ

b = 0 .

Equations (3) on W1 take the form

(g−1ġ)β = −Aβ
a ṙ

a + Iβipi , ṗi =
1
2
σiabṙ

aṙb + σjiapj ṙ
a +

1
2
σjli pjpl

λ̇β = cδγβλδ(−Aγa ṙa + Iγjpj) , λ̇i = −λβIβi − λj(σija ṙ
a + σilj pl) (8)

d

dt

(
Cabṙ

b + λβAβ
a − λi(σiabṙb + σjiapj)

)

= λβ

(
∂Aβ

b

∂ra
ṙb − ∂Iβj

∂ra
pj

)
− λi

(
1
2
∂σibc
∂ra

ṙbṙc +
∂σjib
∂ra

pj ṙ
b +

1
2
∂σjli
∂ra

pjpl

)
,

where cδγβ are the structure constants of the Lie algebra g. These equations are pre-
cisely the ones obtained in [14] through a completely different approach, namely reduced
Lagrangian optimization.
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2.2. Consistency of the optimal equations

An important feature of equations (3) is their implicit character, which in turn may
impose some additional (and, in principle, “hidden”) constraints on the optimal evolu-
tion. Overlooking these constraints would result in trajectories that do not have possible
continuation after some time instant or numerical simulations that blow up. In order
to guarantee that this does not happen, we must ensure that equations (3) determine a
well-defined dynamics in some (probably strict) submanifold ofW1. This is the objective
of the constraint algorithm.

In the discussion above, we have shown that on each point ofW1 there exists a vector
X satisfying (1). If this does not define a dynamic vector field tangent to W1, we have
to restrict ourselves to the subset W2 ⊂ W1 where these solutions are tangent to W1.
Assume that W2 is a submanifold. Proceeding further, we obtain a sequence

· · · ↪→ Ws ↪→ · · · ↪→W2 ↪→W1 ↪→W0 = T ∗Q×QM ,

where we assume for the time being that all the subsets obtained are submanifolds.
Algebraically, these constraint submanifolds may be described as

Wi = {x ∈Wi−1 | dHW0(x)(v) = 0 , ∀v ∈ TxW⊥
i−1} ,

where TxW⊥
i−1 = {v ∈ TxW0 | ω(x)(u, v) = 0 , ∀u ∈ TxWi−1}, i ≥ 1. If the algorithm

stabilizes, i.e., if there exists s ∈ N with Ws+1 = Ws and dimWs �= 0, then we obtain a
final constraint submanifold Wf =Ws on which a vector field X exists such that

(iXω = dHW0 )|Wf
.

The problem of the consistency of the optimal equations is then solved on Wf , since on
this submanifold a dynamic vector field exists which is tangent to Wf .

It may happen that the final constraint submanifold coincides with the first one,
Wf = W1. This is the case, for instance, of sub-Riemannian geometry. In the following
we examine this possibility. Denote ω1 = j∗ω, with j :W1 ↪→W0. Consider the matrix

C̄ab = ∂2C̃

∂q̇a∂q̇b
− λα

∂2Ψα

∂q̇a∂q̇b
, (9)

Lemma 1. Let x ∈W1. The orthogonal complement of TxW1 is given by

T⊥
x W1 = span

{
∂

∂q̇a
, Xjb

(
∂

∂qb
+
∂Ψα

∂q̇b
∂

∂qα
+ SAb

∂

∂λA

)
a = 1, . . . , n−m
j = 1, . . . , n− k

}
,

where Xja are such that
∑

aXjaC̄ab = 0 and

SAb =
∂2L̃

∂qA∂q̇b
− λγ

∂2Ψγ

∂qA∂q̇b
. (10)
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Proof. Let us denote by k ≤ n−m the rank of C̄ = (C̄ab) at x ∈ W1. Then, there exist
n−m−k linearly independent vectors X1, . . . , Xn−m−k such that XjC̄ = (

∑
aXjaC̄ab) =

0, for each j = 1, . . . , n − m − k. The result now follows by noting that the tangent
bundle of W1 is locally generated by the vector fields

∂

∂qA
+ SAb

∂

∂λb
,

∂

∂q̇a
+ C̄ab ∂

∂λb
,

∂

∂λα
− ∂Ψα

∂q̇b
∂

∂λb
,

where A = 1, . . . , n, a = 1, . . . , n−m and α = 1, . . . ,m.

From Lemma 1, we can deduce that if C̄ is invertible for all x ∈ W1, then T⊥W1 =
T⊥W0, and therefore W1 is the final constraint submanifold. Moreover, noting that

∂

∂q̇a
(ϕb) = C̄ab ,

where the ϕa are given by (2), and kerω1 = TxW1 ∩ T⊥
x W1, we conclude kerω1 = {0}.

As a consequence we have the following result [6, 17],

Proposition 1. If (W1, ω1) is a symplectic manifold, then Wf =W1.

The main limitation of the constraint algorithm is the assumption that the subsetsWi

have a differentiable manifold structure. We call this situation the regular case. Some
relevant examples (e.g. sub-Riemannian geometry, regular optimal control problems)
fall into this case, but there are also important situations in which this does not hold
true. We call this problem the degenerate case. For instance, it may happen that C̄ is
nonsingular almost everywhere except at some points where its rank decreases. This will
be the case that we will mainly treat here. Despite its apparent simplicity, the situation
turns out to be rather involved. The following sections will discuss a way to overcome the
consistency problem by means of an appropriate version of the Transition Principle [5].

To end this section, we present some results characterizing the various possibilities
that may arise when studying the kernel of ω1 if C̄ is singular.

Proposition 2. Let x ∈W1 and k = rank(C̄) ≤ n−m. Then we have

n−m− k ≤ dimkerω1 ≤ 2(n−m− k) , if n−m− k is even ,
n−m− k + 1 ≤ dimkerω1 ≤ 2(n−m− k) , if n−m− k is odd ,

and the dimension of the kernel can be any intermediate even value between the bounds.

Proof. LetX1, . . . , Xn−k be linearly independent vectors such thatXjC̄ = (
∑

aXjaC̄ab) =
0, for each j = 1, . . . , n − k. To determine the kernel of ω1, we have to identify those
vectors in T⊥

x W1 which also belong to TxW1. Note that

∂

∂q̇a
(ϕb) = C̄ab , Xja

(
∂

∂qa
+
∂Ψα

∂q̇a
∂

∂qα
+ SAa

∂

∂λA

)
(ϕb) = XjaTab ,
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where

Tab = Sab − Sba +
∂Ψα

∂q̇a
Sαb − ∂Ψα

∂q̇b
Sαa . (11)

The vectors
{
Xja

∂
∂q̇a

}n−m−k

j=1
clearly belong to kerω1. The other possible elements in

kerω1 should be a linear combination of elements in T⊥
x W1, i.e. of the form

Ya
∂

∂q̇a
+ ZjXja

(
∂

∂qa
+
∂Ψα

∂q̇a
∂

∂qα
+ SAa

∂

∂λA

)
.

In order to be tangent to W1, it should verify Y C̄+
∑

j ZjXjT = 0. Given that the map
Z → ZC̄ is degenerate, to find Y we must ensure that

∑
j ZjXjT belongs to its image.

Since C̄ is symmetric, this means 〈∑j ZjXjT, ker C̄〉 = 0, or equivalently,

n−m−k∑
j=1

ZjXjTXi = 0 , for each i = 1, . . . , n−m− k . (12)

Hence, dim kerω1 relies on the number of solutions to this equation. Note that the skew-
symmetry of T implies that the (n−m− k)× (n−m− k)-matrix T̄ = (XjTXi) is also
skew-symmetric. This guarantees that if n −m − k is odd, then there exists at least a
non-trivial vector Z = (Zj) verifying (12) and therefore dimkerω1 ≥ n−m− k + 1.

Corollary 1. Let x ∈W1 and assume rank(C̄) = n−m− 1. Then,

kerω1(x) = span
{
Xa

∂

∂q̇a
, Ya

∂

∂q̇a
+Xa

(
∂

∂qa
+
∂Ψα

∂q̇a
∂

∂qα
+ SAa

∂

∂λA

)}
,

where Xa and Ya are such that XaC̄ab = 0 and YaC̄ab +XaTab = 0.

Proof. In this case, n−m−k = 1 and the matrix T̄ in the proof of Proposition 2 vanishes,
so any Z ∈ R is a solution to equation (12).

2.3. Symmetry and momentum maps

One of the advantages of dealing with optimal control problems by means of the
above exposed formalism is the possibility of applying standard tools from Geometric
Mechanics [1, 2] in their study. Here we briefly expose some facts related to symmetry
which will be later used in the treatment of the degenerate case.

Assume that a Lie group G acts on Q and leaves the cost function C : TQ→ R and
the constraints M ⊂ TQ invariant. This action can be naturally lifted to an action Φ on
W0 leaving both the Hamiltonian H :W0 → R and the presymplectic 2-form ω invariant.
Let g denote the Lie algebra of G and g∗ its dual space. Consider the map

J :W0 −→ g∗ , 〈J(αq, Zq), ξ 〉 = 〈αq, ξQ(q)〉 ,
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where ξ ∈ g and ξQ corresponds to the fundamental vector field associated with the
original action on Q. It is not difficult to see [7, 15] that J is a momentum map for
the action Φ, that is, iξW0

ω = dJξ, with ξW0 the fundamental vector field associated
with Φ and Jξ : W0 → R given by Jξ(α,X) = 〈J(α,X), ξ〉. The nice feature about
the constraint algorithm is the fact that it respects both the action and the momentum
map. This means that Φ restricts to a well-defined action on each submanifold Wi and
that J|Wi

is a momentum map for this restricted action. As a consequence, we have that
JWf

: Wf → g∗ are conserved quantities for the optimal trajectories [7, 15].

3. The constraint algorithm: the degenerate case

In this section, we address the problem of determining the dynamics of the vakonomic
Hamiltonian system when the assumptions of the constraint algorithm do not hold. We
focus our attention on the case when the set W2 is not a submanifold (the first type of
singularity that may arise), which corresponds to the fact that the matrix C̄ does not
have constant rank.

Consider the restriction of the projection map π2 : W0 → T ∗Q to the submanifold
W1, which we denote as π :W1 → T ∗Q. Note that dimW1 = dimT ∗Q = 2n. Locally,

π(qA, q̇a, λα) = (qA,
∂L̃

∂q̇a
− λα

∂Ψα

∂q̇a
, λα) , kerπ∗ = span{Xa

∂

∂q̇a
|
∑
a

XaC̄ab = 0} .

Consequently, by the inverse function theorem, the matrix C̄ is singular at x ∈ W1 if and
only if π is not a local diffeomorphism at x. Let S be the singular subset of π, i.e.

S = {x ∈W1 | H(x) = det(C̄(x)) = 0} .

In what follows, we assume that this subset is a submanifold of codimension 1 in W1.
We also assume that it is regular (i.e. dH(x) �= 0, for all x ∈ S) and that the following
transversality condition holds

kerπx ∩ TxS = {0} , x ∈ S . (13)

It follows from (13) that the rank of the matrix C̄ at each x ∈ S is n −m − 1, namely,
dim kerπx = 1, and that π|S is a local diffeomorphism between S and π(S).

From a geometrical point of view, we are dealing with the following situation: the
2-form ω1 is non-degenerate at W1/S and has rank 2n − 2 at S. From a dynamical
viewpoint, the optimal trajectories are well-defined on W1/S, but we do not know what
happens if they reach the singular set, since X is undetermined there. In the following,
we investigate the local structure of S by means of the theory of stable mappings. This
enables us to identify a set of special curves, called characteristics, which are key in the
description of the behavior of the optimal trajectories when they reach S. Finally, the
introduction of an appropriate relative dynamics vector field will complete the set of
necessary tools to formulate the Transition Principle in this context.
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3.1. Local structure of the singular set

Next, we briefly review some facts from the theory of stable mappings [11] which will
be most helpful to unveil the local structure of the mapping π around the points in S.
The exposition here follows [21]. Let N1 and N2 be two smooth manifolds of dimensions
n1 ≥ n2, respectively. Denote by J1(N1, N2) the space of 1-jets of maps from N1 to N2.
A pair of local charts, (x1, . . . , xn1) on N1 and (y1, . . . , yn2) on N2, induces a local chart
(x, y, p) on J1(N1, N2). Consider the 1-jet graph of a smooth map F : N1 → N2,

j1F : N1 −→ J1(N1, N2) , j1F (z) = j1F∗(z) .

In local coordinates, this map reads j1F (x) = (x, F (x), ∂F∂x (x)).
Let S1 ⊂ J1(N1, N2) be the submanifold of 1-jets of co-rank 1, S1 = {(x, y, p) ∈

J1(N1, N2) | rank(p) = n2 − 1} and denote S1(F ) = (j1F )−1(S1). Recall that a point z
in S1(F ) is called a fold point if TzS1(F ) + kerF∗(z) = TzN1.

Definition 1. A smooth map F : N1 → N2 is called a submersion with folds if its
singularities are all fold points and it satisfies the transversality condition

Im(j1F )∗(z) + TF (z)S1 = TF (z)J
1(N1, N2) , ∀z ∈ S1(F ) .

Theorem 1. Let F : N1 → N2 be a submersion with folds and let z ∈ S1(F ). Then
there exist a system of local coordinates (x1, . . . , xn1) in a neighborhood of z and a system
of local coordinates (y1, . . . , yn2) in a neighborhood of F (z) such that

(i) z = (0, . . . , 0), F (z) = (0, . . . , 0),

(ii) the coordinate expression of F is y1 = x1, . . . , yn2−1 = xn2−1, yn2 = x2
n2
±· · ·±x2

n1
.

From the previous discussion, we can conclude that the mapping π is a submersion
with folds and, according to Theorem 1, it can be locally represented in the normal form

y1 = x1 , . . . y2n−1 = x2n−1 , y2n = x2
2n ,

with respect to appropriate charts (x1, . . . , x2n) and (y1, . . . , y2n) in W1 and T ∗Q, re-
spectively. As a consequence, for each point x ∈ S, there exists a neighborhood U of x
in W1 and a neighborhood V of π(x) in π(W1) such that U/S splits into two connected
components U1, U2 such that π|Ui

is a diffeomorphism and π(U1) = π(U2) = V/π(U ∩S).

3.2. Characteristics of the singular set

From the proof of Proposition 2, we can deduce that kerπ∗(x) ⊂ kerω1(x). In the
case under consideration, we have rank(C̄) = n − m − 1 at each x ∈ S and hence, by
Corollary 1, dimkerω1(x) = 2. As a consequence, taking into account assumption (13),

dim(kerω1(x) ∩ TxS) = 1 ,

that is, there exists a one-dimensional distribution on S, 9 : x �→ 9x, which we call the
characteristic distribution, a terminology inherited from [5].
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Definition 2. The integral curves of the characteristic distribution 9 are the char-
acteristic curves of the singular hypersurface S.

The characteristic curves will play a key role in the formulation of the Transition
Principle for the vakonomic Hamiltonian system. Note that these curves are special in
the sense that they are dynamically unnoticed by the problem since they belong to the
kernel of ω1. Another important property of these curves is following one.

Proposition 3. The momentum map J : W1 −→ R is conserved along the charac-
teristic curves of the singular hypersurface S.

Proof. Consider Y ∈ X(S) spanning the characteristic distribution 9 and let ξ ∈ g,

Y (Jξ) = dJξ(Y ) = (iξW1
ω1)(Y ) = −(iY ω1)(ξW1 ) = 0 ,

where in the last equality we have used 9 = span{Y } ⊂ kerω1.

3.3. Vector field along the map π :W1 → T ∗Q

The notion of a vector field along a map is a generalization of the concept of vector
field [18, 20, 21]. Given a smooth map F :M → N , a vector field X along F is a smooth
map X :M → TN such that τN ◦X = F . Vector fields along the identity map IdM are
standard vector fields. Consider now the map XR :W1 −→ T (T ∗Q) defined by

XR(qA, q̇a, λα) =
∂HW0

∂λA

∂

∂qA
− ∂HW0

∂qA
∂

∂λA
= q̇a

∂

∂qa
+Ψα ∂

∂qα
+

(
∂L̃

∂qA
− λα

∂Ψα

∂qA

)
∂

∂λA
.

It can be seen that this definition does not depend on the choice of local coordinates.
Moreover, XR is a vector field along π : W1 → T ∗Q. In case π is a diffeomorphism, a
well-defined dynamics X of the vakonomic Hamiltonian system exists on W1, and one
can verify that XR = X ◦π. The map XR allows to define the notion of in and out-points.

Definition 3. Let x ∈ S and consider local coordinates (x1, . . . , x2n) in W1, and
(y1, . . . , y2n) in T ∗Q such that the map π : W1 → T ∗Q locally reads y1 = x1, . . . ,
y2n−1 = x2n−1, y2n = x2

2n. Then, x ∈ S is an in-point of the vakonomic Hamiltonian
system if XR(x) is directed towards the neighborhood V = {(y1, . . . , y2n) | y2n ≥ 0} of
π(x) in π(W1), and out-point otherwise.

The last ingredient that we need to formulate the Transition Principle is the notion
of decisive points associated with a given point x ∈ S.

Definition 4. Let x ∈ S and denote by γx the characteristic curve in S passing
through x. A point y ∈ γx is called decisive for x if it is an in-point and belongs to the
same level set of the Hamiltonian H , i.e. H(y) = H(x).
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3.4. The Transition Principle

In this section, the developments of the preceeding sections are put together to give
an appropriate formulation of the Transition Principle for the vakonomic Hamiltonian
problem. In doing so, we build on previous formulations of this principle for discontinuous
Hamiltonian systems [5], singular Lagrangians [21] and nonholonomic systems [8].

First, note that as a consequence of our assumptions, there is a well-defined dynamics
X along W1/S. On the other hand, the behavior of the system cannot be determined
on the singular surface S by means of the constraint algorithm. Accelerations in the
coordinates qa are undetermined on S and there may be discontinuities in the motion.
The Transition Principle is a natural way to determine these discontinuities.

Transition Principle. When an optimal solution of the vakonomic Hamiltonian
system reaches the hypersurface S at a point x, it can then continue its motion along all
trajectories of the dynamics vector field X coming out from any decisive point for x.

Remark 1. Given the formulation of this principle, it is clear that the Hamiltonian
H is preserved by the discrete transition to the decisive points. Moreover, Proposition 3
implies that the momentum map is also preserved. From this point of view, we see that
the discrete transition in the singular set S has the same dynamical behavior as the
vector field X on W1/S.

Optimal growth problem revisited

Consider the problem stated in Section 2.1. In this case, π :W1 → T ∗Q reads

(K1,K2,K3, K̇1, K̇2, λ) �−→ (K1,K2,K3,−3λK̇2
1(1 +K2

2 ), 1− 3λK̇2
2 (1 +K2

1 ), λ) .

The matrix C̄ defined in (9) is given by

C̄ = −6λ
(
K̇1(1 +K2

2 ) 0
0 K̇2(1 +K2

1 )

)

The singular set of π is then S = {(K1,K2,K3, K̇1, K̇2, λ) | K̇1K̇2λ = 0}. Note that S is
the union of three hyperplanes, S1 = {K̇1 = 0}, S2 = {K̇2 = 0} and S3 = {λ = 0}. The
treatment of both S1 and S2 is analogous, whereas S3 does not fall into our hypothesis
(since the transversality condition (13) is violated on S3). We restrict our attention to
U = S1/{K̇2 �= 0, λ �= 0}. Following Corollary 1, at z ∈ U , we have that

kerω1(z) = span{ ∂

∂K̇1

,− 1
λ

K1K̇2

1 +K2
1

∂

∂K̇2

+
∂

∂K1
} .

Only the second vector field is tangent to S1, so it spans the characteristic distribution 9.
The characteristic curve passing through z = (K1(0),K2(0),K3(0), 0, K̇2(0), λ(0)) is

K1(s) = K1(0) + b s , K̇2(s) = K̇2(0)
(
1 +K1(0)2

1 +K1(s)2

)1/2λ(0)

, b ∈ R/{0} .
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Consider the following changes of coordinates onW1/{K̇2 > 0, λ �= 0} and π(W1/{K̇2 >
0, λ �= 0}) ⊂ T ∗Q, respectively,

x1 = K1 , x4 = K̇1

√
3(1 +K2

2 ) , y1 = K1 , y4 = −p1/p3 ,
x2 = K2 , x5 = 3λK̇2

2 (1 +K2
1 ) , y2 = K2 , y5 = 1− p2 ,

x3 = K3 , x6 = λ , y3 = K3 , y6 = p3 .

In these new coordinates, π reads (x1, x2, x3, x4, x5, x6) �→ (y1, y2, y3, y4, y5, y6), with

y1 = x1 , y2 = x2 , y3 = x3 , y4 = x2
4 , y5 = x5 , y6 = x6 ,

and the relative vector field XR is then given by

XR =
x4√

3(1 + x2
2)

∂

∂y1
+
(

x5

3x6(1 + x2
1)

)1/2
∂

∂y2
+
(

x3
4

(27(1 + x2
2))1/2

(14)

+
(

x3
5

27λ3(1 + x2
1)

)1/2
)

∂

∂y3
+ 2x1

(
x5

3x6(1 + x2
1)

)3/2
∂

∂y4
+ 2x2x6

(
x4√

3(1 + x2
2)

)3
∂

∂y5
.

Assume a trajectory reaches S at a point belonging to S1, z∗ = (K∗
1 ,K

∗
2 ,K

∗
3 , 0, K̇∗

2 , λ
∗) =

(x∗1, x
∗
2, x

∗
3, 0, x

∗
5, x

∗
6), with K̇

∗
2 > 0 and λ∗ �= 0. Since z is an out-point, from (14) we

deduce that x∗1 < 0. Given the expression of the characteristic curves, the unique deci-
sive point associated with z∗ is z = (−K∗

1 ,K
∗
2 ,K

∗
3 , 0, K̇∗

2 , λ
∗). Following the Transition

Principle, the motion can be prolonged along any trajectory of the dynamics vector field
X coming from z. Figure 1 shows an example of the application of this principle.
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Fig. 1: Two prolongations of an optimal trajectory which reaches the singular set at S1.

In this case, the economical interpretation of the Transition Principle would be that
in order to keep the economy maximizing the capital K2 while behaving according to
K̇3 = Ψ, we have to ‘inject’ at some point in time a specific amount of capital K1. From



[Author and title] 14

then on, there are two optimal choices. Examining Figure 1, one observes that the first
choice will eventually lead us to another future ‘injection’ of capital in K1, so the second
possibility remains the most stable one.

Optimal control of nonholonomic systems revisited

Consider the optimal control problem for nonholonomic systems with symmetry as pre-
sented in Section 2.1. In this case, the matrix given by (9) has entries

C̄ab = Cab(r) − λiσiab(r) .

Therefore, the equations defining the singular set S of π are of the form ψ(r, λ) = 0. As a
consequence, we have that the transversality condition (13) is violated, since the vectors
in kerπ will necessarily belong to TS. Therefore, the singular points are not of fold type.
Further research is needed in order to deal with this important class of systems.

4. Conclusions

We have investigated the consistency of the equations associated with optimal control
problems. This has been done making use of a constraint algorithm in a presymplectic
framework, which has enabled us to identify two overall situations: the regular case
and the degenerate case. Special attention has been put on the study of the latter one.
Under some transversality conditions, we have described the structure of the singular set,
and identified a particular class of curves on it called characteristics. Building on these
developments, we have proposed a discrete transition law for the trajectories which reach
the singular set, in such a way that both the geometry and the dynamics of the problem
are respected. Further research directions would include the consideration of more general
types of singularities to overcome the transversality conditions and the application of the
results to the optimal control of nonholonomic systems with symmetry.
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