CONFIGURATION CONTROLLABILITY OF MECHANICAL
SYSTEMS UNDERACTUATED BY ONE CONTROL*
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Abstract. We investigate local configuration controllability for mechanical control systems
within the affine connection formalism. We rely on previous results on controllability and series
expansions for the evolution of mechanical systems starting from rest. Extending the work by Lewis
for the single-input case, we are able to characterize local configuration controllability for systems
with n degrees of freedom and n — 1 input forces.
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1. Introduction. Mechanical control systems belong to a class of nonlinear sys-
tems whose controllability properties have not been fully characterized yet. Much
work has been devoted to the study of their rich geometrical structure, both in the
Hamiltonian framework (see [30] and references therein) and in the Lagrangian one,
which is receiving increasing attention in the last years [5, 8, 17, 21, 23, 24, 25, 31].
This research is providing new insights and a bigger understanding of the accessibility
and controllability aspects associated with them. In particular, the affine connec-
tion formalism has revealed to be very useful modeling different types of mechanical
systems, such as natural ones (Lagrangian equal to kinetic energy minus potential
energy) [24, 25|, with symmetries [5, 9], with nonholonomic constraints [6, 23], etc.
and, on the other hand, it has led to the development of some new techniques and
control algorithms for approximate trajectory generation in controller design [4, 37].
Certainly, we shall see further progress in these directions in the next years.

Underactuated mechanical control systems are interesting to study both from a
theoretical and a practical point of view. From a theoretical perspective, they offer a
control challenge as they have non-zero drift, their linearization at zero velocity is not
controllable, they are not static feedback linearizable and it is not known if they are
dynamic feedback linearizable. That is, they are not amenable to standard techniques
in control theory [13, 30]. From the practical point of view, they appear in numerous
applications as a result of design choices motivated by the search of less costly devices,
or as a result of a failure regime in fully actuated mechanical systems.

The work by Lewis and Murray [24, 25] on simple mechanical control systems
has rendered strong conditions for configuration accessibility and sufficient condi-
tions for configuration controllability. The conditions for the latter are based on the
sufficient conditions that Sussmann obtained for general affine control systems [35].
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It is worth noting that these conditions are not invariant under input transforma-
tions. As controllability is the more interesting property in practice, more research
is needed in order to sharpen the configuration controllability conditions. Whatever
these conditions might be, they will result harder to check than the ones for accessi-
bility, since controllability is inherently a more difficult property to establish [14, 33].
Lewis [21] investigated and fully solved the single-input case, building on previous re-
sults by Sussmann for general scalar-input systems [34]. The recent work by Bullo [3]
on series expansions for the evolution of a mechanical control system starting from
rest has given the necessary tools to tackle this problem in the much more involved
multi-input case. In this paper, we characterize local configuration controllability for
systems whose number of inputs and degrees of freedom differs by one. Examples
include autonomous vehicles (like aircraft takeoff and landing models [11, 28], under-
water vehicles [32]), robotic manipulators with a passive joint [26] and locomotion
devices (such as the robotic leg [23] or the quadrotor [29]). In addition, fully actuated
mechanical systems may temporarily suffer from an actuator failure turning them into
underactuated systems by one control, in which case, the knowledge of their control-
lability properties becomes relevant within a robust design perspective. Interestingly,
the differential flatness properties of this type of underactuated mechanical control
systems have also been characterized in intrinsic geometric terms [32].

Both results, Lewis’ and ours, can be seen as particular cases of the following
conjecture, which remains open: The system is locally configuration controllable at a
point if and only if there exists a basis of inputs satisfying the sufficient conditions
for local configuration controllability at that point. The conjecture relies on the fact
we have mentioned before: the lack of invariance of the sufficient conditions under
input transformations. It is remarkable to note that local controllability has not been
characterized yet for general control systems, even for the single input case (in this
regard see [12, 34, 35]).

The paper is organized as follows. In Section 2, we describe the affine connec-
tion framework for mechanical control systems and recall the controllability notions
we shall consider on them. In Section 3 we review the existing results concerning
configuration controllability [24, 25] and the series expansion for the evolution of a
mechanical control system starting from rest developed by Bullo in [3]. In Section 4 we
briefly recall the single-input case solved by Lewis and properly state his conjecture.
Section 5 contains the main contributions of this paper. In Section 6 we treat two
examples to illustrate the results. Finally, we present our conclusions in Section 7.

2. Simple mechanical control systems. Let () be a n-dimensional manifold.
We will denote by T'Q the tangent bundle of @, by X(Q) the set of vector fields on @
and by C*(Q) the set of smooth functions on Q. Throughout the paper, the manifold
Q@ and the mathematical objects defined on it will be assumed analytic.

A simple mechanical control system is defined by a triple (@, g, F), where @ is
the manifold of configurations of the system, g is a Riemannian metric on ) and
F ={F',...,F™} is a set of m linearly independent 1-forms on @, which physically
correspond to forces or torques.

Associated with the metric g there is a natural affine connection, called the Levi-
Civita connection. An affine connection [1, 18] is defined as an assignment

Vi X@Q)xX(Q) — X(@Q)
(X,Y) — VxY

which is R-bilinear and satisfies VyxY = fVxY and Vx(fY) = fVxY + X(f)Y,
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for any X, Y € X(Q), f € C®(Q). A curve ¢ : [a,b] — Q is a geodesic for V
if Veyé(t) = 0. Locally, the condition for a curve t — (¢'(¢),...,¢"(t)) to be a
geodesic can be expressed as

@ +T%¢%¢ =0, 1<a<n, (2.1)

where the I'y,(g) are the Christoffel symbols of the affine connection, that is, they are

given by V . The geodesic equation (2.1) is a first-order differential

- = [
Be 0q° be ga
equation on 7'Q). The vector field corresponding to this first-order equation is given
in coordinates by

_ vai _ 10 vbvci
- aqa be ova’

S

and is called the geodesic spray of the affine connection V. Hence, the integral curves
of the geodesic spray S, (¢%,¢*) are the solutions of the geodesic equation.
The Levi-Civita connection V¥ is determined by the formula
29(V&Y, Z) = (X(9(Y, 2)) + Y (9(Z, X)) — Z(9(X,Y))
+9(Y,12, X)) — 9(X,[Y, 2)) + 9(Z,[X,Y]) , X,Y,Z € X(Q).

One can compute the Christoffel symbols of V9 to be

o _ 1 aa (094  Ogac _ Ogne
be ™ 9 8qc  O0¢® Oq )’

where (g®?) denotes the inverse of the inertia matrix (g4,) = (g(a%d’ 8(3“ ).

The metric tensor g induces a bundle isomorphism b, : TQ — T*Q given by
po(X)(Y) = g(X,Y). Instead of the input forces F*, ..., F™, we shall make use of the
vector fields Y7,..., Yy, defined as ¥; = b, ' (F?). Roughly speaking, this corresponds

to consider “accelerations” rather than forces. If Y; = Y;*(q) %, the control equations
for the simple mechanical control system read in coordinates

,Ua
—Tp.d"° + Y wi(h) Y (q), 1<a<n.

~a
q
,l')ll

These equations can be written in a coordinate-free way as

m

V4 ét) = 3w OYi(e(t).- (2.2)

i=1

The inputs we will consider come from the set U = {u : [0,T7] - R™|T > 0, u is
measurable and ||u|| < 1}, where

lull = sup [lu(t)llo = sup max [u(t)].
tef0,T] tefo,7]=15--om

We can use a general affine connection in (2.2) instead of the Levi-Civita connec-
tion without changing the structure of the equation. This is particularly interesting,
since nonholonomic mechanical control systems give also rise to equations of the form
(2.2) by means of the so-called nonholonomic affine connection (see [23]). Therefore,
the discussion throughout the paper is carried out for a general affine connection V.
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We can turn (2.2) into a general affine control system with drift

B(t) = f(a(t) + Y u'(t)gi(x(t)). (2.3)

To do this we need another bit of notation. The vertical lift of a vector field X on Q
is the vector field X” on T'Q) defined as

X'(0g) = 5

=l (0 +tX(0).

In coordinates, if X = X “i, one can check that X¥ = X “i. Then, the second-
dq°® ove

order equation (2.2) on @ can be written as the first-order system on T'Q)

0 =5()+ i u' ()Y (v), (2.4)

where S is the geodesic spray associated with the affine connection V.

2.1. Controllability notions. The control equations for the mechanical sys-
tem (2.4) are nonlinear. The standard techniques in control theory [30], as for exam-
ple the linearization around an equilibrium point or linearization by feedback, do not
yield satisfactory results in the analysis of its controllability properties, in the sense
that they do not provide necessary and sufficient conditions characterizing them.

The point in the approach of Lewis and Murray to simple mechanical control
systems is precisely to focus on what is happening to configurations, rather than to
states, since in many of these systems, configurations may be controlled, but not
configurations and velocities at the same time. The basic question they pose is “what
is the set of configurations which are attainable from a given configuration starting
from rest?” Moreover, since we deal with objects defined on the configuration manifold
Q, we expect to find answers on @, although the control system (2.4) lives in T'Q.

DEFINITION 2.1. A solution of (2.2) is a pair (c,u), where ¢ : [0,T] — @ is
a piecewise smooth curve and uw € U such that (¢,u) satisfies the first order control
system (2.4).

Consider gy € Q, (g0,04,) € Ty@ and let U C Q, U C TQ be neighborhoods of
go and (go,04,), respectively. Define

RS (g0, T) = {q €Q

there exists a solution (c,u) of (2.2) such that
¢(0) = 0gy,¢(t) € Utor t € [0,T) and &(T') € T,Q

T _ there exists a solution (c¢,u) of (2.2) such that ¢(0) =
R0, T) = {(q’ v) € TQ‘ O, (c(t), é(t)) € U for ¢ € [0, T] and &(T) = v € T,Q

and denote
RO (90, < T) = Uo<i<rRG(q0,t) »  R¥g(20, < T) = Uo<i<r R0 (o, 1) -

Now, we recall the notions of accessibility considered in [24].

DEFINITION 2.2. The system (2.2) is locally configuration accessible (LCA) at
qo € Q if there exists T > 0 such that Rg(qo, < 't) contains a non-empty open set of
Q, for all neighborhoods U of qo and all 0 < t < T. If this holds for any qo € Q then
the system is called locally configuration accessible.
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DEFINITION 2.3. The system (2.2) is locally accessible (LA) at go € @ and zero
velocity if there exists T > O such that ’R%Q (go, < t) contains a non-empty open set

of TQ, for all neighborhoods U of (go,04,) and all 0 < t < T. If this holds for any
qo € Q then the system is called locally accessible at zero velocity.

We shall focus our attention on the following concepts of controllability [24].

DEFINITION 2.4. The system (2.2) is small-time locally configuration controllable
(STLCC) at qo € Q if there exists T > 0 such that Rg (o, < t) contains a non-empty
open set of Q) to which qo belongs, for all neighborhoods U of qo and all 0 <t < T.
If this holds for any qo € Q) then the system is called small-time locally configuration
controllable.

DEFINITION 2.5. The system (2.2) is small-time locally controllable (STLC) at
qo € ) and zero velocity if there exists T > 0 such that RgQ (go, < t) contains a non-
empty open set of TQ to which (qo,04,) belongs, for all neighborhoods U of (qo,04,)
and all 0 < t < T. If this holds for any qo € Q then the system is called small-time
locally controllable at zero velocity.

3. Existing results. Here we review some accessibility and controllability re-
sults obtained in [24, 25] and expose the work by Bullo [3] in describing the evolution
of mechanical control systems via a series expansion.

3.1. On controllability. Given an affine connection V on @, the symmetric
product of two vector fields X,Y € X(Q) is defined by

(X:Y)=VxY +VyX.

The geometric meaning of the symmetric product is the following [22]: a geodesically
invariant distribution D is a distribution such that for every geodesic ¢(t) of V starting
from a point in D, ¢(0) € D), we have that é(t) € De(y). Then, one can prove that
D is geodesically invariant if and only if (X : Y) € D, VX, Y € D.

Given the input vector fields Y = {V3,...,Y,,}, let us denote by Sym()) the
distribution obtained by closing the set ) under the symmetric product and by Lie()))
the involutive closure of ). With these ingredients, one can prove

THEOREM 3.1. ([24]) The control system (2.2) is locally configuration accessible
at q (respectively locally accessible at q and zero velocity) if Lie(Sym(})), = T,Q
(respec. Sym(Y), =T,Q).

If P is a symmetric product of vector fields in ), we let v;(P) denote the number
of occurrences of Y; in P. The degree of P will be 4 (P) + - - +vym (P). We shall say
that P is bad if v;(P) is even for each 1 < i < m. We say that P is good if it is not
bad. The following theorem gives sufficient conditions for STLCC.

THEOREM 3.2. Suppose that the system is LCA at q (respectively, LA at q and
zero velocity) and that Y is such that every bad symmetric product P at q in Y can be
written as o linear combination of good symmetric products at q of lower degree than
P. Then (2.2) is STLCC at q (respec. STLC at q and zero velocity).

This theorem was proved in [24], adapting previous work by Sussmann [35] on
general control systems of the form (2.3). Throughout the paper, we will refer to the
conditions of every bad symmetric product at ¢ being a linear combination of good
symmetric products at g of lower degree as the sufficient conditions for STLCC.

3.2. Series expansion. Within the realm of geometric control theory, series
expansions play a key role in the study of nonlinear controllability [2, 15, 34, 35],
trajectory generation and motion planning problems [4, 19, 20, 29], etc. In [27],
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Magnus describes the evolution of systems on a Lie group. In [7, 10, 16, 36] a general
framework is developed to describe the evolution of a nonlinear system via the so-
called Chen-Fliess series and its factorization.

In the context of mechanical control systems, the work by Bullo in [3] describes
the evolution of the trajectories with zero initial velocity via a series expansion on the
configuration manifold ). In this section we describe the series expansion, which will
be key in the subsequent discussion. Before doing so, however, we need to introduce
some notation on analyticity over complex neighborhoods.

Let go € Q. By selecting a coordinate chart around qg, we locally identify @ = R™.
In this way, we write go € R™. Let o be a positive scalar, and define the complex
o-neighborhood of g in C* as B,(g) = {#z € C* | ||z — qo|| < 0}. Let f be a real
analytic function on R™ that admits a bounded analytic continuation over B, (qo)-
The norm of f is defined as

Ifllo £ max [f(2)],

z€Bs(qo0)

where f denotes both the function over R" and its analytic continuation. Given a
time-varying vector field (q,t) = Z(q,t) = Zi(q), let Z} be its ith component with
respect to the usual basis on R™. Assuming t € [0,7], and assuming that every
component function Z} is analytic over B,(qo), we define the norm of Z as

VA £ max max ZY,.
1207 tE[O,T]iE{l,...,n}” illo

In what follows, we will often simplify notation by neglecting the subscript 7 in
the norm of a time-varying vector field. Finally, given an affine connection V with
Christoffel symbols {F;k | 3,4,k € {1,...,n}}, introduce the notation:

Il £ ma 5],

In the sequel, we let

m

Z(g,t) = 3 wit)Yi(a)

i=1

THEOREM 3.3. ([3]) Let c(t) be the solution of equation (2.2) with input given
by Z(q,t) and with initial conditions c(0) = qo, ¢(0) = 0. Let the Christoffel symbols
F;k(q) and the vector field Z(q,t) be uniformly integrable and bounded analytic in Q.
Define recursively the time varying vector fields

t
Vi) = [ 2s)ds,
0
lk—l t
) = =3 3 [ 0509 Vies(a9)ds, k22,
j=1"0

where q is maintained fized at each integral. Select a coordinate chart around the point
qo € Q, let o > o' be two positive constants, and assume that

o—o 1 7 (o'n?[lo)
202(n+ 1) 2+ DT, »2[Cle S

IZ||,T? < L £ min { (3.1)



Controllability of underactuated mechanical systems 7

Then the series (q,t) — > poy Vi(q,t) converges absolutely and uniformly in t and
q, for all t € [0,T] and for all ¢ € B,(qo), with the Vi satisfying the bound

IVillor < L*F (1215 £, (3.2)
Over the same interval, the solution c(t) satisfies
&t) = ) Vi(e(t), 1). (3.3)
k=1

This theorem generalizes previous results obtained in [4] under the assumption of
small amplitude forcing. The first few terms of the series (3.3) can be computed to
obtain

H)=Z(e(t),) — %(7 L Z)(c(t),t) + %((7 - Z) :7>(c(t),t) (3.4)

((@7:7):2)cwn - (T2 T ). + 00211

where Z(q,t) = f(f Z(q,s)ds and so on.

4. The single-input case. Theorem 3.2 gives us sufficient conditions for small-
time local configuration controllability. A natural concern both from the theoretical
and the practical point of view is to try to sharpen this controllability test. Lewis [21]
investigated the single-input case and proved the next result.

THEOREM 4.1. Let (Q,g) be an analytic manifold with an affine connection V.
Let Y be an analytic vector field on QQ and qo € Q. Then the system

Ve é(t) = u(t)Y (c(t))

is locally configuration controllable at gy € Q if and only if dim@ = 1.

The fact of being able to completely characterize STLCC in the single-input
case (something which has not been accomplished yet for general control systems
of the form (2.3)) suggests that understanding local configuration controllability for
mechanical systems may be possible. More precisely, examining the single-input
case, one can deduce that if (2.2) is STLCC at go then dim @ = 1, which implies
(Y :Y) (qo) € span{Y(qo)}, i.e. sufficient conditions for STLCC are also necessary.
Can this be extrapolated to the multi-input case? The following conjecture was posed
by Lewis:

Let a mechanical control system (2.2) be locally configuration accessible at
go € Q. Then it is STLCC at qo if and only if there exists a basis of input
vector fields which satisfies the sufficient conditions for STLCC at qq.

Theorem 4.1 implies that the conjecture is true for m = 1. In the following section
we prove that this conjecture is also valid for m =n — 1.

5. Mechanical systems underactuated by one control. Here we focus our
attention on mechanical control systems of the form (2.2) which has n degrees of
freedom and m = n — 1 control input vector fields. The following lemma, taken
from [34], will be helpful in the proof of the theorem of this section.

LEMMA 5.1. Let Q be a n-dimensional analytic manifold. Given qo € @ and
Xi,...,Xp € X(Q), p < n, linearly independent vector fields, there exists a function
¢ : Q — R satisfying the properties
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1. ¢ is analytic

2. ¢(q) =0

3. Xi(¢) =--- = Xp—1(¢) =0 on a neighborhood V of qo

4. Xp(9)(0) = -1

5. Within any neighborhood of qo there exists points g where ¢(q) < 0 and ¢(q) >

0.

Proof. Let Zy,...,Z, be vector fields defined in a neighborhood of ¢¢ such that
{Z1(q0),--.,2Zn(qo)} forms a basis for Ty,Q and Z; = X;, 1 <i <p-1, Z, = —X,.
Let t; — ¥;(t) be the flow of Z;, 1 <4 < n. In a sufficiently small neighborhood V
of g, any point ¢ may be expressed as ¢ = ¥ (t1) o --- 0 ¥, (t,)(qgo) for some unique
n-tuple (t1,...,t,) € R*. Define ¢(q) = t,. It is a simple exercise to verify that ¢
satisfies the required properties. [

Next, we state and prove the main result of the paper.

THEOREM 5.2. Let @ be a n-dimensional analytic manifold and let Y1,...,Y, 1
be analytic vector fields on Q. Consider the control system

n—1
Ve é(t) = Z ui(t)Yi(c(t)) (5.1)

and asswme that it is locally configuration accessible at qo € Q. Then the system is
locally configuration controllable at qq if and only if there exists a basis of input vector
fields satisfying the sufficient conditions for STLCC at qq.

A rough sketch of the proof is the following: because of the hypotheses of the
theorem, we only need to check that the symmetric products of degree two of a given
basis of the input distribution, when evaluated at qg, are linear combinations of good
products of degree one. To verify this, we associate with the given basis a symmetric
matrix A, in such a way that this basis satisfies the sufficient conditions for STLCC if
and only if the diagonal elements of A are all zero. If this is not the case, we search for
a change of basis B such that the new basis has an associated matrix A with zeroes in
its diagonal. This is equivalent to solving a quadratic equation in B. In order to ensure
that a solution to this equation exists, we have to explore the different possibilities
that may occur regarding the various radicands involved. Finally, we discard the
situations in which the equation is not solvable by a contradiction argument with the
controllability assumption (see Figure 5.1).

Proof. We only need to prove one implication (the other one is Theorem 3.2). Let
us suppose that the system is locally configuration controllable at go. Let D denote
the input distribution. Either one of the following is true,

1. V11,Y5 € D, (Y1 : Y2) (q0) € Dyo-

2. There exist Y7, Y> € D such that (Y7 : ¥2) (go) & Dy, -
In case (i), there is nothing to prove since any basis of input vector fields satisfies the
sufficient conditions for STLCC at ¢q. In case (ii), it is clear that one can choose Y7,
Y; € D, linearly independent at go and such that (Y7 : Y2) (go) & D, (if Y1, Y2 in (ii)
are linearly dependent, then (Y; : Y1)(qo) & D,,- Take any Y3 linearly independent
with Yi. If (Y7 : Y5)(go) € Dg,, and define a new Y, by Y7 + Y5). Then, we can
complete the set {Y1(go),Y2(go)} to a basis of Dy,

{Y1(qo),Y2(qo), .- 7YTH(q0)}

such that span{Y1(go), Y2(q0); - - -, Ym(0), (Y1 : ¥2) (90)} = T4, Q. In this basis, the
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symmetric products of degree two of the vector fields {Y7,...,Y,} at go are expressed,

(Y1: Y1) (q0) = le(Y1(qo0), - - -, Yiu(q0)) + @11 (Y1 : ¥2) (o)

1e(Y1(q), - - -, Yim(q0)) + @mm (Y1 : Y2) (q0)
a1z (Y1 : ¥2) (q0)
1e(Y1(q0), - - - » Ym(qo)) + a1z (Y1 : Y2) (qo)

<Ym : Ym) ((Jo)
(Y1 :Y2) (g0)
(Y1 :Y3) (90)

(Y1 : Yi) (90) = le(Y1(q0), - - - Yi(90)) + @m—1m (Y1 : ¥2) (q0),

where le(Y1(qo),- - -, Ym(go)) means a linear combination of Y1(go),-..,Ym(g). The
coefficients a;; define a symmetric matrix A = (a;;) € R™*™. Observe that if a1 =
-+ = @mm = 0, then the bad symmetric products (Y; : ¥;)(go) are in Dy, and we have
finished. Suppose then that the opposite situation is true, that is, there exists s = s
such that as, s, # 0.
What we are going to prove now is that, under the hypothesis of STLCC at g,
there exists a change of basis B = (bjx), det B # 0, providing new vector fields in D,

m
Y/ =) buVi, 1<j<m,
k=1

which satisfy the sufficient conditions for STLCC at go. Since

(Y] :Y}) (a0 Z birbji (Yi = Y1) (q0)

kI=1

m

=D 05 (Ve :Yi)(q0) +2 D bixbj (Vi : V1) (q0) (5.2)

k=1 1<k<I<m

=1c(Y{(90); - - -5 Zb]kakk +2 ) bibuan | (Vi Ya) (@),
1<k<Ii<m
the matrix B we are looking for must fulfill

Zb ROk + 2 Z birbjiar =0, 1 <5< m, (5.3)

1<k<I<m
or, equivalently,
(BAB");;=0, 1<j<m.
Note that, since as, 5, # 0, this is equivalent to

- Zk;ém biraks,

a8181
N \/(Zk;esl bjkQks;)? = Qsys (Zk.—,ﬁsl b?kakk +2 Zk<l,k,l;ésl bjkbjian)

a81 81

bjs, =

?
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for each 1 < j < m. After some computations, the radicand of this expression becomes

z :b]k aks1 a8181 akk) + 2 E b]kb]l (ak31a181 - a8181akl) .
k#s1 k<l,k,l#s1

If this radicand is zero, it would imply that the matrix B should be singular in order
to satisfy (5.3). We must ensure then that it is possible to select B such that the
radicand is different from zero. We do this in the following, studying several cases
that can occur. Denoting by

ag) = Qps, Ois, — Osy5,0k1, Kk,L € {L,...,m}\ {s1},

we have that the radicand would vanish if

Z bzkafk) +2 Z bjkbjlag) =0. (5.4)
k#s1 k<l,k,l#s1

Note the similarity between (5.3) and (5.4). Define recursively

afy) = au, (5.5)
ag) = agszlzal(; 11) a(s’z 11)5 lagl 1), i>2, kile{l,...,m}\{s1,---,8i-1}-

Case A: Here we treat the case when for each i there ezists s; such that ag?si # 0.
Several subcases are discussed.

Reasoning as before, (5.4) would imply that for 1 < j <m
bsz = lC(bjl,...,i)jsl,... I;j527 bjm)

> 2eaky + 2 > bixbjaly

aszsz k1,80 k<L,k,l#s1,52

where the symbol b means that the term b has been removed. Iterating this procedure,
we finally obtain the following equations for the b5, _,,

(m—1) (m 1) (m—1) (m-1)
—Qsp_18m T Qs _ 1sm 2 T Qs _15m—10smsm

bjsm_1 = Djs,n m=1) , 1<3<m.

A5 18m_1

Let (bjs,, )1<j<m be a non-zero vector in R™. Now, we distinguish three possibilities.

Case Al: We show that if the radicand (ag: 112,”)2 ag:: 115)m 1ag?,fs,i) is positive,
then it is possible to obtain the desired change of basis.
If (agz;ls)mf (T,: ! 2m 1a§f;‘5,,{) > 0, then the quadratic polynomial in bjs,._,

alm=l) b +2a{"TN b b, +almIObE (5.6)

Sm—-18m—1"]8m —18m SmSm

has two real roots and we can choose (bj,,,_,)1<j<m € R™ linearly independent with
(bjs,. )1<j<m and such that (5.6) be positive for all 1 < j < m. As this polynomial is
the radicand of the preceding one,

2 m—2
Z kagl? ) +2 Z kajlakl ) ) (6.7)
k#81,---,8m—3 k<l,k,l#81,...,8m—3
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our choice of (bjs,._,)1<j<m ensures that we can again take (bjs,._.)1<j<m € R™,
linearly independent with (bjs,._,)1<j<m and (bjs,.)1<j<m such that (5.7) is positive
for all 1 < j < m. This is propagated step by step through the iteration process and
we are able to choose a non-singular matrix (b;) satisfying (5.3).

Case A2: We show that when the radicand (agf:;ls)m)Q —a™1) a{™TY s negative,

then either it is possible to find the change of basis or the system is not STLCC at qq.

If (a$™71) )2 —al™=2) _al™5) <0, then (5.6) does not change its sign for all

bjsm_1s bjs,,. If this sign is positive, the same argument as in case AI ensures us
the choice of the desired matrix. If negative, it implies that (5.7) does not change
its sign for all bjs,, _,, bjs,._1, js,.- Then, the unique problem we must face is when,
through the iteration process, all the radicands are negative. In the following, we
discard this latter case by contradiction with the hypothesis of controllability. Apply
Lemma 5.1 to the vector fields {Y1,..., Y, (Y1 : ¥2)} to find a function ¢ satisfying
the properties 1.-5. By (3.4), we have that

COED SERTEET) SUATED SRR (1

]:

m

Soaxy; vy +2 Y wan(y; : Vi) +0(| 229,
=1 j=1 i<k

where Z = 3" | u;Y;. Now, observe that %((ﬁ(c(t))) = ¢(t)(#). Then, using proper-
ties (iii) and (iv) of ¢, we get

m

L) = 33" a5 + 23 atsme + 01238

j=1 i<k

The expression Y 7", aj;a? + 23, ajxt;ay, does not change its sign, whatever the
functions wq(t),...,un(t) might be, because as a quadratic polynomial in s, its

radicand is always negative. Therefore ¢(c(t))) has constant sign for sufficiently

’ a(
small ¢, since 37", aj; a3 + 23,y ajr@;ax = O(|[ul[*t?) and dominates O(|| Z||3t°) =
O(||u]?t®) when ¢ — 0. Finally,

dlelt) = dla) + [ To(e(o) = [ Lo(e(s)

will have constant sign for ¢ small enough. As a consequence, all the points in a
neighborhood of go where ¢ has the opposite sign (property (v)) are unreachable in
small time, which contradicts the hypothesis of controllability.

Case A3: We show that if the radicand (ag',',ffll s)m)2 —a{mh) _al™e Y yanishes, then

an intermediate change of basis reduces the problem to considering m — 1 input vector
fields. The preceding discussion can be then reproduced.

The situation now is similar to that of case A2. However, the argument employed
above to discard the possibility of all the radicands being negative does not apply,
since in this case there do exist controls such that 37" | a;;45+2 3, .\ ajxtjuy is zero
and hence we should really investigate the sign of O(||Z||2#°) to reach a contradiction.
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Instead, what we are going to do is to get a new basis {Y}} such that (Y7 : Y})(qo) €
Dyoy 1 < j < m, and thus remove one vector field (Y{) from the discussion. By
repeating this procedure, we finally come to consider a limit case, which we will
discard by contradiction with the controllability hypothesis.

For j =1, we choose bys,, # 0 and

(m—1)

a m— m
blsm_1 = _blsmﬁ = Csm_lblsm
Sm—-18m—1
ag’:’nm:fs)m—lblsm—l + ag::—_fs)m blsm
blsm_z = - (m—2) = Csm_zblsm
QS _28m_2
: (5.8)
Zk7531 bikaks,
b151 = = slblsm -
aS1S1
We denote C,,, = 1. For j > 1, we select the (bjx)1<k<m such that the matrix B be
non-singular. Consequently, we change our original basis {Y7,...,Y,,} to a new one

{Y{,.... Y. }. In this basis, following (5.2), one has
(Y] : Y{)a0) = le(Y{(q0), - - -, Y (d0))
(V] V) go) = 1e(¥] (@0); - -, Vip(a0)) + af; (Vi : V2) (qo), 2 < j <.

In addition, one can check that for each 2 < j < m,

(Y] :Y/)(q0) = 1e(Y{ (@), - -+ Ym(a0)) + | D awbiebji | (Y1 : Ya)(q0)

=1c(Y{(0); - - -, Yin(@0)) + b1s,, (Z bji (Z aklck)> (Y1 :Y2)(qo) -
l P

Now, when the C} are given by (5.8), we have
ZaszkZO, 1<1<m,
k
(see Lemma A.1 in the Appendix) and this guarantees that

(V] : ¥} q0) = le(Y{(q0), - --,Vin(20)), 255 <m.

If the a}; = 0, 2 < j < m, we are done. Assume then that ag; # 0, reordering
the input vector fields if necessary. Assume further that (Y3 : Y3)(go) is not a linear
combination of {Y{,..., Y, } (otherwise, redefine a new Yy as Y3 + Y3). Then,

(Y 1 Y5) (q0) = le(Y{ (), - - -, Y (q0)) + ase (Vs : Y3) (o)

1e(Y{(q0), - - > Y (q0)) + apm (Y3 = Y3) (q0)
ags (Ys = Y3) (o)
1e(Y{(q0), - - > Y (o)) + asy (Y5 : ¥5) (qo)

(Yo : Y) (20)
(V3 : Y5) (20)
(Y3 : Y4) (20)

(Y1 1Y) (90) = 1e(Y{(90), - - -, Y (40)) + a1 (Y5 2 ¥5) (90)
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where we have denoted with a slight abuse of notation by a;-k the new coefficients
corresponding to (Y, : Yy). Consequently, we can now reproduce the preceding dis-
cussion, but with the m —1 vector fields {Y3,...,Y,. }. That is, we look for one change
of basis B’ in the vector fields {Y3,...,Y;! } such that the new ones {YJ',..., Y} to-
gether with Y verify the sufficient conditions for STLCC at go. Accordingly, we must
consider the vanishing of the new polynomials

m

2! ror o .
ijkakk+2z kb =0, 2<j<m.
k=2 2<k<I<m

! ! !
The cases in which the last radicand (a{™=}2 )2 —a{™=1 _ a{™7D" does not vanish

are treated as before (cases A1 and A2). When it vanishes, we obtain a new basis
{Y/' =Y/,Yy,..., Y.’} such that

(V" Y{) (@), (Y3 ¥5')(q0) € Dy
(¥} 1 Y]")(g0) = 1e(Y{"(q0), - -, Yis(go)) + € (Y3 : ¥5) (@), 3<j<m
<Y1“ : Yj”>7 (YZH : YJ'I-I‘,-1> € Dq07 2<j<m,

where there could exit some 3 < j < m such that cg ; # 0. By an induction procedure,
we finally come to consider discarding the case of a certain basis {Z; = Y{,Zy =
Yy, ..., Zn} of D satisfying (Z; : Z;)(qo) € span{Z1(qo),..-,Zm(q0)}, 1 <i < j <
m, and the sufficient conditions for STLCC at gy for Z,...,Zy,—1, but such that
(Zm :+ Zm)(qo) & span{Zi(qo),---,Zm(qgo)}. Similarly as we have done above, the
application of Lemma 5.1 with the vector fields {Z1,. .., Zy,(Zm : Z1n)} implies that
the system is not controllable at qg, yielding a contradiction.

Case B: Finally, we prove that if there exists ani > 2 such that aff,g =0, forallk €
{1,...,m}\ {s1,...,8i—1}, then either the desired change of basis is straightforward
or an intermediate step can be done that reduces the problem to considering i —1 input
vector fields.

In this case, the polynomial

2 (4) (%)
Z ik + 2 Z birbjiay
k#£81,..4,8i—-1 k<l,k,0#81,...,8i—1

takes the form

23" bibjaly . (5.9)

E<lkd#51 yeey8i1
If any of the a,(jl) is different from zero, then it is clear that we can choose the bj,
k & {s1,...,8i—1}, such that (5.9) be positive. Then, reasoning as before, we find
a regular matrix B yielding the desired change of basis. If this is not the case,

ie. a,(;l) =0, for all k < Lk,l & {s1,...,8;—1}, we can do the following. Choose
{(bjr)1<j<m}, with k& & {s1,...,si-1}, m — i + 1 linearly independent vectors in R™
such that the minor {bgk}'fij;’mf,;i is regular. Now, let j in equation (5.8) vary
between 1 and m — i + 1; that is, take

m (1)
. Ek;ésl,...,s,'_l kaaSi—lk

bjsiy = (i-1)
As;_1si-1
m o (i-2)
b _ Zk#sh...,si_z bjkasi_zk b _ Zk7é51 bjkaksl 5 10
jsi—a — T (i—2) [ js1 — T ) ( . )
As;_25;_2 Qsy51
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Start caS(iAlj [ - Desired change
rP—1) 5 o £ basi
{Y1,.., Ym}, oF basis
p=m
Case A: ) 0?567?)2: Contradicition
Vi, 3siiasis; #0. | RPTY <0 with STLCC
I
I
I
: Case A3: Intcrmc:iiatc stc/p:
- > R(-1) _g new {Yy,...,Y,}. | —
— = I\/Iatrl(xi)A = (a%j)‘ Focus on last p — 1.
=1 Let a,; be as in (5.5). | _
kl \ p=p—1.
I
I ) .
i 3k, I; ag? £0 Desired change
: of basis
I Case B:
BTN
345 app = 0, Vk.
() _
a,/ =0,Vk, L.
Intermediate step:
new {Y{,..., Y}
Focus on last i — 1:
p=1i—1.

FIG. 5.1. Illustration of the proof of Theorem 5.2. R®~1) denotes (a(p_l) )2—a(p_1) a$psd

Sp—18p Sp—18p—1Uspsp -

The dashed lines mean that one cannot fall repeatedly in cases A3 or B without contradicting STLCC.

for 1 < j <m—i+1. Finally, for j > m—1i41, we select the b such that the matrix
B is non-singular. In this manner, in a unique step, we would change to a new basis
{Y{,..., Y, } verifying

(Y7 : Y1) (q0) s -+ s (Ym—ig1 : Yin—ir1)(20) € Dy
(Y] : Y))(q0) = 1e(Y{(90), - > Y (q0)) + a; (Y1 : ¥2) (q0), m—i+2<j<m
(Vi :Y/)q0) € Dyy, k<lL,1<k<m—i+1,

with possibly some of the (aj;)m—it+1<j<m being different from zero. Now, the above
discussion can be redone in this context to assert the validity of the theorem. That is,
we have to look for a change of basis B’ in the vector fields {Y;),_;,,,...,Y, } such that
the new omes, {Y_,.,,..., Y} together with {Y{,... Y, ..} verify the sufficient
conditions for STLCC at go. To find the change of basis for {Y,,_;,5,..., Y}, we
have to consider the corresponding versions of cases A and B. If we repeatedly fall
in case B, then we come to discard the same possibility that we encountered in the
treatment of case A3, which can be done again by means of Lemma 5.1. 0O

To recap, the steps of the proof can be summarized as follows (see Figure 5.1):

first, we have considered the case when there exists for all ¢ a s; such that a(sz)s # 0.
We have seen that this case can be subdivided into three: one (case A1) ensuring the
desired change of basis, another one (case A2) in which either one obtains the basis
or one contradicts the hypothesis of small-time local configuration controllability and
a third one (case A8) where an intermediate change of basis is performed that allows
us to focus on the search of a change of basis for m — 1 of the new vector fields. Then,
under the same assumption on the new coefficients, a;- i (i-e. for all 4, there exists a s;

N T
such that ag?si # 0), we can reproduce the former discussion. We cannot repeatedly
fall into case A3, since we would contradict the controllability assumption. Finally,
we have treated the case when this type of “circular” process is broken (case B): that

is, when there exists an i such that ai’z =0, for all & # s1,...,8;_1. What we have
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shown then is that this leads to either a new basis of input vector fields satisfying the
sufficient conditions for STLCC or a reduced situation where we can “get rid” at the
same time of the problems associated with m — i + 1 vector fields.

REMARK 5.3. Notice that the proof of this result can be reproduced for the
corresponding notions of accessibility and controllability at zero velocity. Indeed, a
mechanical control system of the form (2.2) with m = n — 1, which is STLC at g and
zero velocity is in particular STLCC at go. Then, Theorem 5.2 implies that there exists
a basis of input vector fields Y satisfying the sufficient conditions of Theorem 3.2, so
the same result is also valid for local controllability at zero velocity.

COROLLARY 5.4. Let @ be a 3-dimensional analytic manifold and let Y1,Y> be
analytic vector fields on Q. Consider the control system (5.1) and assume that it is
locally configuration accessible at qo € Q. Let A be the 2 X 2 symmetric matriz whose
elements are given by

(Y1 : 1) (q0)

le(Y1(g0), Y2(q0)) + a1 (Y1 : Y2) (qo)
(Y2 : Y2) (q0) = le(Y1(g0), Y2(g0)) + a2z (Y1 : Y2) (g0)
(Y1 :Y2) (qo) = a12 (Y1 : Y2) (qo0) -

Then the system is locally configuration controllable at qo if and only if det A < 0.
Proof. The results follows from the proof of Theorem 5.2 by noting that det A < 0
corresponds to case A1, det A > 0 to case A2 and det A = 0 to case A3. 0O
REMARK 5.5. Note that Corollary 5.4 together with Theorem 4.1 completely
characterize the configuration controllability properties of mechanical control systems
with 3 degrees of freedom, since fully actuated systems are obviously STLCC.

6. Examples.

6.1. The planar rigid body. Consider a planar rigid body [24]. Fix a point
P € R? and let {eq,e2} be the standard orthonormal frame at that point. Let {d1,d>}
be an orthonormal frame attached to the body at its center of mass. The configuration
manifold is then SE(2), with coordinates (z,y, ), where (x,y) describe the position of
the center of mass and 6 the orientation of the frame {d;,d2} with respect to {e1,e2}.

(z,y,0)

L

P €1

FiG. 6.1. The planar rigid body.

The inputs of the system consist of a force F! applied at a distance h from the
center of mass CM and a torque, F2, about CM (see Figure 6.1). In coordinates, the
input forces are given by

F' = —sinfdx + cosfdy — hdd , F?>=d6.
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The Riemannian metric is
g =mdz ® dx +mdy ® dy + Jdf ® db,

where m is the mass of the body and J its moment of inertia.
The input vector fields can be computed via b;l as

_sineg cosf O h 0O 190

Y= T Tmay T 2T g

One can easily show that the planar body is locally configuration accessible [24].
However, the inputs Y7, Y5 fail to satisfy the sufficient conditions for STLCC. In fact,

_ 2hcos® 0 2hsin@ O

Yi: Y1) = — —
(Yi: 1) mJ 6$+ mJ Oy’

cosf O sinf O
W) = =T 5~ mi By
(Y2:Ys2) =0.

Therefore, {Y1,Y2,(Y1 : Y2)} are linearly independent and (Y7 : Y1) = —2h (Y7 : Y2).
Theorem 5.2 ensures us STLCC if and only if there exist a basis of input vector fields
satisfying the sufficient conditions. We have that

—2h 1
detA_det< 1 0)——1<0,

and consequently, by Corollary 5.4, the system is locally configuration controllable.
Indeed, this example falls into case A1 of the proof of Theorem 5.2. Accordingly, we
obtain the change of basis: Yy = Y1 + hYs, Yy = Y5. This yields

(V) :Y) =(¥3:Y3) =0, (¥]:Y5)=(¥1:75),
which satisfies the sufficient conditions for STLCC. The new input vector field pre-
cisely corresponds to the force F' in Figure 6.1.

6.2. A simple example. The following example does not necessarily correspond
to a physical example, but illustrates the proof of Theorem 5.2. Consider a mechanical
control system on R?, with coordinates (z,y,z). The Riemannian metric is given by

g=dz®dr+dy®dy+dz®dz,

and the input vector fields

Y—zg_}_g_}_lg Y, = 34_12_12
YT %0z T oy 40z 2= Y% 40y 20z

In coordinates, we have the following control equations

. . U L Ul U
T =urz +usy, y=u1+f, z:f—%. (6.1)
Since
(Y1: Y1) =(V1 : Y3) = (V5 Y)—la
1) =Wl =) =550,
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we deduce that span{Yi(q),Y2(q), (Y1 : Y2)(¢)} = T,Q for all ¢ € @ and the system
(6.1) is locally configuration accessible. However, Corollary 5.4 implies that it is not
STLCC, since det A = 0. Going through the proof of Theorem 5.2, we see that this
example falls into case A8. Choosing the change of basis

-1 1
s=( 1)
we get the new input vector fields Y/ = —Y; + Y5 and Y] = Y7 + 5. Now, we have
3]

(V=Y =0, (¥:¥3)=0, (¥;3:Yy) =25

F1G. 6.2. The level surface ¢(z,y,z) = 0.

We can compute explicitely the function ¢ of Lemma 5.1 for this example. The
flows of Z1 =Y/, Zy =Y;, Zg = —(Y; : Y3) are given by
\Ill(t)(x7yaz) = ((L' + (y - Z)t,y - 3t/47z - 3t/4)
Ty (t)(z,y,2) = (T + (y + 2)t +t2/2,y + 5t/4,2 — t/4)
‘1’3(t)($7 Y, Z) = (ZL' - 2ta Y, Z)

Letting (xg,y0,20) be an arbitrary point, one verifies

\Pl(tl) o ‘I’z(tQ) o \113(t3)($0,y0,20) =

2t5 + ( +z+1t)t+t( 2 3t) 3t +5tz—§t—1t
Zo 3 Yo 0 222 1Yo 0 22;2/0 41 42,0 41 42-

We may solve for ¢(z,y,z) =t3 as

(z,y,2) =
1

s (=9(z — o) + 4(y* — yyo + yz — Syoz — 22% + yzo + 3yo20 + 5220 — 323)) -

In Figure 6.2, we show the level set ¢(x,y,z) = 0 for (xo,¥0,20) = (0,0,0). The
locally accessible configurations from (0,0, 0) are contained below the surface, where

#(x,y,2) > 0.
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7. Conclusions. In this paper, we have built on previous results on controlla-
bility and series expansions for the evolution of mechanical control systems within the
affine connection formalism to demonstrate that the sufficient conditions encountered
in [24] for STLCC are also necessary when the configuration manifold is n-dimensional
and the system is actuated by n — 1 inputs, in the sense that there exists some basis
of input vector fields that verifies them.

However n — 1 controls is a special case and is the simplest case next to fully ac-
tuated systems, which are always STLCC. For an arbitrary number of inputs, higher-
order controllability will necessarily play a key role. Future research will be devoted
to investigate the validity of the controllability conjecture in the full general case.
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Appendix A. A simple lemma.
LEMMA A.1. With the notation of Theorem 5.2, assume that (a‘(s’:zjllgm)2 -

™D @™ D — 0. Then the coefficients Cy given by (5.8) verify

m
Zalek:O, 1§l§m
k=1

Proof. From (5.8), one can obtain the following recurrence formula for the coeffi-
cients Cf,

1 LIS
Con =1, Cy=——7 | D all 0|, 1<j<m—1. (A1)
Asjs; \i=j+1

Let us denote

E(l) = Zalek .
k=1
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It is easy to see that X(s;) = 0. Indeed, using (A.1), we have that
Y(s1) = as;5,Cs, + ZasmCsi =— Zasilesi + Zasilesi =0.
=2 i=2

=2
To prove the result for the remaining indices we can do the following. First, note that

a i T (a5, s Q

_ 518 _ s15; As;s;

1= T E @s;5;,Csi | = — E (7> Cs
i=2 i=2 Gs151

as, 8j Cs -
asl 81

Then, substituting in ¥(s;), we get

818 “8i8;
S (e g, S,
=2 =2

%(s;) =
(s5) Gsros
8 8;8; 8 9
=2

m
a'siSj Qgy51 — aslsj aSiSj
Qgq 5

Z ( Qsysq
() This procedure can

=2
kl -

where we have used the definition (5.5) for the coefficients a
be iterated to obtain the general expression

—1)* m
( 1) (k) <Z agf:;l)csi> )

E(S]) = @)
Qsys1Asgsy « -+ Asp's \j=k+1

(A.2)

which is valid for any 1 < k <m — 2.
Now, consider the cases 2 < j < m — 1. Take k = j — 1. Then, using (A.2),

(-1 n
E(S]) - (2) (7—1) ag?sjcsi
Q515105282 -+ - sj_15;_1 \ i=j
= ) " o) _
G | a8 Cs + Y- all) Co | =0,
i=j+1

- (2)
G158, Qsnsy - - - Osi_18;_1

where in the last equality we have used (A.1). Finally, if j = m, we have that

(alm=2), Coey +alm,DC, )

(_1)m—2
E(Sm) = — Sm—18m
aS1S1 ag)sz e ag:—fgm—z '
_ —1

_ (-1)m? (_ (@b ian ) a(m_1)>
- — — SmSm *

U5y Ay - Aoty \ @S,

ag:',f:llgm)? - agﬂflls)m_lagz;i) =0, we conclude that X(s,,) = 0,

From the hypothesis (
and this completes the proof. O



