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Abstract— This work studies optimal sensor placement and
motion coordination strategies for mobile sensor networks.
For a target tracking application with range sensors, we
investigate the determinant of the Cramer Rao Lower Bound
and compute it in the 2D and 3D cases, characterizing the
global minima in the 2D case. We propose motion coordina-
tion algorithms that steer the mobile sensor network to an
optimal deployment and that are amenable to a decentralized
implementation. Finally, our numerical simulations illustrate
how the proposed algorithms lead to improved performance
of an extended Kalman filter in a target tracking scenario.

Index Terms—motion coordination, optimal sensor place-
ment, Fisher Information Matrix, Kalman filtering

. INTRODUCTION

The motion control algorithms proposed in these papers
either are computed via some off-line numerical method
or are gradient algorithms. Often these algorithms are
designed to maximize an appropriate scalar cost function
and to choose the best sensor locations from a grid of finite
candidates. Unfortunately, these schemes turn out to be not
distributed since in order to define the control law for each
agent, it is necessary to know all other agents’ positions
at each step. A second set of relevant references are those
on distributed motion coordination. Our proposed control
algorithms are in the same spirit as those for cyclic pursuit
[5], flocking [6], and coverage control [7].
The contributions of this paper are the following. Un-

der the assumption of Gaussian noise measurements with

New advancements in the fields of microelectronics andliagonal correlation, Section Il presents closed-form ex-
miniaturization have generated a tremendous surge of-actipressions for the determinant of the Fisher Information
ity in the development of sensor networks. The envisionedJatrix for “range-measurement” models in non-random
groups of agents are endowed with communication, sensingjatic scenarios, for 2 and 3 dimensional state spaces. This
and computation capabilities, and promise great efficiencgeterminant plays the role of an objective function: we
in the realization of multiple tasks such as environmentatharacterize its critical points in the 2D version and abtai
monitoring, exploratory missions and search and rescugets of positions that globally maximize its value. If the
operations. However, several fundamental problems neegknsors measure distances to the target, then an optimal
to be solved in order to make this technology possibleconfiguration is one in which the sensors are uniformly
One main difficulty is the requirement for decentralizedplaced in circular fashion around the target, confirming a
architectures where each agent takes autonomous detiatural intuition about the problem. Taking this optimal
sions based on information shared with only a few localconfiguration as a starting point in Section Ill, we then
neighbors. Ongoing research work focuses on decentralizezbnsider a target tracking scenario where the sensors move
filters and data-fusing methods for estimation, and oralong the boundary of a convex set containing the target.
the motion algorithms that guarantee the desired globalVe define discrete-time control laws that, relying only on
behavior of the network. Ideally, both the motion controllocal information, achieve the uniform configuration ardun
algorithms and estimation processes should be optimallthe target (estimate) exponentially fast. In essence, our
integrated to make the most of the network performance.laws are very intuitive and simple-to-implement interawti

In this paper we investigate the design of distributed mobehaviors between the sensors along the boundary. Finally,
tion coordination algorithms that increase the informmatio in Section IV, we numerically validate our coordination and
gathered by a network in static and dynamic target-trackingptimal deployment laws in a particular dynamic target-
scenarios. To do this, we define an aggregate cost functidnacking scenario. Although the network achieves global
encoding a “sensitivity performance measure” and desigeptimum configurations for aonrandom statigparameter
our algorithms to maximize it. This idea has been widelyestimation scenario, we simulatedgnamic randomsce-
used in papers on optimum experimental design for dynamrario. Our simulations illustrate the following reasoreabl
ical systems with applications to measurement problems:onjecture: optimizing the sensitivity function for thest
An incomplete list of references is [1], [2], [3], [4]. For non-random case improves the performance of a filter (in
example [3], [4] deal with problems on target tracking andour case an EKF) for the dynamic random scenario.
parameter identification of distributed parameter systems Finally, we point out that we assume that the process of
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estimation is performed by a central site or by a distributed
process that we do not implement here. For works dealing
with multisensor fusion possibly under communication
constraints we refer to [8], [9], [10], [11] and references



therein. for j € {1,...,n} and?¢ € {1,...,d}. In the particular
case thatR = ¢21,,, the FIM Jyg can be expressed as:
Il. OPTIMAL PLACEMENT OF SENSORS

Here we present the assumptions on our sensor network Nr(¢o, P1s - - -, Pn) = (V H)§ (VyH)g,
and target models in (1) (non-random) static estimation O I O (Dohs
scenarios and (2) (random) dynamic parameter estimation (01 _J ) o (Ouh ).( ah;)
scenarios. We obtain the corresponding Fisher Information = 2 > : : - (2
Matrices (FIMs) and analyze the global minima of their I=1 1 (Oahj)(01hj) ... (Dah;)?

determinant as a means to guarantee increased sensitivit ] o ]
with respect to the sensors’ measurements. See [12] for B The dynamic parameter estimation scenario

comprehensive treatment on estimation and tracking. Dynamic targets can be thought of as random parameters
. o . evolving under a stochastic difference equation. Here we
A. The static parameter estimation scenario assume that the target positiglk), at timek € NU{0}

The localization of static targets can be solved as &atisfies:
non-random parameter estimation problem as follows. Let
" = Fy - >
p; € RY, j € {1,...,n}, denote the position of sensors (k) = Fi(q(k = 1)) +v(k), k=1, 4(0) €Q,
moving in a convex regio)) C R¢ and letgy € Q be the  tor some functions?, : R? — R? andv(k) i.i.d asv(k) ~
unknown target position to be estimated by means of they (g, N (k)), where N (k) = N (k)T > 0, for k > 0, and

measurement model: Elo(ky)vo(ks)T] = 61N (ky), for ks, ks > 0. Similarly as
before, we model our sensor network as
zj(q) = h(llg = psll) +w;, a€Q, €Y
= >
for j € {1,...,n}. Here,h : [0,+c0) = Ry — R is 2(k) = Hi(g(k), p1(R), -, pn(R)) +w(k), k20,
defined according to the particular sensors’ specificationgith ( (k), pr(k), .., pn(k)=(h&(||q(k) _
and w; represents a white noisg, € {1,...,n}. The pr®B)D, ..., hil|lg(k ) pu(k)|]), wherehy, : Ry — R,
stacked vector of measurements at a glven instant is éndZ( ) ( 1K), ... zn(K)), k > 0. We will assume that
random vector normally distributed as w(k) ~ N(0,R(k)), whereR(k) R(k)T >0, k >0,
> h(||q —p ”) and thatE[ (k‘l) (]62) ] = (512R(l€1), for ky, k‘g > 0.
. '1 _ ! An estimation method that is widely employed for target
Z=| | ~N : R tracking is that of the Extended Kalman Filter (EKF) [12].
Zn h(llg — pnll) The assumptions for the filter requitgk) and Z(k) to

_ . be jointly Gaussian distributed with covariané&k) =
where R = RT > 0 is the n x n covariance ma- p(k)T, and E[q(ky)w(k2)] = 0, for ki, ko > 0. The EKF

trix. From now on, we will use the shorthand notation provides a state estimatg(k) together with an estimate

Z = (z1,...,2z,)", and H will denote the ft%nction for the covariance of the errd?, (k):
H(q,p1, .- pn) = (h(lg = p1ll),-- -, Alllg = pal))" .
The Fisher Information Matrix(FIM) for non-random Pe(k) = Py(k) = W(k)S(R)W (k)" , k=1,

parameters, denoted byygr, is defined as the expected

value with respect to the probability distributigiiZ|q): where P, (k) is the predicted covariance of the error and

W(k), S(k) are some matrices appropriately defined [12].
Let ¢,(k) be the predicted value af(k). Some standard

INR £ E[(VglogA) - (VglogA)T]
computations [12], [9], allow us to say that

q=q0 ’

where qo is the true value of the target location or an . —
estimate of it, V, = (:2,...,-%)7, and A is the  Fo (k) =B, (k) + (VoHrig, )" B (F)VqHijq, )

dql » Bq
likelihood function .
or, denotlng(Vqu‘qp(k))TR‘l(k)Vqu|qp(k) = JNR(kJ),

Ag,p1,-- - pn) = P (k) = Py (k) + Jnr(K), k> 0. 3)

€

exp (-%(z ~-HTRY(Z - H)) .

1
V2w det R Similarly, it can be seen that for linear measurement
_ S and linear target models, the FIM for dynamic (random)
A few computations showing = (VoH) g R (VoH)g-  parameters,pr(k), and Jyr(k) satisfy
Let g = (¢',...,¢"7, and define the shorthands
5 Jor(k) = Inr(k) + J(k), T(k)=T(Hk">0. (4)
A
Ol (40, p1s - Pn) = a_qfh(Hq _pj”)’q:qo’ C. Cost functions for optimal sensing
for j € {1,...,n} and? € {1,...,d}. Then(V,H),, : A_s is well known, the FIM encodes the amqunt of infc_Jr-
R? x (R™)% — R™ " can be computed to be mation that a set of measurements produces in estimating a
set of parameters. Under the assumptions made in former
(VgH)go)ie(qos D1, - -, n) = Oehji(qo, p1s- -2 Dn) s sections, we have FIM = CRLB; i.e., the FIM is the



inverse of the Cramer Rao Lower Bound, which in turnHere we understand that,, = 0 whensS,, = 0.

lower bounds the covariance of the efror
FIM~' = CRLB < E[(§ — 90)(4 — 90)"]-

Because of this, one expects that “minimizing the CRLB”

results in a decrease of uncertainty.

The proof of this result is in [13].
Let us now introduce some useful notation. [Mebe the
circle in the plane and definér : T — R, by

4772
*C']l'(él?' . ,5n) = M Z SiIlZ(5i - 6])7
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This line of reasoning has been a main theme in several i,j€{1,....,n}

papers dealing withoptimum experimental desigand

— 2(b—1
active sensinge.g., see [3], [4]. Starting from the FIM Where M = max,c(g, p,)(r — ¢1) (=1 > 0. Now, let

(resp. the CRLB) of the estimation approacheamluation

functionis defined (usually the determinant or the trace of2 PO!
the FIM/CRLB) whose maximization (resp. its minimiza- [dentify p;

tion) is to be achieved. For example, thet FIM is the

cost function is “D-optimum design” as discussed by [4].
As before, letqy € R¢ be the true value of the target Lo,
location or an estimate of it. Under the assumptions of

Subsection II-A and 1I-B, we define our cost functigy, :
(Rd)n — R+ by

‘C‘IO(pla"'7pn):detJNR(q07p1a"'apn)a (5)

with Jyr given in (2). Because of (3) and (4), we are

guaranteed that, if we optimiz€,, with respect to the

positions of the sensors, then we will get increased perfor-
mance in static estimation scenarios, and expect reagonabl

good performance in dynamic ones.

In what follows we derive the expression for the cost

function £,, for d = 2 andd = 3 and analyze its critical

points and global maxima. To do this, we shall assume that

our measurement model is

h(r) = (r—c1)?+coy Ro< T'< Ry,
0, otherwise

(6)

for b € Z, and constant®?; > Ry > 0, co,c1 € Ry.
Range sensors such as sonars can be modeléd=byl
andc; = ¢ =0.

Proposition 2.1:For ¢y € R4, let £,, : (R)" — Ry
be defined as in (5) and be defined as in (6). Let
Sqo(p1,...,pn) be the set of indices € {1,...,n} such
that Ry < ||lp; — qo|| < R:. The following statements hold
true.

(i) Ford=2,

1 .
Lo (1 Pn) = 252 Z Vil v;|? sin? cv;;
1,5€Sqq

Whereaij e K(Vi,Vj), v, = (81hi,82hi,0), and

[vil> = 0*(llpi = qoll — 1)*®™Y, for i,j €
. SQO(plw-'»pn)'
(i) For d =3,
Lo (p1y---1pn) =
1 .
—s Y Vil V1P (el sin® c; cos® Bk
i,§,k€Sqq

Whereaij £ K(Vi,Vj), 51']'7]@ £ K(Vz X Vj,Vk), and
vi = (O1hi, O2hy, O3h;), with [[v;]|? = b*(|lpi—qo || —
Cl)z(bil), for i,j, ke Sqo (pl, . 7pn)

IFor efficient estimators, the inequality is an equality.

d = 2 and assumeq # p;, fori € {1,...,n}. Consider
polar change of coordinates centeredgatc R?, and
€ R? with (n;,r;) for somen; € T andr; €
R4, i€ {1,...,n}. We then have that,, (p1,...,pn) <
Lr(n1,...,mn) and (p1,...,p,) is a global maximum of
if and only if (11, ...,7,) is a global maximum oLy
nd (r; — ¢1)?0=Y = M, for all € {1,...,n}. We now
analyze the maxima ofr.
Proposition 2.2: The following statements hold true.
(i) The point(n,...,n,) € T™ is a critical point forLy
if either any two vectors if(cos 27;, sin 2n; )}, are

aligned or
Z cos2n; =0, and Z sin 2n; = 0,
ie{l,...,n} ie{l,...,n}

(i) The following three quantities are equéfii‘/’—;n,
max {qu(pl7 cesPn) | D1y R € Rd}, and
maX{ET((517...,(5n) | 51,...7571 S T}

(i) If ;= —1m/n,ie{l,...,n}, then

{(’Ih+k171’,...,77n+knﬂ')|k’1,...,knEZ}

are global maxima folr.
The proof of this result is in [13].

Remark 2.3:By (iii) there could be global maxima with
multiple sensors at the same position. This could be a
consequence of our assumptions that the measurement
noisesw; are uncorrelated. It is a conjecture that, if the
w; depended on the sensors locations, then coincident
locations could not be part of the set of maximum points.

[ ]

IIl. DECENTRALIZED MOTION COORDINATION FOR THE
NON-RANDOM PARAMETER SCENARIO

This section presents a family of decentralized control
laws that steers the sensors to a set of points of maximum
for the cost functions previously defined. Our analysis is
related to the approaches in [6], [5], [7]. We make the
following assumptions on the agents’ motion, sensing, and
communication:

() a static targetg, takes values in the interior of a
compact convex sef with boundaryoQ);

(i) the measurement model is the one described in
equation (1) withi(r) = r, i.e., equation (6) with
y=1,b=1,¢1 =c2 =0, Ry =0, Ry = +o0;

(i) each of the sensor¢ps,...,p,} moves in discrete
time alongoQ;

(iv) each of the sensory;,...,p,} detects its immedi-
ate clockwise and counterclockwise neighbor#én
and acquires the corresponding distances.



- u : [0,27] x [0,27] — R, so that the closed-loop system

becomes:
Ui(k + 1) = T]i(k’) + U(dcounterclocki(k)7 dC|0Ck,i(k))7
Ps a % dcounterclockz‘ (k) = 77i+1(k) - 771‘(]?3)7

dclock,i(k) = m(k) - ni—l(k)-

In order to achieve uniform distribution of the sensors
Fig. 1. Assumptions (i) and (iii): the sensors move along thenbary ~ ON the_ circle, tW_O simple behawors arise fairly naturally,
of Q and the target moves insidg. see Figure 2. First, we consider theoGOWARDS THE

MIDPOINT behavior withumidpoint : [0, 27] x [0,27] — R

2z Ps

For this static scenario with limited information, the mo-
tion coordination objective is to steefp,...,p,} to
the equally-spaced angular positions around the tajget The interpretation is clear: each sensor moves towards the
exponentially fast. midpoint of the angular segment between the preceding
Remark 3.1: « Assumption (iv) means that an imple- and following sensor. In the original coordinate system,
mentable control law for an agent can only dependeach sensor moves alodf) towards the bisector of the
on the agent's position relative to its neighbors (in thetriangle with vertexg, and vertices given by the preceding
natural ring topology alon@@). We will call such a  and following sensor. A second intuitive rule is the Go-
control law spatially distributed alon@Q.
« We will allow the control law to depend on the current
estimate of the target location. This strategy is said to

1
Umidpoim(dcounterclock dclock) = 5 (dcounterclock_ dclock) .

be of the “certainty equivalence” type. °
A. From the boundary of) to a circle and back RO
Because we assume that thesensors can be placed w7 Dot

only alongd@, we will work with the polar coordinates of ,

{p1,...,pn} centered atj, and define our motion control

algorithms on the circle. 4
Let 0Q be implicitly defined by the continuous equation

xz € 0Q if and only if g(x) = 0. Given a pointq in the

interior of a compact convex se}, define the mapp : Fig. 2. The G TOWARDS THE MIDPOINTu; /9 and GO TOWARDS THE

oQ—T by MIDPOINT OF VORONOI SEGMENTu ;4 behaviors.

pqlp) = 24

(el WARDS THE MIDPOINT OF VORONOI SEGMENTbehavior
One can show that, is continuous with continuous iNVerse umigpoint voronoi : [0, 27] % [0, 27r] — R
—1 . H —1 _
¢ T —0Q given byp,*(v) = ¢+ Av whereX € R,

the unigue solution t@(q + Ap) = 0. Umidpoint Voronof dcounterclock dclock) =
In what follows, we letgy denote the current estimate of 1
the target location, we let,, (p) be the angular component 1 (dcounterclock— dclock)-

of the polar coordinates of centered at,, and we identify

pi €0Q C R with n; — oy, (pi) € T, for all i. The interpretation is the following: the Voronoi segment of

the ith sensor at positiom; is the angular segment from
B. Basic behaviors for uniform coverage of the circle (ni—1 +m:)/2 to (n; + n:41)/2, and the control law @

As discussed, the location of the sensors is describeBOWARDS THE MIDPOINT OFVORONOI SEGMENT steers
by the vector(n, ..., n,) of elements ofl. We assume 7 fowards the midpoint of this segment. _
that angles are measured counterclockwise and that the These two rules are particular instances of the following
sensors are placed in counterclockwise order (we adopt tH@mily of linear algorithms parametrized By € R:
convention thaty,+1 = n; and thatng = 7n,,).

As described Assumption (iii), the sensors motion is
described by a discrete-time control system: Clearly, umidpoint and wmidpoint voronoi @re equal toux for

) K =1/2andK = 1/4, respectively. Becausec(d,d) =0
ni(k +1) =ni(k) +ui, i €{L,...,n}. for all/d € R, the/equally—spaced angle pogitior)w (where
Here u; is the scalar control magnitude of thith sensor. the sensors are uniformly distributed around the target) is
In a way consistent with Assumption (iv), we assume an equilibrium point for the ux-closed-loop system.
is a function only of the relative angular distances in the

. . . 2 H
counterclockwise direction = p =1 >0 The more general linear feedback(dcounterciock deiock) =
counterclocki = 7li+1 = 7li adgounterclock+ bdclock does not have the desired equilibrium set unless

and clockwise directiomlciocki = 7 — i1 > 0. We also %" 20" he case ofu + b # 0 is studied in the context of cyclic
assume that each sensor obeys the same motion control lawsuit, e.g., see [5].

urxc (dcounterclock dclock) = ]C(dcounterclock_ dclock)'



C. Convergence analysis

To perform a convergence analysis, it is convenient t
define the relative angular distanegs= ;.1 —n;, fori €
{1,...,n} (and adopt the usual convention thiat,; = d;
and thatdy = d,,). So long as the counterclockwise order of
the sensors is not violated, we hai@g, ... ,d,) € Sor =
{z eR, |z;>0,>" , x; =2n}. The change of coordi-
nates from(ny,...,n,) to (di,...,d,) and the control law
ui jointly lead to the closed-loop system

dz(k‘ + 1) = ICdH_l(k') + (1 — QIC)dl(k') + ]Cdz_1(/€)

This is a linear time-invariant dynamical system with state

d=(dy,...,d,), transition matrixAx given by
rl—2K K 0 0 K
K 1-2K K 0
0 K 1-2K
. )
0 . K 1-2K K
L K 0 0 K 1—2K]

and governing equation

d(k+1) = Axcd(k), for ke NU{0}.  (7)

Theorem 3.2:The control lawuy is spatially distributed
along 0@, and, for £ €]0,1/2[, the solutions to the

corresponding closed-loop system (7) preserve the countd

clockwise order of the sensors and converge exponentiall
fast to (27 /n,...,27/n).
Proof. Recall the notion and properties of circulant matri-
ces from [14]. Note thatdx is circulant with representer
pac(s) = (1 —2K) + Ks + Ks"~ L. This implies that the
eigenvalues ofdx are
2775\/——1))
n

)\gsz,C<exp( =1—21C+21Ccos(277r€),

for £ € {1,...,n}. One can see thah, 1 with
corresponding eigenvectar’” = (1,...,1). If £ > 0 and
¢e{l,...,n—1}, then

2
—1§cos(%€) <l = 1-4K<N <L
Therefore, if K €]0,1/2[, then the eigenvalues
A1, ..., A\n—1 belong to the interval — 1, 1]. Additionally,

if K €]0,1/2[, then Ax is a doubly-stochastic matrix,
which implies thatS,,; is invariant for Ay.
Let{ey,---,e,_1, 1} be a basis of orthogonal eigenvec-
tors for A corresponding to the eigenvalugs,, ..., A\, },
respectively. Any initial conditioni(0) can be written as

n—1
d(0) = pres + pnl.
=1

Since "' ,d;(0) = 2m, one can see thap,
Therefore
n—1 9
d(k) = Axd(k — 1) = > Mpres + %1 .
=1

If K €]0,1/2[, then each),| <1, for e {l,...,n—1}

&nd, therefore, each trajectaty— d(k) converges toznil,

the equal-angle configuration, exponentially fast.
Remark 3.3: (i) The properties ofix in Theorem 3.2
are independent of the numberof sensors.

(i) If £ < 0or £ > 1/2, then there exist initial
conditions from which the counterclockwise order of
the sensors is not preserved in the closed loop.

(i) Consider theXl = 1/2 case, corresponding to the
GO TOWARDS THE MIDPOINT behavior. Although
GO TOWARDS THE MIDPOINT iS a very natural
algorithm to consider, it doesot ensure conver-
gence to the desired configuration whenevelis
even. In fact, ifn 2L with L € Z, then
1 and e? (-1,1,-1,...,—1,1) are eigenvec-
tors with eigenvalued and —1 respectively. Given
{e1...,e,_1,1} an orthogonal basis of eigenvectors
for A/, and d(0) = Y7 pe; + pnl, one can
show that, starting from arbitrary initial conditions,
the system will exponentially converge to a steady
oscillation betweenu; = p,1 + prer and uy

pn]- — pLerL-

IV. TARGET TRACKING SIMULATIONS WITH KALMAN
FILTERING AND MOTION COORDINATION ALGORITHMS

Here we combine the developments of former sections to
define the Active Target Tracking algorithm for collective
mproved sensing performance. We numerically simulate

e algorithm to validate our approach. It is assumed that
he estimation step is carried out after a round of commu-
nication has taken place to propagate all the measurements
taken among the ageRtsThe algorithm is summarized in
the following table.

Name: ACTIVE TARGET TRACKING ALGORITHM

Goal:  Decentralized motion coordination of sen-

sors and joint localization of target

Data: (i) Constantk €]0,1/2].

(i) Equation for the boundary of the con-

tainment regiong(g) = 0.

(iii) Guess for target initial positiordy(0).
At time k, local agenti € {1,...,n} performs:

1: Receive estimaté, (k) from fusion center.

2: Detect counterclockwise and clockwise neighbors
along 9Q, compute angular distances in polar cqor-
dinates aboutj (k).

3: Compute controlix, next desired position; (k+1) €
T, and corresponding point;(k + 1) € 0Q.

4: Move to new positiorp;(k + 1) along d@Q.

5: Take new measurement of targgtk + 1), and send
it to fusion center, that will update target estimate

according to EKF.

In what follows we present our numerical results. we
compare the estimation errors of the trajectory of a dynamic
target obtained from a set of four stationary and moving
sensors. For the purpose of the simulati@nwill be a ball

3This would be equivalent as having a fusion center that atngs the
estimation process



centered at the origin with radius5m, and the trajectory
or the target will be the eight-shaped curve:

a@k)] sin(wk)
ga(k)| — |sin(wk) cos(wk)
Here (¢}, ¢3) are measured in meters and= .1 rad/sec.

In all the subsequent figures, the plots compares the
evolution of the absolute error trajectories along time,

]7 k>0.

E(k) = |lqo(k) — Go(k)| for stationary sensors (solid blue Fig. s.
and stationary sensors. Initial positions &fg /2, , 37 /2) (left) and
2.1818,22.4500, 3.7160,4.5167) (right) and variances are in both cases
5 x 107=.

line) and moving sensors (dashed red line), #o¥ 0.
The first set of simulations, Figure 3, reproduce thel
results obtained for four sensors initially positioned at
2.1818, 2.4500, 3.7160, and 4.5167 radians. As can be
seen, the moving sensors perform better on average as
the variance increases. In the second set of simulations,

0.4]

0.3

E
0.2
0.1ff
% 20 40 50 % 20 40 60
t t
Fig. 3. Evolution of absolute error trajectories with vaiias of measured [1]
noise5 x 1073 (left) and5 x 10~2 (right).
Figure 4, we take as the initial position for the sensors the[Z]

optimal position to estimat@. That is,0, /2, = and3r/2,
are the initial positions for both stationary and moving
sensors. Though the set of moving sensors performs bettef3

02 { [4]
: [s]
(6]
% 20 40 60 % 20 40 60
t t [71
Fig. 4. Evolution of absolute error trajectories with vaiias of measured
noise5 x 10~3 (left) and10~! (right). [8]

the differences between the estimates of the stationar)}gl
and moving sensors are comparable for variances of ordeto;
10~4, 103 (the absolute error trajectories overlap) and
even not so different when the variances are increased
to order 1072. One has to increase the order of noise[11]
to 107! to observe a clear difference in performance.
Qualitatively, Figure 5 shows how the estimated trajeetori

of the moving sensors (green solid line) behaves compargg?;
with the estimation provided by the stationary sensors
(black dashed line). The green solid trajectory is verye&los (13]
to the actual trajectory of the target that we do not plot.
Note that in all the simulations, the variance of the process
noise is kept minimum of ordel0—°. It can be observed in [14]
the simulations that when the variance of the measurement
is kept constant and the variance of the process noise is
varied, both performances of stationary and moving sensors
give very similar results.

Qualitative evolution of the estimated trajectoriBs moving

V. CONCLUSIONS AND FUTURE WORK

We have presented novel decentralized control laws for
the optimal positioning of robotic sensor networks that
track a target. It would be of clear interest to modify
our model by including upper bounds on the motion and
detection range of the sensors. Broader future research
lines include (1) heterogeneous collections of sensojs, (2
dynamic assignment of sensors to different targets and (3)
decentralized estimation and fusion schemes.
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