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Abstract— This work studies optimal sensor placement and
motion coordination strategies for mobile sensor networks.
For a target tracking application with range sensors, we
investigate the determinant of the Cramer Rao Lower Bound
and compute it in the 2D and 3D cases, characterizing the
global minima in the 2D case. We propose motion coordina-
tion algorithms that steer the mobile sensor network to an
optimal deployment and that are amenable to a decentralized
implementation. Finally, our numerical simulations illustrate
how the proposed algorithms lead to improved performance
of an extended Kalman filter in a target tracking scenario.

Index Terms— motion coordination, optimal sensor place-
ment, Fisher Information Matrix, Kalman filtering.

I. I NTRODUCTION

New advancements in the fields of microelectronics and
miniaturization have generated a tremendous surge of activ-
ity in the development of sensor networks. The envisioned
groups of agents are endowed with communication, sensing
and computation capabilities, and promise great efficiency
in the realization of multiple tasks such as environmental
monitoring, exploratory missions and search and rescue
operations. However, several fundamental problems need
to be solved in order to make this technology possible.
One main difficulty is the requirement for decentralized
architectures where each agent takes autonomous deci-
sions based on information shared with only a few local
neighbors. Ongoing research work focuses on decentralized
filters and data-fusing methods for estimation, and on
the motion algorithms that guarantee the desired global
behavior of the network. Ideally, both the motion control
algorithms and estimation processes should be optimally
integrated to make the most of the network performance.

In this paper we investigate the design of distributed mo-
tion coordination algorithms that increase the information
gathered by a network in static and dynamic target-tracking
scenarios. To do this, we define an aggregate cost function
encoding a “sensitivity performance measure” and design
our algorithms to maximize it. This idea has been widely
used in papers on optimum experimental design for dynam-
ical systems with applications to measurement problems.
An incomplete list of references is [1], [2], [3], [4]. For
example [3], [4] deal with problems on target tracking and
parameter identification of distributed parameter systems.
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The motion control algorithms proposed in these papers
either are computed via some off-line numerical method
or are gradient algorithms. Often these algorithms are
designed to maximize an appropriate scalar cost function
and to choose the best sensor locations from a grid of finite
candidates. Unfortunately, these schemes turn out to be not
distributed since in order to define the control law for each
agent, it is necessary to know all other agents’ positions
at each step. A second set of relevant references are those
on distributed motion coordination. Our proposed control
algorithms are in the same spirit as those for cyclic pursuit
[5], flocking [6], and coverage control [7].

The contributions of this paper are the following. Un-
der the assumption of Gaussian noise measurements with
diagonal correlation, Section II presents closed-form ex-
pressions for the determinant of the Fisher Information
Matrix for “range-measurement” models in non-random
static scenarios, for 2 and 3 dimensional state spaces. This
determinant plays the role of an objective function: we
characterize its critical points in the 2D version and obtain
sets of positions that globally maximize its value. If the
sensors measure distances to the target, then an optimal
configuration is one in which the sensors are uniformly
placed in circular fashion around the target, confirming a
natural intuition about the problem. Taking this optimal
configuration as a starting point in Section III, we then
consider a target tracking scenario where the sensors move
along the boundary of a convex set containing the target.
We define discrete-time control laws that, relying only on
local information, achieve the uniform configuration around
the target (estimate) exponentially fast. In essence, our
laws are very intuitive and simple-to-implement interaction
behaviors between the sensors along the boundary. Finally,
in Section IV, we numerically validate our coordination and
optimal deployment laws in a particular dynamic target-
tracking scenario. Although the network achieves global
optimum configurations for anonrandom staticparameter
estimation scenario, we simulate adynamic randomsce-
nario. Our simulations illustrate the following reasonable
conjecture: optimizing the sensitivity function for the static
non-random case improves the performance of a filter (in
our case an EKF) for the dynamic random scenario.

Finally, we point out that we assume that the process of
estimation is performed by a central site or by a distributed
process that we do not implement here. For works dealing
with multisensor fusion possibly under communication
constraints we refer to [8], [9], [10], [11] and references



therein.

II. OPTIMAL PLACEMENT OF SENSORS

Here we present the assumptions on our sensor network
and target models in (1) (non-random) static estimation
scenarios and (2) (random) dynamic parameter estimation
scenarios. We obtain the corresponding Fisher Information
Matrices (FIMs) and analyze the global minima of their
determinant as a means to guarantee increased sensitivity
with respect to the sensors’ measurements. See [12] for a
comprehensive treatment on estimation and tracking.

A. The static parameter estimation scenario

The localization of static targets can be solved as a
non-random parameter estimation problem as follows. Let
pj ∈ R

d, j ∈ {1, . . . , n}, denote the position ofn sensors
moving in a convex regionQ ⊆ R

d and letq0 ∈ Q be the
unknown target position to be estimated by means of the
measurement model:

zj(q) = h(‖q − pj‖) + wj , q ∈ Q , (1)

for j ∈ {1, . . . , n}. Here, h : [0,+∞) = R+ → R is
defined according to the particular sensors’ specifications
and wj represents a white noise,j ∈ {1, . . . , n}. The
stacked vector of measurements at a given instant is a
random vector normally distributed as
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where R = RT > 0 is the n × n covariance ma-
trix. From now on, we will use the shorthand notation
Z = (z1, . . . , zn)T , and H will denote the function
H(q, p1, . . . , pn) = (h(‖q − p1‖), . . . , h(‖q − pn‖))T .

The Fisher Information Matrix(FIM) for non-random
parameters, denoted byJNR, is defined as the expected
value with respect to the probability distributionp(Z|q):

JNR , E
[

(∇q log Λ) · (∇q log Λ)T
]

q=q0

,

where q0 is the true value of the target location or an
estimate of it, ∇q = ( ∂

∂q1 , . . . , ∂
∂qd )T , and Λ is the

likelihood function,

Λ(q, p1, . . . , pn) =

1√
2π detR

exp

(

−1

2
(Z − H)T R−1(Z − H)

)

.

A few computations showJNR = (∇qH)T
q0

R−1(∇qH)q0
.

Let q = (q1, . . . , qd)T , and define the shorthands

∂`hj(q0, p1, . . . , pn) ,
∂

∂q`
h(‖q − pj‖)

∣

∣

∣

q=q0

,

for j ∈ {1, . . . , n} and ` ∈ {1, . . . , d}. Then (∇qH)q0
:

R
d × (Rn)d → R

n×n can be computed to be

((∇qH)q0
)j`(q0, p1, . . . , pn) = ∂`hj(q0, p1, . . . , pn) ,

for j ∈ {1, . . . , n} and ` ∈ {1, . . . , d}. In the particular
case thatR = σ2In, the FIM JNR can be expressed as:

JNR(q0, p1, . . . , pn) =
1

σ2
(∇qH)T

q0
(∇qH)q0

=
1

σ2

n
∑

j=1







(∂1hj)
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. (2)

B. The dynamic parameter estimation scenario

Dynamic targets can be thought of as random parameters
evolving under a stochastic difference equation. Here we
assume that the target positionq(k), at timek ∈ N∪{0}
satisfies:

q(k) = Fk(q(k − 1)) + v(k) , k ≥ 1, q(0) ∈ Q ,

for some functionsFk : R
d → R

d andv(k) i.i.d asv(k) ∼

N (0, N(k)), whereN(k) = N(k)T > 0, for k ≥ 0, and
E[v(k1)v(k2)

T ] = δ12N(k1), for k1, k2 ≥ 0. Similarly as
before, we model our sensor network as

Z(k) = Hk(q(k), p1(k), . . . , pn(k)) + w(k), k ≥ 0,

with Hk(q(k), p1(k), . . . , pn(k))=(hk(‖q(k) −
p1(k)‖), . . . , hk(‖q(k) − pn(k)‖)), wherehk : R+ → R,
andZ(k)=(z1(k), . . . , zn(k)), k ≥ 0. We will assume that
w(k) ∼ N (0, R(k)), whereR(k) = R(k)T > 0, k ≥ 0,
and thatE[w(k1)w(k2)

T ] = δ12R(k1), for k1, k2 ≥ 0.
An estimation method that is widely employed for target

tracking is that of the Extended Kalman Filter (EKF) [12].
The assumptions for the filter requireq(k) and Z(k) to
be jointly Gaussian distributed with covarianceP (k) =
P (k)T , andE[q(k1)w(k2)] = 0, for k1, k2 ≥ 0. The EKF
provides a state estimateqe(k) together with an estimate
for the covariance of the errorPe(k):

Pe(k) = Pp(k) − W (k)S(k)W (k)T , k ≥ 1 ,

wherePp(k) is the predicted covariance of the error and
W (k), S(k) are some matrices appropriately defined [12].
Let qp(k) be the predicted value ofq(k). Some standard
computations [12], [9], allow us to say that

P−1
e (k) = P−1

p (k) + (∇qHk|qp(k))
T R−1(k)∇qHk|qp(k)

or, denoting(∇qHk|qp(k))
T R−1(k)∇qHk|qp(k) = JNR(k),

P−1
e (k) = P−1

p (k) + JNR(k) , k ≥ 0 . (3)

Similarly, it can be seen that for linear measurement
and linear target models, the FIM for dynamic (random)
parameters,JDR(k), andJNR(k) satisfy

JDR(k) = JNR(k) + J(k), T (k) = T (k)T ≥ 0 . (4)

C. Cost functions for optimal sensing

As is well known, the FIM encodes the amount of infor-
mation that a set of measurements produces in estimating a
set of parameters. Under the assumptions made in former
sections, we have FIM = CRLB−1; i.e., the FIM is the



inverse of the Cramer Rao Lower Bound, which in turn
lower bounds the covariance of the error1

FIM−1 = CRLB ≤ E[(q̂ − q0)(q̂ − q0)
T ].

Because of this, one expects that “minimizing the CRLB”
results in a decrease of uncertainty.

This line of reasoning has been a main theme in several
papers dealing withoptimum experimental designand
active sensing, e.g., see [3], [4]. Starting from the FIM
(resp. the CRLB) of the estimation approach, anevaluation
function is defined (usually the determinant or the trace of
the FIM/CRLB) whose maximization (resp. its minimiza-
tion) is to be achieved. For example, thedet FIM is the
cost function is “D-optimum design” as discussed by [4].

As before, letq0 ∈ R
d be the true value of the target

location or an estimate of it. Under the assumptions of
Subsection II-A and II-B, we define our cost functionLq0

:
(Rd)n → R+ by

Lq0
(p1, . . . , pn) = detJNR(q0, p1, . . . , pn), (5)

with JNR given in (2). Because of (3) and (4), we are
guaranteed that, if we optimizeLq0

with respect to the
positions of the sensors, then we will get increased perfor-
mance in static estimation scenarios, and expect reasonably
good performance in dynamic ones.

In what follows we derive the expression for the cost
function Lq0

for d = 2 andd = 3 and analyze its critical
points and global maxima. To do this, we shall assume that
our measurement model is

h(r) =

{

(r − c1)
b + c2, R0 < r < R1,

0, otherwise,
(6)

for b ∈ Z, and constantsR1 > R0 > 0, c2, c1 ∈ R+.
Range sensors such as sonars can be modeled byb = 1
andc1 = c2 = 0.

Proposition 2.1:For q0 ∈ R
d, let Lq0

: (Rd)n → R+

be defined as in (5) andh be defined as in (6). Let
Sq0

(p1, . . . , pn) be the set of indicesi ∈ {1, . . . , n} such
that R0 < ‖pi − q0‖ < R1. The following statements hold
true.

(i) For d = 2,

Lq0
(p1, . . . , pn) =

1

2σ2

∑

i,j∈Sq0

‖vi‖2‖vj‖2 sin2 αij

where αij , ](vi,vj), vi = (∂1hi, ∂2hi, 0), and
‖vi‖2 = b2(‖pi − q0‖ − c1)

2(b−1), for i, j ∈
Sq0

(p1, . . . , pn).
(ii) For d = 3,

Lq0
(p1, . . . , pn) =

1

6σ2

∑

i,j,k∈Sq0

‖vi‖2 ‖vj‖2 ‖vk‖2 sin2 αij cos2 βij,k

whereαij , ](vi,vj), βij,k , ](vi × vj ,vk), and
vi = (∂1hi, ∂2hi, ∂3hi), with ‖vi‖2 = b2(‖pi−q0‖−
c1)

2(b−1), for i, j, k ∈ Sq0
(p1, . . . , pn).

1For efficient estimators, the inequality is an equality.

Here we understand thatLq0
= 0 whenSq0

= ∅.
The proof of this result is in [13].

Let us now introduce some useful notation. LetT be the
circle in the plane and defineLT : T

n → R+ by

LT(δ1, . . . , δn) =
b4M2

2σ2

∑

i,j∈{1,...,n}

sin2(δi − δj),

where M = maxr∈[R0,R1](r − c1)
2(b−1) > 0. Now, let

d = 2 and assumeq0 6= pi, for i ∈ {1, . . . , n}. Consider
a polar change of coordinates centered atq0 ∈ R

2, and
identify pi ∈ R

2 with (ηi, ri) for someηi ∈ T and ri ∈
R+, i ∈ {1, . . . , n}. We then have thatLq0

(p1, . . . , pn) ≤
LT(η1, . . . , ηn) and (p1, . . . , pn) is a global maximum of
Lq0

if and only if (η1, . . . , ηn) is a global maximum ofLT

and (ri − c1)
2(b−1) = M , for all i ∈ {1, . . . , n}. We now

analyze the maxima ofLT.
Proposition 2.2:The following statements hold true.
(i) The point(η1, . . . , ηn) ∈ T

n is a critical point forLT

if either any two vectors in{(cos 2ηi, sin 2ηi)}n
i=1 are

aligned or
∑

i∈{1,...,n}

cos 2ηi = 0, and
∑

i∈{1,...,n}

sin 2ηi = 0,

(ii) The following three quantities are equal:b4M2

4σ2 n,
max

{

Lq0
(p1, . . . , pn) | p1, . . . , pn ∈ R

d
}

, and
max {LT(δ1, . . . , δn) | δ1, . . . , δn ∈ T}.

(iii) If ηi = (i − 1)π/n, i ∈ {1, . . . , n}, then

{(η1 + k1π, . . . , ηn + knπ) | k1, . . . , kn ∈ Z}
are global maxima forLT.

The proof of this result is in [13].
Remark 2.3:By (iii) there could be global maxima with

multiple sensors at the same position. This could be a
consequence of our assumptions that the measurement
noiseswj are uncorrelated. It is a conjecture that, if the
wj depended on the sensors locations, then coincident
locations could not be part of the set of maximum points.
•

III. D ECENTRALIZED MOTION COORDINATION FOR THE

NON-RANDOM PARAMETER SCENARIO

This section presents a family of decentralized control
laws that steers the sensors to a set of points of maximum
for the cost functions previously defined. Our analysis is
related to the approaches in [6], [5], [7]. We make the
following assumptions on the agents’ motion, sensing, and
communication:

(i) a static targetq0 takes values in the interior of a
compact convex setQ with boundary∂Q;

(ii) the measurement model is the one described in
equation (1) withh(r) = r, i.e., equation (6) with
γ = 1, b = 1, c1 = c2 = 0, R0 = 0, R1 = +∞;

(iii) each of the sensors{p1, . . . , pn} moves in discrete
time along∂Q;

(iv) each of the sensors{p1, . . . , pn} detects its immedi-
ate clockwise and counterclockwise neighbors in∂Q
and acquires the corresponding distances.
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Fig. 1. Assumptions (i) and (iii): the sensors move along the boundary
of Q and the target moves insideQ.

For this static scenario with limited information, the mo-
tion coordination objective is to steer{p1, . . . , pn} to
the equally-spaced angular positions around the targetq0

exponentially fast.
Remark 3.1: • Assumption (iv) means that an imple-

mentable control law for an agent can only depend
on the agent’s position relative to its neighbors (in the
natural ring topology along∂Q). We will call such a
control lawspatially distributed along∂Q.

• We will allow the control law to depend on the current
estimate of the target location. This strategy is said to
be of the “certainty equivalence” type. •

A. From the boundary ofQ to a circle and back

Because we assume that then sensors can be placed
only along∂Q, we will work with the polar coordinates of
{p1, . . . , pn} centered atq0 and define our motion control
algorithms on the circle.

Let ∂Q be implicitly defined by the continuous equation
x ∈ ∂Q if and only if g(x) = 0. Given a pointq in the
interior of a compact convex setQ, define the mapϕq :
∂Q → T by

ϕq(p) =
p − q

‖p − q‖ .

One can show thatϕq is continuous with continuous inverse
ϕ−1

q : T → ∂Q given byϕ−1
q (v) = q + λv whereλ ∈ R+

the unique solution tog(q + λp) = 0.
In what follows, we letq0 denote the current estimate of

the target location, we letϕq0
(p) be the angular component

of the polar coordinates ofp centered atq0, and we identify
pi ∈ ∂Q ⊂ R

2 with ηi = ϕq0
(pi) ∈ T, for all i.

B. Basic behaviors for uniform coverage of the circle

As discussed, the location of the sensors is described
by the vector(η1, . . . , ηn) of elements ofT. We assume
that angles are measured counterclockwise and that the
sensors are placed in counterclockwise order (we adopt the
convention thatηn+1 = η1 and thatη0 = ηn).

As described Assumption (iii), the sensors motion is
described by a discrete-time control system:

ηi(k + 1) = ηi(k) + ui, i ∈ {1, . . . , n} .

Here ui is the scalar control magnitude of theith sensor.
In a way consistent with Assumption (iv), we assumeui

is a function only of the relative angular distances in the
counterclockwise directiondcounterclock,i = ηi+1 − ηi > 0
and clockwise directiondclock,i = ηi − ηi−1 > 0. We also
assume that each sensor obeys the same motion control law

u : [0, 2π] × [0, 2π] → R, so that the closed-loop system
becomes:

ηi(k + 1) = ηi(k) + u(dcounterclock,i(k), dclock,i(k)),

dcounterclock,i(k) = ηi+1(k) − ηi(k),

dclock,i(k) = ηi(k) − ηi−1(k).

In order to achieve uniform distribution of the sensors
on the circle, two simple behaviors arise fairly naturally,
see Figure 2. First, we consider the GO TOWARDS THE

MIDPOINT behavior withumidpoint : [0, 2π] × [0, 2π] → R

umidpoint(dcounterclock, dclock) =
1

2

(

dcounterclock− dclock
)

.

The interpretation is clear: each sensor moves towards the
midpoint of the angular segment between the preceding
and following sensor. In the original coordinate system,
each sensor moves along∂Q towards the bisector of the
triangle with vertexq0 and vertices given by the preceding
and following sensor. A second intuitive rule is the GO TO-

ηi−1

ηi

ηi+1

ηi+ηi+1

2

ηi−1+ηi

2

u1/2 u1/4

d co
untercl

ock
wise

dclockwise

Fig. 2. The GO TOWARDS THE MIDPOINTu1/2 and GO TOWARDS THE
MIDPOINT OF VORONOI SEGMENTu1/4 behaviors.

WARDS THE MIDPOINT OF VORONOI SEGMENTbehavior
umidpoint Voronoi : [0, 2π] × [0, 2π] → R

umidpoint Voronoi(dcounterclock, dclock) =

1

4

(

dcounterclock− dclock
)

.

The interpretation is the following: the Voronoi segment of
the ith sensor at positionηi is the angular segment from
(ηi−1 + ηi)/2 to (ηi + ηi+1)/2, and the control law GO
TOWARDS THE MIDPOINT OFVORONOI SEGMENT steers
ηi towards the midpoint of this segment.

These two rules are particular instances of the following
family of linear algorithms parametrized byK ∈ R:

uK(dcounterclock, dclock) = K(dcounterclock− dclock).

Clearly, umidpoint and umidpoint Voronoi are equal touK for
K = 1/2 andK = 1/4, respectively. BecauseuK(d, d) = 0
for all d ∈ R+, the equally-spaced angle position (where
the sensors are uniformly distributed around the target) is
an equilibrium point2 for the uK-closed-loop system.

2The more general linear feedbacku(dcounterclock, dclock) =
adcounterclock+ bdclock does not have the desired equilibrium set unless
a + b = 0. The case ofa + b 6= 0 is studied in the context of cyclic
pursuit, e.g., see [5].



C. Convergence analysis

To perform a convergence analysis, it is convenient to
define the relative angular distancesdi = ηi+1−ηi, for i ∈
{1, . . . , n} (and adopt the usual convention thatdn+1 = d1

and thatd0 = dn). So long as the counterclockwise order of
the sensors is not violated, we have(d1, . . . , dn) ∈ S2π =
{x ∈ Rn | xi ≥ 0,

∑n
i=1 xi = 2π}. The change of coordi-

nates from(η1, . . . , ηn) to (d1, . . . , dn) and the control law
uK jointly lead to the closed-loop system

di(k + 1) = Kdi+1(k) + (1 − 2K)di(k) + Kdi−1(k).

This is a linear time-invariant dynamical system with state
d = (d1, . . . , dn), transition matrixAK given by

2
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6
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6
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,

and governing equation

d(k + 1) = AKd(k), for k ∈ N∪{0}. (7)

Theorem 3.2:The control lawuK is spatially distributed
along ∂Q, and, for K ∈]0, 1/2[, the solutions to the
corresponding closed-loop system (7) preserve the counter-
clockwise order of the sensors and converge exponentially
fast to (2π/n, . . . , 2π/n).
Proof. Recall the notion and properties of circulant matri-
ces from [14]. Note thatAK is circulant with representer
pAK

(s) = (1 − 2K) + Ks + Ksn−1. This implies that the
eigenvalues ofAK are

λ` = pAK

(

exp
(2π`

√
−1

n

)

)

= 1 − 2K + 2K cos
(2π`

n

)

,

for ` ∈ {1, . . . , n}. One can see thatλn = 1 with
corresponding eigenvector1T = (1, . . . , 1). If K > 0 and
` ∈ {1, . . . , n − 1}, then

−1 ≤ cos
(2π`

n

)

< 1 =⇒ 1 − 4K ≤ λ` < 1.

Therefore, if K ∈]0, 1/2[, then the eigenvalues
λ1, . . . , λn−1 belong to the interval]− 1, 1[. Additionally,
if K ∈]0, 1/2[, then AK is a doubly-stochastic matrix,
which implies thatS2π is invariant forAK.

Let {e1, · · · , en−1,1} be a basis of orthogonal eigenvec-
tors forAK corresponding to the eigenvalues{λ1, . . . , λn},
respectively. Any initial conditiond(0) can be written as

d(0) =
n−1
∑

`=1

ρ`e` + ρn1 .

Since
∑n

i=1 di(0) = 2π, one can see thatρn = 2π
n .

Therefore

d(k) = AKd(k − 1) =

n−1
∑

`=1

λk
` ρ` e` +

2π

n
1 .

If K ∈]0, 1/2[, then each|λ`| < 1, for ` ∈ {1, . . . , n − 1}
and, therefore, each trajectoryk 7→ d(k) converges to2π

n 1,
the equal-angle configuration, exponentially fast.

Remark 3.3: (i) The properties ofuK in Theorem 3.2
are independent of the numbern of sensors.

(ii) If K < 0 or K > 1/2, then there exist initial
conditions from which the counterclockwise order of
the sensors is not preserved in the closed loop.

(iii) Consider theK = 1/2 case, corresponding to the
GO TOWARDS THE MIDPOINT behavior. Although
GO TOWARDS THE MIDPOINT is a very natural
algorithm to consider, it doesnot ensure conver-
gence to the desired configuration whenevern is
even. In fact, if n = 2L with L ∈ Z, then
1 and e

T
L = (−1, 1,−1, . . . ,−1, 1) are eigenvec-

tors with eigenvalues1 and−1 respectively. Given
{e1 . . . , en−1,1} an orthogonal basis of eigenvectors
for A1/2 and d(0) =

∑n−1
i=1 ρiei + ρn1, one can

show that, starting from arbitrary initial conditions,
the system will exponentially converge to a steady
oscillation betweenu1 = ρn1 + ρLeL and u2 =
ρn1 − ρLeL.

IV. TARGET TRACKING SIMULATIONS WITH KALMAN

FILTERING AND MOTION COORDINATION ALGORITHMS

Here we combine the developments of former sections to
define the Active Target Tracking algorithm for collective
improved sensing performance. We numerically simulate
the algorithm to validate our approach. It is assumed that
the estimation step is carried out after a round of commu-
nication has taken place to propagate all the measurements
taken among the agents3. The algorithm is summarized in
the following table.

Name: ACTIVE TARGET TRACKING ALGORITHM

Goal: Decentralized motion coordination of sen-
sors and joint localization of target

Data: (i) ConstantK ∈]0, 1/2[.
(ii) Equation for the boundary of the con-
tainment region,g(q) = 0.
(iii) Guess for target initial position̂q0(0).

At time k, local agenti ∈ {1, . . . , n} performs:
1: Receive estimatêq0(k) from fusion center.
2: Detect counterclockwise and clockwise neighbors

along ∂Q, compute angular distances in polar coor-
dinates about̂q0(k).

3: Compute controluK, next desired positionηi(k+1) ∈
T, and corresponding pointpi(k + 1) ∈ ∂Q.

4: Move to new positionpi(k + 1) along∂Q.
5: Take new measurement of targetzi(k + 1), and send

it to fusion center, that will update target estimate
according to EKF.

In what follows we present our numerical results. we
compare the estimation errors of the trajectory of a dynamic
target obtained from a set of four stationary and moving
sensors. For the purpose of the simulation,Q will be a ball

3This would be equivalent as having a fusion center that centralizes the
estimation process



centered at the origin with radius1.5m, and the trajectory
or the target will be the eight-shaped curve:

[

q1
0(k)

q2
0(k)

]

=

[

sin(ωk)
sin(ωk) cos(ωk)

]

, k ≥ 0 .

Here (q1
0 , q2

0) are measured in meters andω = .1 rad/sec.
In all the subsequent figures, the plots compares the

evolution of the absolute error trajectories along time,
E(k) = ‖q0(k) − q̂0(k)‖ for stationary sensors (solid blue
line) and moving sensors (dashed red line), fork ≥ 0.

The first set of simulations, Figure 3, reproduce the
results obtained for four sensors initially positioned at
2.1818, 2.4500, 3.7160, and 4.5167 radians. As can be
seen, the moving sensors perform better on average as
the variance increases. In the second set of simulations,
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Fig. 3. Evolution of absolute error trajectories with variances of measured
noise5 × 10−3 (left) and5 × 10−2 (right).

Figure 4, we take as the initial position for the sensors the
optimal position to estimate0. That is,0, π/2, π and3π/2,
are the initial positions for both stationary and moving
sensors. Though the set of moving sensors performs better,
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Fig. 4. Evolution of absolute error trajectories with variances of measured
noise5 × 10−3 (left) and10−1 (right).

the differences between the estimates of the stationary
and moving sensors are comparable for variances of order
10−4, 10−3 (the absolute error trajectories overlap) and
even not so different when the variances are increased
to order 10−2. One has to increase the order of noise
to 10−1 to observe a clear difference in performance.
Qualitatively, Figure 5 shows how the estimated trajectories
of the moving sensors (green solid line) behaves compared
with the estimation provided by the stationary sensors
(black dashed line). The green solid trajectory is very close
to the actual trajectory of the target that we do not plot.
Note that in all the simulations, the variance of the process
noise is kept minimum of order10−5. It can be observed in
the simulations that when the variance of the measurement
is kept constant and the variance of the process noise is
varied, both performances of stationary and moving sensors
give very similar results.
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Fig. 5. Qualitative evolution of the estimated trajectoriesby moving
and stationary sensors. Initial positions are(0, π/2, π, 3π/2) (left) and
(2.1818, 2.4500, 3.7160, 4.5167) (right) and variances are in both cases
5 × 10−2.

V. CONCLUSIONS AND FUTURE WORK

We have presented novel decentralized control laws for
the optimal positioning of robotic sensor networks that
track a target. It would be of clear interest to modify
our model by including upper bounds on the motion and
detection range of the sensors. Broader future research
lines include (1) heterogeneous collections of sensors, (2)
dynamic assignment of sensors to different targets and (3)
decentralized estimation and fusion schemes.
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