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Abstract

This work studies optimal sensor placement and motion coordination strategies for mobile sensor networks. For a target
tracking application with range sensors, we investigate the determinant of the Fisher Information Matrix and compute it in
the 2D and 3D cases, characterizing the global minima in the 2D case. We propose motion coordination algorithms that steer
the mobile sensor network to an optimal deployment and that are amenable to a decentralized implementation. Finally, our
numerical simulations illustrate how the proposed algorithms lead to improved performance of an extended Kalman filter in
a target tracking scenario.
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1 Introduction

New advancements in the fields of microelectronics and
miniaturization have generated a tremendous surge of
activity in the development of sensor networks. The en-
visioned groups of agents are endowed with communica-
tion, sensing and computation capabilities, and promise
great efficiency in the realization of multiple tasks such
as environmental monitoring, exploratory missions and
search and rescue operations. However, several funda-
mental problems need to be solved in order to make this
technology possible. One main difficulty is the require-
ment for decentralized architectures where each agent
takes autonomous decisions based on information shared
with only a few local neighbors. Ongoing research work
focuses on decentralized filters and data-fusing methods
for estimation, and on the motion algorithms that guar-
antee the desired global behavior of the network. Ideally,
both the motion control algorithms and estimation pro-
cesses should be optimally integrated to make the most
of the network performance.

Email addresses: soniamd@ucsd.edu (Sonia Mart́ınez),
bullo@engineering.ucsb.edu (Francesco Bullo).

In this paper we investigate the design of distributed mo-
tion coordination algorithms that increase the informa-
tion gathered by a network in static and dynamic target-
tracking scenarios. To do this, we define an aggregate
cost function encoding a “sensitivity performance mea-
sure” and design our algorithms to maximize it. This
idea has been widely used in papers on optimum exper-
imental design for dynamical systems with applications
to measurement problems. For example [8, 11] deal with
problems on target tracking and parameter identifica-
tion of distributed parameter systems. The motion con-
trol algorithms proposed in these papers either are com-
puted via some off-line numerical method or are gradient
algorithms. Often these algorithms are designed to max-
imize an appropriate scalar cost function and to choose
the best sensor locations from a grid of finite candidates.
Unfortunately, these schemes turn out to be not dis-
tributed since in order to define the control law for each
agent, it is necessary to know all other agents’ positions
at each step. A second set of relevant references are those
on distributed motion coordination. Our proposed con-
trol algorithms are in the same spirit of those of cyclic
pursuit [6, 12], flocking [5], and coverage control [4].

The contributions of this paper are the following. Under
the assumption of Gaussian noise measurements with
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diagonal correlation, Section 2 presents closed-form ex-
pressions for the determinant of the Fisher Information
Matrix for “range-measurement” models in non-random
static scenarios, for 2 and 3 dimensional state spaces.
This determinant plays the role of an objective func-
tion: we characterize its critical points in the 2D ver-
sion and obtain sets of positions that globally maximize
its value. If the sensors measure distances to the target,
then an optimal configuration is one in which the sensors
are uniformly placed in circular fashion around the tar-
get, confirming a natural intuition about the problem.
Taking this optimal configuration as a starting point in
Section 3, we then consider a target tracking scenario
where the sensors move along the boundary of a convex
set containing the target. We define discrete-time con-
trol laws that, relying only on local information, achieve
the uniform configuration around the target (estimate)
exponentially fast. In essence, our laws are very intuitive
and simple-to-implement interaction behaviors between
the sensors along the boundary. Finally, in Section 4, we
numerically validate our coordination and optimal de-
ployment laws in a particular dynamic target-tracking
scenario. Although the network achieves global optimum
configurations for a nonrandom static parameter estima-
tion scenario, we simulate a dynamic random scenario.
Our simulations illustrate the following reasonable con-
jecture: optimizing the sensitivity function for the static
non-random case improves the performance of a filter
(in our case an EKF) for the dynamic random scenario.

Finally, we point out that we assume that the process
of estimation is performed by a central site or by a dis-
tributed process that we do not implement here. For
works dealing with multisensor fusion possibly under
communication constraints we refer to [9, 10] and refer-
ences therein.

2 Optimal placement of sensors

Here we present the assumptions on our sensor network
and target models in (1) (non-random) static estimation
scenarios and (2) (random) dynamic parameter estima-
tion scenarios. Other assumptions like those on the dis-
crete motion of the sensors are given in Section 3. In this
section, we obtain the corresponding Fisher Information
Matrices (FIMs) for the estimation models and analyze
the global minima of their determinant as a means to
guarantee increased sensitivity with respect to the sen-
sors’ measurements. See [2] for a comprehensive treat-
ment on estimation and tracking.

2.1 The static parameter estimation scenario

In what follows we consider ultrasound-based sensors,
whose measurement model can be described as

zi(q) = nrh(‖pi − q‖) + ηi + wi ,

where q is a point in the environment Q, nr models the
inverse sound-speed, ηi models the noise due to turbu-
lence and wi is a small white noise caused by the receiver
at pi. Here we assume that there is no noise due to tur-
bulence and that nr = 1 (this constant can be estimated
by means of a filter). Finally, to include the feature that
range measurements are usually trustworthy up to some
limited range, we have affected ‖pi − q‖ by a function
h : [0,+∞) = R+ → R (see Subsection 2.3). This model
is inspired by those employed elsewhere in the litera-
ture, see for example [3, 13], and should be considered
as a first, reasonable approximation of sensors providing
time-of-flight measurements.

The localization of static targets can be solved as a non-
random parameter estimation problem as follows. Let
pj ∈ R

d, j ∈ {1, . . . , n}, denote the position of n sensors
moving in a convex region Q ⊆ R

d and let q0 ∈ Q be
the unknown target position to be estimated by means
of the measurement model:

zj(q) = h(‖q − pj‖) + wj , q ∈ Q , (1)

for j ∈ {1, . . . , n}. Here, wj represents a zero mean white
noise, j ∈ {1, . . . , n}. The stacked vector of measure-
ments at a given instant is a random vector normally
distributed as
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,

where R = RT > 0 is the n × n covariance ma-
trix. From now on, we use the shorthand notation
Z = (z1, . . . , zn)T , and we let H denote the function
H(q, p1, . . . , pn) = (h(‖q − p1‖), . . . , h(‖q − pn‖))T .

The Fisher Information Matrix (FIM) for non-random
parameters, denoted by JNR, is defined as the expected
value with respect to the probability distribution p(Z|q):

JNR , E
[

(∇q log Λ) · (∇q log Λ)T
]

q=q0

,

where q0 is the true value of the target location or an
estimate of it, ∇q = ( ∂

∂q1 , . . . , ∂
∂qd )T , and Λ is the likeli-

hood function,

Λ(q, p1, . . . , pn) =

1√
2π det R

exp

(

−1

2
(Z − H)T R−1(Z − H)

)

.

A few computations show JNR = (∇qH)T
q0

R−1(∇qH)q0
.

Let q = (q1, . . . , qd)T , and define the shorthands

∂`hj(q0, p1, . . . , pn) ,
∂

∂q`
h(‖q − pj‖)

∣

∣

∣

q=q0

,
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for j ∈ {1, . . . , n} and ` ∈ {1, . . . , d}. Then (∇qH)q0
:

R
d × (Rn)d → R

n×d can be computed to be

((∇qH)q0
)j`(q0, p1, . . . , pn) = ∂`hj(q0, p1, . . . , pn) ,

for j ∈ {1, . . . , n} and ` ∈ {1, . . . , d}. In the particular
case that R = σ2In, the FIM JNR can be expressed as:

JNR(q0, p1, . . . , pn) =
1

σ2
(∇qH)T

q0
(∇qH)q0

=
1

σ2

n
∑

j=1











(∂1hj)
2 . . . (∂1hj)(∂dhj)

...
. . .

...

(∂dhj)(∂1hj) . . . (∂dhj)
2











. (2)

2.2 The dynamic parameter estimation scenario

Dynamic targets can be thought of as random parame-
ters evolving under a stochastic difference equation. Here
we assume that the target position q(t) at time t ∈ N

satisfies:

q(t) = Ft(q(t − 1)) + v(t) , q(0) ∈ Q ,

for some functions Ft : R
d → R

d and v(t) i.i.d as v(t) ∼

N (0, N(t)), where N(t) = N(t)T > 0, for t ≥ 0, and
E[v(i)v(j)T ] = δijN(i), for i, j ∈ N. Similarly as before,
we model our sensor network as

Z(t) = Ht(q(t), p1(t), . . . , pn(t)) + w(t), t ≥ 0,

with Ht(q(t), p1(t), . . . , pn(t))=(ht(‖q(t) − p1(t)‖), . . . ,
ht(‖q(t)−pn(t)‖)), where ht : R+ → R, and Z(t)=(z1(t),
. . . , zn(t)), t ≥ 0. We assume that w(t) ∼ N (0, R(t)),
where R(t) = R(t)T > 0, t ≥ 0, and that E[w(i)w(j)T ]
= δijR(i), for i, j ∈ N.

An estimation method that is widely employed for tar-
get tracking is that of the Extended Kalman Filter
(EKF) [2]. The assumptions for the filter require q(t)
and Z(t) to be jointly Gaussian distributed with covari-
ance P (t) = P (t)T , and E[q(t)w(s)] = 0, for t, s ≥ 0.
The EKF provides a state estimate qe(t) together with
an estimate for the covariance of the error Pe(t):

Pe(t) = Pp(t) − W (t)S(t)W (t)T , t ≥ 1 ,

where Pp(t) is the predicted covariance of the error and
W (t), S(t) are some matrices appropriately defined [2].
Let qp(t) be the predicted value of q(t). Some standard
computations [2] allow us to say that

P−1
e (t) = P−1

p (t) + (∇qHt|qp(t))
T R−1(t)∇qHt|qp(t)

or, denoting (∇qHt|qp(t))
T R−1(t)∇qHt|qp(t) = JNR(t),

P−1
e (t) = P−1

p (t) + JNR(t) , t ≥ 0 . (3)

Similarly, it can be seen that for linear measurement
and linear target models, the FIM for dynamic (random)
parameters, JDR(t), and JNR(t) satisfy

JDR(t) = JNR(t) + T (t) . (4)

for some symmetric and positive definite matrix T (t)
such that T (t)−1 = E[(q(t)− q̄t)(q(t)− q̄t)

T ], with q̄t =
E[q(t)], t ≥ 1.

2.3 Cost functions for optimal sensing

As is well known, the FIM encodes the “amount of infor-
mation” that a set of measurements produces in estimat-
ing a set of parameters. Under the assumptions made in
former sections, we have FIM = CRLB−1; i.e., the FIM
is the inverse of the Cramer Rao Lower Bound, which in
turn lower bounds the covariance of the error

FIM−1 = CRLB ≤ E[(q̂ − q0)(q̂ − q0)
T ].

Because of this, one expects that “minimizing the
CRLB” results in a decrease of uncertainty.

This line of reasoning has been a main theme in sev-
eral papers dealing with optimum experimental design
and active sensing, e.g., see [8, 11]. Starting from the
FIM (resp. the CRLB) of the estimation approach, an
evaluation function is defined (usually the determinant
or the trace of the FIM/CRLB) whose maximization
(resp. its minimization) is to be achieved. For example,
the det FIM is the cost function in “D-optimum design”
as discussed by [11].

As before, let q0 ∈ R
d be the true value of the target

location or an estimate of it. Under the assumptions
of Subsection 2.1 and 2.2, we define our cost function
Lq0

: (Rd)n → R+ by

Lq0
(p1, . . . , pn) = detJNR(q0, p1, . . . , pn), (5)

with JNR given in (2). Because of (3) and (4), we are
guaranteed that, if we optimize Lq0

with respect to the
positions of the sensors, then we obtain increased per-
formance in static estimation scenarios, and expect rea-
sonably good performance in dynamic ones.

In what follows we derive the expression for the cost
function Lq0

for d = 2 and d = 3 and analyze its critical
points and global maxima. To do this, we shall assume
that our measurement model is

h(r) =







(R1 − c1)
b + c2, r ≥ R1,

(r − c1)
b + c2, R0 < r < R1,

(R0 − c1)
b + c2, r ≤ R0,

(6)
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for b ∈ Z, and constants R1 > R0 > 0, c2, c1 ∈ R+.
Ultrasound sensors could be modeled in a first approxi-
mation by b = 1 and c1 = c2 = 0.

Proposition 2.1 For q0 ∈ R
d, let Lq0

: (Rd)n → R+

be defined as in (5) and h be defined as in (6). Let
Sq0

(p1, . . . , pn) be the set of indices i ∈ {1, . . . , n} such
that R0 < ‖pi−q0‖ < R1. The following statements hold
true.

(i) For d = 2,

Lq0
(p1, . . . , pn) =

1

2σ2

∑

i,j∈Sq0

‖vi‖2‖vj‖2 sin2 αij

where αij , ](vi,vj), vi = (∂1hi, ∂2hi, 0),

and ‖vi‖2 = b2(‖pi − q0‖ − c1)
2(b−1), for i, j ∈

Sq0
(p1, . . . , pn).

(ii) For d = 3,

Lq0
(p1, . . . , pn) =

1

6σ2

∑

i,j,k∈Sq0

‖vi‖2 ‖vj‖2 ‖vk‖2 sin2 αij cos2 βij,k

where αij , ](vi,vj), βij,k , ](vi × vj ,vk), and
vi = (∂1hi, ∂2hi, ∂3hi), with ‖vi‖2 = b2(‖pi−q0‖−
c1)

2(b−1), for i, j, k ∈ Sq0
(p1, . . . , pn).

Here we understand that Lq0
= 0 when Sq0

= ∅.

The proof of this result is presented in the report [1].

Let us now introduce some useful notation. Let T be the
circle in the plane and define LT : T

n → R+ by

LT(δ1, . . . , δn) =
b4M2

2σ2

n
∑

i,j=1

sin2(δi − δj),

where M = maxr∈[R0,R1](r − c1)
2(b−1) > 0. Now, let

d = 2 and assume q0 6= pi, for i ∈ {1, . . . , n}. Consider
a polar change of coordinates centered at q0 ∈ R

2, and
identify pi ∈ R

2 with (ηi, ri) for some ηi ∈ T and ri ∈
R+, i ∈ {1, . . . , n}. Then, the following holds.

Lemma 2.2 A necessary and sufficient condition for
(p1, . . . , pn) to be a maximum of Lq0

is that:

(a) ri ∈ argmaxr∈[R0,R1](r − c1)
2(b−1), ∀i ∈ Sq0

,

(b) (η1, . . . , ηn) ∈ argmaxLT.

Proposition 2.3 The following statements hold true.

(i) The point (η1, . . . , ηn) ∈ T
n is a critical point for

LT if either any two vectors in {(cos 2ηi, sin 2ηi)}n
i=1

are aligned or

n
∑

i=1

cos 2ηi = 0, and

n
∑

i=1

sin 2ηi = 0,

(ii) The following three quantities are equal: b4M2

4σ2 n2,

max
{

Lq0
(p1, . . . , pn) | p1, . . . , pn ∈ R

d
}

, and
max {LT(δ1, . . . , δn) | δ1, . . . , δn ∈ T}.

(iii) If ηi = (i − 1)π/n, i ∈ {1, . . . , n}, then

{(η1 + k1π, . . . , ηn + knπ) | k1, . . . , kn ∈ Z}

are global maxima for LT.

We refer to report [1] for a proof of these results.

Remark 2.4 By (iii) there are global maxima with mul-
tiple sensors at the same position. This is related to our
assumptions that the measurement noises wj are uncor-
related. It is a conjecture that, if measurement noise is
assumed to be positively correlated with nearby sensors
locations, then maximum points have the feature that all
sensors are at distinct locations. •

We have compared the performance of static and
optimally-placed sensors versus static and non-optimally
placed sensors for estimating a static target in [1]. The
simulations validate the results of this section. In Sec-
tion 4 we compare the performance of moving versus
static sensors, which is the case of interest for us.

3 Motion coordination algorithms for sensor re-
configuration about static targets

This section presents a family of decentralized control
laws that steers the sensors to a set of points of maxi-
mum for a particular class of costs functions previously
defined. Specifically, we focus here on functions corre-
sponding to measurement models with h(r) = r. Our
analysis is related to the approaches in [4, 5, 6, 12]. We
make the following assumptions on the defining elements
of our problem:

(i) a static target q0 takes values in the interior of a
compact convex set Q with static boundary ∂Q
known by each sensor;

(ii) each of the sensors {p1, . . . , pn} moves in discrete
time along ∂Q;

(iii) each of the sensors {p1, . . . , pn} detects its imme-
diate clockwise and counterclockwise neighbors in
∂Q and acquires the corresponding distances.

For this static scenario with limited information, the mo-
tion coordination objective is to steer {p1, . . . , pn} to the
equally-spaced angular positions around the target q0

exponentially fast. There is no estimation process here;

4



p4

p3

p1

q0

p2

p5

Fig. 1. Assumptions (i) and (iii): the sensors move along the
boundary of a fixed Q and the target moves inside Q.

the algorithm will be incorporated later as part of the es-
timation filter and coordination algorithm in Section 4.

Remark 3.1 Assumption (iii) means that an imple-
mentable control law for an agent can only depend on
the agent’s position relative to its neighbors (in the nat-
ural ring topology along ∂Q). We call such a control law
spatially distributed along ∂Q. •

3.1 From the boundary of Q to a circle and back

Because we take h(r) = r, an optimal configuration
(p1, . . . , pn) satisfies condition (a) of Lemma 2.2. In other
words, in order to find an optimal configurations of the
sensors, we only need to adjust their polar coordinates
about the target q0. Since the region Q is a convex set,
we can just focus on these polar coordinates and define
the motion control strategies on a circle.

Let ∂Q be implicitly defined by the continuous equation
x ∈ ∂Q if and only if g(x) = 0. Given a point q in
the interior of a compact convex set Q, define the map
ϕq : ∂Q → T by

ϕq(p) =
p − q

‖p − q‖ .

One can show that ϕq is continuous with continuous in-
verse ϕ−1

q : T → ∂Q given by ϕ−1
q (v) = q + λv where

λ ∈ R+ the unique solution to g(q + λp) = 0. We illus-
trate the map ϕq in the following figure.

q0

Fig. 2. Six sensors with angular configuration equally spaced
about the point q0.

In what follows, we let q0 denote the current estimate of
the target location, we let ϕq0

(p) be the angular compo-
nent of the polar coordinates of p centered at q0, and we
identify pi ∈ ∂Q ⊂ R

2 with ηi = ϕq0
(pi) ∈ T, for all i.

3.2 Basic behaviors for uniform coverage of the circle

As discussed, the location of the sensors is described
by the vector (η1, . . . , ηn) of elements of T. We assume
that angles are measured counterclockwise and that the
sensors are placed in counterclockwise order (we adopt
the convention that ηn+1 = η1 and that η0 = ηn).

As described in Assumption (iii), the sensors motion is
described by a discrete-time control system:

ηi(t + 1) = ηi(t) + ui, i ∈ {1, . . . , n} .

Here ui is the scalar control magnitude of the ith sensor.
In a way consistent with Assumption (iv), we assume
that ui is a function only of the relative angular distances
in the counterclockwise direction dcounterclock,i = ηi+1 −
ηi > 0 and clockwise direction dclock,i = ηi − ηi−1 > 0.
We also assume that each sensor obeys the same motion
control law u : [0, 2π] × [0, 2π] → R, so that the closed-
loop system becomes:

ηi(t + 1) = ηi(t) + u(dcounterclock,i(t), dclock,i(t)),

dcounterclock,i(t) = ηi+1(t) − ηi(t),

dclock,i(t) = ηi(t) − ηi−1(t).

In order to achieve uniform distribution of the sensors
on the circle, two simple behaviors arise fairly naturally,
see Figure 3. First, we consider the Go towards the

midpoint behavior with umidpoint : [0, 2π]× [0, 2π] → R

umidpoint(dcounterclock, dclock) =
1

2

(

dcounterclock − dclock

)

.

The interpretation is clear: each sensor moves towards
the midpoint of the angular segment between the pre-
ceding and following sensor. In the original coordinate
system, each sensor moves along ∂Q towards the bisector
of the triangle with vertex q0 and vertices given by the
preceding and following sensor. A second intuitive rule

ηi−1

ηi

ηi+1

ηi+ηi+1

2

ηi−1+ηi

2

u1/2 u1/4

d co
un

te
rc
lo
ck

wise

dclockwise

Fig. 3. The Go towards the midpoint u1/2 and Go to-

wards the midpoint of Voronoi segment u1/4 behaviors.

is the Go towards the midpoint of Voronoi seg-
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ment behavior umidpoint Voronoi : [0, 2π] × [0, 2π] → R

umidpoint Voronoi(dcounterclock, dclock) =

1

4

(

dcounterclock − dclock

)

.

The interpretation is the following: the Voronoi segment
of the ith sensor at position ηi is the angular segment
from (ηi−1 + ηi)/2 to (ηi + ηi+1)/2, and the control law
Go towards the midpoint of Voronoi segment

steers ηi towards the midpoint of this segment.

These two rules are particular instances of the following
family of linear algorithms parametrized by κ ∈ R:

uκ(dcounterclock, dclock) = κ(dcounterclock − dclock).

Clearly, umidpoint and umidpoint Voronoi are equal to uκ for
κ = 1/2 and κ = 1/4, respectively. Because uκ(d, d) = 0
for all d ∈ R+, the equally-spaced angle position (where
the sensors are uniformly distributed around the target)
is an equilibrium point 1 for the uκ-closed-loop system.

3.3 Convergence analysis

To perform a convergence analysis, it is convenient to de-
fine the relative angular distances di = ηi+1 − ηi, for i ∈
{1, . . . , n} (and adopt the usual convention that dn+1 =
d1 and that d0 = dn). So long as the counterclockwise or-
der of the sensors is not violated, we have (d1, . . . , dn) ∈
S2π = {x ∈ Rn | xi ≥ 0,

∑n
i=1 xi = 2π}. The change of

coordinates from (η1, . . . , ηn) to (d1, . . . , dn) and the
control law uκ jointly lead to the closed-loop system

di(t + 1) = κdi+1(t) + (1 − 2κ)di(t) + κdi−1(t).

This is a linear time-invariant dynamical system with
state d = (d1, . . . , dn), transition matrix Aκ given by































1 − 2κ κ 0 · · · 0 κ

κ 1 − 2κ κ
. . .

. . . 0

0 κ 1 − 2κ
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0
. . .

. . . κ 1 − 2κ κ

κ 0 · · · 0 κ 1 − 2κ































,

and governing equation

d(t + 1) = Aκd(t), for t ∈ N∪{0}. (7)

1 The more general linear feedback u(dcounterclock, dclock) =
adcounterclock + bdclock does not have the desired equilibrium
set unless a + b = 0. The case of a + b 6= 0 is studied in the
context of cyclic pursuit, see [6] and references therein.

Theorem 3.2 The control law uκ is spatially distributed
along ∂Q, and, for κ ∈]0, 1/2[, the solutions to the cor-
responding closed-loop system (7) preserve the counter-
clockwise order of the sensors and converge exponentially
fast to (2π/n, . . . , 2π/n).

Proof. Recall the notion and properties of circulant ma-
trices from [7]. Since Aκ is circulant with representer
pAκ

(s) = (1 − 2κ) + κs + κsn−1, its eigenvalues are

λ` = pAκ

(

exp
(2π`

√
−1

n

)

)

= 1 − 2κ + 2κ cos
(2π`

n

)

,

for ` ∈ {1, . . . , n}. Observe that λn = 1 with eigenvector
1T = (1, . . . , 1). If κ > 0 and ` ∈ {1, . . . , n − 1}, then

−1 ≤ cos
(2π`

n

)

< 1 =⇒ 1 − 4κ ≤ λ` < 1.

Therefore, if κ ∈]0, 1/2[, then λ1, . . . , λn−1 belong to the
interval ] − 1, 1[. Additionally, if κ ∈]0, 1/2[, then Aκ

is a doubly-stochastic matrix, which implies that S2π is
invariant for Aκ.

Let {e1, · · · , en−1,1} be a basis of orthogonal eigenvec-
tors for Aκ corresponding to {λ1, . . . , λn}, respectively.
Any initial condition d(0) can be written as

d(0) =

n−1
∑

`=1

ρ`e` + ρn1 .

Since
∑n

i=1 di(0) = 2π, then ρn = 2π
n . Therefore

d(t) = Aκd(t − 1) =

n−1
∑

`=1

λt
`ρ` e` +

2π

n
1 .

If κ ∈]0, 1/2[, then each |λ`| < 1, for ` ∈ {1, . . . , n − 1}
and, therefore, each trajectory t 7→ d(t) converges to
2π
n 1, the equal-angle configuration, exponentially fast.

Remark 3.3 (i) The properties of uκ in Theorem 3.2
are independent of the number n of sensors.

(ii) If κ < 0 or κ > 1/2, then there exist initial condi-
tions from which the counterclockwise order of the
sensors is not preserved in the closed loop.

(iii) Consider the κ = 1/2 case, corresponding to the
Go towards the midpoint behavior. Although
Go towards the midpoint is a very natural al-
gorithm to consider, it does not ensure convergence
to the desired configuration whenever n is even. In
fact, if n = 2L with L ∈ Z, then 1 and eT

L =
(−1, 1,−1, . . . ,−1, 1) are eigenvectors with eigen-
values 1 and−1 respectively. Given {e1 . . . , en−1,1}
an orthogonal basis of eigenvectors for A1/2 and

d(0) =
∑n−1

i=1 ρiei+ρn1, one can show that, starting
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from arbitrary initial conditions, the system expo-
nentially converges to a steady oscillation between
u1 = ρn1 + ρLeL and u2 = ρn1 − ρLeL. •

4 Target tracking simulations with Kalman fil-
tering and motion coordination algorithms

Here we combine the developments of the former sec-
tions and we define the Active Target Tracking algorithm
for collective improved sensing performance. We numer-
ically simulate the algorithm to validate our approach.
It is assumed that the estimation step is carried out af-
ter a round of communication has taken place to propa-
gate all the measurements taken among the agents.The
algorithm is summarized in the following table.

Name: Active Target Tracking Algo-

rithm

Goal: Decentralized motion coordination of
sensors and joint localization of target

Data: (i) Constant κ ∈]0, 1/2[.
(ii) Equation for the boundary of the
containment region, g(q) = 0.
(iii) Guess for target position q̂0(0).

At time t, local agent i ∈ {1, . . . , n} performs:
1: Receive estimate q̂0(t) from fusion center.
2: Detect counterclockwise and clockwise neighbors

along ∂Q, compute angular distances in polar co-
ordinates about q̂0(t).

3: Compute control uκ, next desired position ηi(t+
1) ∈ T, and corresponding point pi(t + 1) ∈ ∂Q.

4: Move to new position pi(t + 1) along ∂Q.
5: Take new measurement of target zi(t + 1), and

send it to fusion center, that updates target esti-
mate according to EKF.

In what follows we present our numerical results. We
compare the estimation errors of the trajectory of a dy-
namic target; we assume that measurements are taken
from a set of four stationary or four moving sensors. For
the purpose of the simulation, Q is a disk centered at
the origin with radius 1.5m, and the target trajectory is
the eight-shaped curve:

[

q1
0(t)

q2
0(t)

]

=

[

sin(ωt)

sin(ωt) cos(ωt)

]

, t ≥ 0 .

Here (q1
0 , q2

0) are measured in meters and ω = .1 Hz.

In the following two figures, the plots compare the evolu-
tion of the absolute error trajectories along time, E(t) =
‖q0(t) − q̂0(t)‖ for stationary sensors (dashed red line)
and moving sensors (solid blue line), for t ≥ 0. The first

set of simulations, see Figure 4, illustrates the results
obtained for four sensors initially positioned at 2.1818,
2.4500, 3.7160, and 4.5167 radians. As can be seen, the
moving sensors perform better on average as the vari-
ance increases. In the second set of simulations, see

0 20 40 60
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0.15

0.2

0.25

E

t
0 20 40 60

0

0.1

0.2

0.3

0.4

E

t

Fig. 4. Evolution of absolute error trajectories with variances
of measured noise 5 × 10−3 (left) and 5 × 10−2 (right).

Figure 5, we take as the sensors initial position the opti-
mal position to estimate 0. That is, 0, π/2, π and 3π/2,
are the initial positions for both stationary and moving
sensors. Although the set of moving sensors performs

0 20 40 60
0

0.05

0.1

0.15

0.2

E

t
0 20 40 60

0

0.1

0.2

E

t

Fig. 5. Evolution of absolute error trajectories with variances
of measured noise 5 × 10−2 (left) and 10−1 (right).

better, the differences between the estimates of the sta-
tionary and moving sensors are comparable for measure-
ment variances of order 10−3, 10−2 (the absolute error
trajectories overlap). When the measurement noise is in
the order of 10−1, there is a clear difference in perfor-
mance. Qualitatively, Figure 6 shows how the trajectory
estimated by the moving sensors (green solid line) be-
haves as compared with the trajectory estimated by the
stationary sensors (black dashed line). The actual tar-
get trajectory is so close to the green solid estimated
trajectory that we do not plot it. In all the simulations,
the variance of the process noise is of the order of 10−5;
for larger values of the process noise the performance of
moving versus stationary sensors is comparable.

5 Conclusions and future work

We have presented novel decentralized control laws for
the optimal positioning of sensor networks that track a
target. It would be of clear interest to modify our model
by including upper bounds on the motion and detection
range of the sensors. Broader future research lines in-
clude (1) the consideration of heterogeneous collections
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Fig. 6. Qualitative evolution of the estimated trajecto-
ries by moving and stationary sensors. Initial positions are
(0, π/2, π, 3π/2) (left) and (2.1818, 2.4500, 3.7160, 4.5167)
(right) and variances are in both cases 5 × 10−2.

of sensors, (2) the dynamic assignment of sensors to dif-
ferent targets and (3) investigation of decentralized es-
timation and fusion schemes.
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