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Abstract— In this paper we propose and analyze an algorithm In this paper we propose an algorithm to estimate and
to mon@tor_an _environmental boundgry with mobile Sensors.  reconstruct the boundary of a region_ We require a group
The objective is to optimally approximate the boundary with ¢ ynmanned Air Vehicles (UAVs) to optimally place some
a polygon. The mobile sensors rely only on sensed local . . . ; .
information to position some interpolation points and define an interpolation points on the boundary of a reg|.on of.mterest
approximating polygon. We design algorithms that distribute ~ The boundary can then be reconstructed by linear interpola-
the vertices of the approximating polygon uniformly along the tion of the interpolation points. We assume that (i) the UAVs
boundary. The notion of uniform placement relies on a metric  do not have a priori knowledge of the boundary, (ii) they
inspired b_y knpwn results on approxmatlon'of convex_bodles. are equipped with a camera sensor and with algorithms to
The algorithm is provably convergent for static boundaries and .
also for slowly-moving boundaries because of certain input-to- esﬁmate the tang?”t _and curvature of .the boundary, ab@(m
state stability properties. wireless communication network provides the UAVs with the

ability to download and upload the interpolation pointsnfro
I, INTRODUCTION and to a data cer_1ter. The algorithm is provgbly converg_ent
for static boundaries and also for slowly-moving boundarie

Recently much attention has been given to the problem bkcause of certain input-to-state stability properties.
boundary estimation and tracking by means of robotic net- The novelty of this paper is in the criterion used to
works. The common goal is to design a distributed algorithroptimally place robots and interpolation points in the first
that allows a limited number of mobile sensors to detect thend second scenario in such a way that they are uniformly
boundary of a region of interest and estimate it as it evolvedistributed according to a curvature-weighted distance{fu
Boundary estimation and tracking is useful is numerous apion defined along the boundary. The curvature-weighted
plications such as detection of harmful algae bloom [1], [2]distance function was inspired by the literature on optimal
oil spill [3], and fire containment [4], [5]. In [1], Bertozat approximation of convex bodies by polygons e.g., see the
al. adopt the so called “snake algorithm” (from the computesurvey [7].
vision literature) to detect and track the boundary of hatmf The convergence of the algorithm is proven using tools
algae bloom. The agents are equipped with a chemical sen$@m the theory of consensus algorithms. An incomplete
that is able to measure concentration gradient and with lst of references includes [8], [9], and [10]. The effort of
communication system that is able to exchange informatiahe authors is in proving that the infinite product of some
with a data fusion center. In [2], Kemg al. suggest an matrices (that belong to a finite set, [8], or infinite set, [9]
algorithm that requires only a concentration sensor: thid0]) converges to a rank-one matrix.
agents repeatedly cross the region boundary using a bangThe paper is organized as follows. In Section Il we review
bang angular velocity controller. In [3] the authors use some mathematical literature on approximation theory and
random coverage controller, a collision avoidance colerol convex optimization. In Section Ill we introduce an algonit
and a bang-bang angular velocity controller to detect and jointly update an environment boundary and deploy the
surround an oil spill. In [5] Casbeeet al. describe an UAVs uniformly along the boundary estimate. In Section IV
algorithm that allows LASE (Low Altitude Short Endurance)we present our final concluding remarks.

Unmanned Vehicles to closely monitor the boundary of a
fire. The LASEs have an infrared camera and a short rand
communication device to exchange information with other Here we review some known useful results from approx-
agents and to download the information collected onto thenation of strictly convex bodies, e.g., see the extensive
base station.A different approach is considered by Zhadg asurveys [11], [7]. In the standard literature on convex bedi
Leonard in [6]. A formation of four robots tracks at unitaryapproximations, the symmetric differenéé between two
speed the level sets of a field. Their relative position ckangcompact, and strictly convex bodi€s B € R¢ is defined

so that they optimally measure the gradient and estimate thg

curvature of the field in the center of the formation. §%(C,B) = u(C U B) — u(C N B),

E BASIC IDEAS IN APPROXIMATION OF CONVEX BODIES



where 1 is the Lebesque measure @&¢. If @ is the interpolation points, and the pseudo-distance between any
body to be approximated by an inscribeéd/ertices polygon interpolation point and its counterclockwise neighboreTh
P,, then§°(Q, P,) = u(Q) — u(P,). For n sufficiently agents have two objectives: (i) update the interpolatidntpo
large, McLure and Vitale [12] show thaf®(Q, P}) ~ such that they are uniformly distributed alofig) according
121n2 027r p(6)%/3d9 S ﬁ faQ K(0)V/3de 37 where to_ the estimated pseudo-distanﬂ;_, (i) be equally _dis-
tributed along the boundary according to arc length digtanc

P’ is the best approximating polygon with vertices in- . -
scribed inQ, 9@ iis the boundary of), p ands = p—! are the To achieve these objectives we propose a nowl EATE
UPDATE AND PURSUIT ALGORITHM that can be summa-

curvature radius and curvature of the boundary, respégtive . . .
Y pey, rized as follows. After reaching a point @), the sensing

¢ is the arc length alon@(@, and @ is the angular position . PN
in a polar variable parametrization 6f). To construct the agents.move alongQ to_gollect the following data (i) points
best approximating polygo®®; for a strictly convex body, belongmg toaQ,_ and (i) tangent and curvature @) aF .
McLure and Vitale in [12] suggest theethod of empirical th.ose points. Using these measurements anql communicating
distributions. According to this method, the positiorts with the data center, they complete the following three step
i e {1 n}, of the n vertices alon,gaQ should b,e In the first step, they determine which interpolation point
uniforml7y' aiétrib’uted according 95 (i) — [/ p(6)2/?d6. P they are closer to and then project it onto the measured
= Jo. . . o

Interpolating polygons computed according to the method ct)}oundary. In the_ second s_,tep, they adjust; so that Itis
empirical distributions converge t8* asn — +oo at the center of its Voronoi cell alongQ. In the third step,

P ge ©, ' Otpey estimate the arc length of distance between them and

For smooth non-convex bodies with a small number - . : : :
. L o their immediate clockwise and counterclockwise neighbors
saddle points, the method of empirical distributions alsg

ields a nearly optimal distribution as—s +oo because of and use this information to speed up or slow down. The first
y y op > .. two steps have the combined effect of updating the local
the local convexity of the body. We show how to do this in___. ;
. ) estimates of the boundary. Thanks to the third step, thetagen

what follows. Since the curvature radipsnay be unbounded

. : , distribute themselves uniformly along the boundary.
at some point of a non—convgx boundqry, the integpal(i) In what follows we present the EIMATE UPDATE AND
may.be .unbounded f<_3r some We av_0|d thls. problem by PURSUIT ALGORITHM in some detail and we analyze its
considering the following general notion of distance alang stability
boundary. For\ € [0, 1], we define the pseudo-distang®, '
betWeen Verticeﬁi, 1 + ].) by D)\ (’L) = )\ f;;prl /g(ﬁ)l/‘Sdé + A. Prob'ern %[up and notation
(1=X)(4;+1—¢;). This definition is inspired by the fact that,
for convex bodies, we hav§027r p(0)* = [0 w(0)—dL,
see [11]. Introducing the convex combination with arc léngt
we guarantee thab, (i) is non-zero whenever the verticés
and: + 1 do not coincide.

Let ||v|| denote the Euclidian norm af € R™. If v is a
scalar, therjv| denotes its absolute value. L&, be the set
of non negative real numbers allg = NU{0}. Let 1 be the
column vector inR™ with all entries equal ta. Let 9Q be the
boundary of a connected, and possibly non-convexset

I1l. | NTERPOLATION WITH LOCAL INFORMATION R*. Let~: Ry x [0,1] — R? be a parametric representation
of the time-varying boundary so that, at fixedc R, and

In this section we propose and analyze an algorithgy, 5 o € [0,1], 4(t, ) describes the boundary at tinte
that uniformly distributes the interpolation accordingthe We assume tha@ygt,s) — (t,5) # 0 for all s € [0,1]
pseudo-distance introduced in the previous section. ~and for allt, that 7[%;,0) _ v(t,’l), T d thats increase7s s

We suppose that the sensing agents can locally estimaig 1o erse the curve in the counterclockwise direction. We
the tangent and the curvature @). For the case of UAVs also assume thai(t, s) is smooth with respect te and ¢

surveilling a visible boundary, this information could b®p and that the length of the boundafi) is upperbounded
vided by a camera and an edge detection algorithm. Anmhﬁﬁd lowerbounded uniformly in. We define the curvature

possﬂ_)mty is to substitute every agent with a formation ofm [0,1] — R, of the curvey by: x(s) = |W(s)lx7“§s)\|_

chemical sensors. In the recent work [6] the authors proposeL ; R? be the locali va'(;)ll dered

an optimal formation of four agents to estimate the gradient el b, .. Py € € the locations O, ordere
terpolation points. LetP;(t), with i € {1,...,na} and

and the curvature of a given level set in a field. We assun8

that an initial estimate of the boundary is available so thate >>E§)mt?1 t?we t.h? pos||t|t(_)ns Of.ﬂ:e segstlhng agents at :.e?ven
the interpolation points can be distributed (possibly none' 0 € Interpoiation points and the Sensing agaets a
uniformly) on the boundary and the pseudo—distarﬁg ordered counterclockwise. We assume that the sensingsagent

between any two neighbors is known. We assume also th'gt(\)/\\;e counterclc;]ckmse r?long the bpuqdary, with sp%esl .
every agent is equipped with wireless communication device € assume that each agent maintains some variables in

to communicate with a data fusion center its memory that are described as follows. The state of the
To interpolate the unknown slowly time-varying boundar)fenSIng agent Is:

0Q, we intrpduce a counterclockwise ordered_ set of inter- {NOW', LASTARC', BUFFERARC , NEXTBUFFER },

polation points{p,...,pn,} that are the vertices of the

interpolating polygon. These are virtual positions stoied where the first variable is a counter, and the other three are a

a data fusion center together with the tangent@f at all  discrete representation of the subset¢f the sensing agent



is flying over. For simplicity we will omit the upperscriptdn pyow—2, Pnow—1, @Ndpyow are a coarser discretization of the
lowerscripti and we will introduce them when necessary. same arc.

Let Now € {1,...,njp} be the next point to be projected To calculate the Voronoi cellyow_1 along 9Q of the
ontodQ. Let O = LASTARCUBUFFERARCQUNEXTBUFFERC  interpolation pointpyow—1, We first need to projegtyow on
0Q be the set of observations collected by the sensing agei). Let oj be the projection opyow, defined by:
up to timet¢ while going frompyow_o towardspyow along

0@ defined as follows: + . _
Q Pnow = 05 = argmln()jGBUFFERARC”(Oj — Prow) * trowlls

LASTARC = {01, ..., 0L}, where tyoy = % is the unit-length tangent vector
BUFFERARC= {oL{1,...,004 M}, D) at 0Q(t~) at the interpolation poinpyow last time the
NEXTBUFFER= {OL{M41:-- 5004 M4T}, interpolation point was updated. In other words the pragect

of pyow at timet* on AQ(¢T) is the intersection 0HQ(t™)
with the normal vector to0Q(t~) at pyow at time ¢—.
This projection is univocally defined and has the following
properties. IfoQ is time-invariant therpyow = prow, iIf 0Q
is slowly time-varying therp;, is close to the orthogonal
Brojection ofpyo, onto AQ(t™).
é(\/e can now define the satowARC and updateBUFFER-
C as follows:NOWARC = {or1, .. .,0;j}, BUFFERARC=
BUFFERARC\ {or11,...,0;5}. In the following figure, the
e%gent () projects the interpolation poiptew 0ONnto 0Q(¢),
i) update the state variablBUFFERARC and generate the
variable NOWARC.

Prow Drvow | bnow

Pnow-2 = 01

where L, M € N, T' € Ny, 01 = pnow—2+ OL = Pnow—1,
andor 4+ = P(t). The following figure illustrates these
notation and quantities. The solid line represenisas seen
by the agent, while the dashed line represe9 as seen by
the ageni—1. The sensing agent is represented by a triang|
The white circles represent the interpolation points kefhe
agent updates them, whereas the black circles represent th
interpolation points after the agent has updated them. T
square represents the last point belonging3torFERARC
The first and the last point of the three data structur
LASTARC, BUFFERARG and NEXTBUFFER are shown, the
others are omitted for clarity.

Tl Prowtl
current agent”” Pnow—2 = 01 -

Py = opasr
Prnow—} = 0L
\ I | |

Pnow-1 = 0L

I LASTARC | BUFFERARC | NEXTBUFFER I LASTARC ! NOWARC ! | !
BUFFERARC

Before defining the poiné. s and the index)/ we intro- NEXTBUFFER
duce the set of estimated tangent vectol@@+': O — R?,

X N _ Using the collected data, the sensing agents can numeri-
and the set of estimated curvature@®, x: O — R,. In

h 45 PR timated ¢ N ¢ cally evaluate the pseudo—distandﬁs(pNow,% Prnow—1) and
other words,y’(o;) and%(o;) are estimated tangent vec OrDA(pNowq,pNow) between pyow_» and pyow_1, and be-

and curvature at _theApomtj, forje{l,....L+ M + T}. tWeeNpuow_1 aNdpuow. Recall thalpow_2 = 01, Prow—1 =
We can now defineD,: O x O — R, as the discretized oL. Let then‘A/Nowq = {0g,...,04}, Whereo, € LASTARC
pseudo-distance between two observationsind oy, with ando, € NOWARC are implicitly defined as:
h,je{l,..., L+ M+T}, andh > j. We shall characterize “

implicitly the observatiorvy 5, as follows: ~
= = Dy(o01,01)
. o Dx(o1,00) = Dy(0g,01) = ————=,
D/\(0L+17 0L+M) = 2D>\ (pNow—l’pNow)a N 2
~ ) i ) D D Dx(or,05)
where D (pnow—1,Pnow) 1S the estimated pseudo-distance (oL, 0u) = Dx(0u,05) = 5

betweenpyow—1 and pyow When an agent updated for the

last timepyow. This information is assumed to be stored in - The pointo, is the midpoint betweepyow_» andpyow-1,

the data center. while o,, is the midpoint betweepyow_1 andpyow after the
The setsLASTARC, and BUFFERARC Will be used by the latter was projected o@Q. We can implicitly define the

sensing agents to define the projection oM@ of pow Voronoi centerCyow—1 := 0 € LASTARC U NOWARC by:

and the Voronoi cente€yow_1 Of the interpolation point

Prvow—1- We recall that the positions,, ..., or 7 are ~ . Da(o1,01) + Dx(or,05)

points on the plane that the sensing agent has visited in Dx (0, 05) = Dx (0 0u) = 1 :

previous instants while moving along the boundagy, i.e.,

o; = P(r) for somer < ¢t and for allj € {1,...,L +

M + T}. We can say that the points, ... o+ are a In the following figure, the agent (i) calculates the Voronoi

fine discretization of the portion a#Q) from pyow_2 to the cell Viow_1, and (ii) updates the interpolation poiptow_1

current position of the sensing agent while the indices to lie optimally betweerpyow_2 andpyow-




trow
Prow-+1

— I) y
Prnow—2 = 01 0, Now 5
ot )

+ —
PNowkl/l Prnow-1 = %%
\ | | | \

‘ LASTARC ‘ NOWARC ‘ ‘ ‘
BUFFERARC

NEXTBUFFER

along 0Q), according to the arc length. The algorithm is
summarized in the following table.

Some steps of the algorithm are affected by noise and
error: i)/ and are only estimate of the true values, fi)is
an approximation of_, iii) the setSLASTARC, BUFFERARG
andNEXTBUFFER are discretization of the subset @f) that
agenti is visiting, therefore, the center of the Voronoi cell

The sensing agent can now update once more the st@ethe interpolation poinpyow: -1 mMight not be calculated

variables as follows:

NOW™ = NOw + 1,

LASTARCT = {og, ..., 05},
BUFFERARC" = {0j,1,...,04},
NEXTBUFFER" = {0441, .,004+M+T ]},

where o, € BUFFERARC U NEXTBUFFER is implicitly
defined by: Dy (o 0511:0¢) = 2D} (Pnow+-1,Prow+)- |f
D)\( J+1,0L+M+T) < 2D} (Pnow+—1,Prowt) then
BUFFERARC" = BUFFERARCU NEXTBUFFER
NEXTBUFFER™ = ().

The following figure shows the state variables update as just

described, in the case thREXTBUFFER = ().

— Prow
Drow—1 = 0L,
/\/\b\o
Now—2 = 01

LASTARC BUFFERARC

exactly. LetD( ) andL(t) be the column vectors:

D(t) = [Da(pi (1), p2 (1)), . - -
DArig—1(8), Dy (1)), Dy (8), 1 (1))]
L(t) = [L(Pl(t)7p2(t))7 ce

L(Pay—1(t), Pa, (£), L(Po, (8), Po(8))]

Consider now the disagreement vectatsk) and 0L(t)
defined as follows:

dk) = Da(k)— 12Ky @
Nip
s = L - 0y @

note that they are orthogonal to the veclor

It will be proved that the dynamics ab, (p;, p;+1) and
L(P;, P;+1) is input-to-state stable (ISS) where the inputs
are the errors and noises above discussed and the states are
Dy (pi,pitv1), and L(P;, P;11). Because of the ISS property
we can conclude that as long as the errors are small, the

This completes our description of the estimate upstatesD,(p;,p;+1) and L(P;, Pi11) will be close to the
date algorithm and we now focus on the pursuit obequilibrium of the unperturbed system, i.& (p;, pit1) =

jective. To uniformly distribute the sensing agents along), (p; 1, p;.2) for all i € {1,...

7’rlip} and L(PZ, Pi+1) =

the boundaryd@ according to arc length, we will use L(P;,, P ») forallic {1,...,na}.

the following update law for their velocitiesv;(t) =
Vo + k‘( (P17P1+1) — L(Pi_l,Pi)), with %k, v > 0 and
L(anP ) = Zyovr\\llow"+1(”pj—1 = psll), for all n,m €
{1,...,na}. Here, recall thapyow , Pnown+1, - - -, Pnowm are
the interpolation points separating agerand agenin, with
n < m. L is the estimated arc length of the portion @®
that has to be traversed to go from the sensing agéaotthe

Lemma 1. Let v: [tg, +00) x [0,1] — R? describe the
boundaryd@ along time, and leb5(p, ¢) be the boundary
of the ball centered irp and with radiuse. If v(¢,s) is a
smooth function of both its arguments, thén> 0 37 > ¢,
such thatvp € 0Q(to) the set defined bwB(p, e) N OQ(¢),
to <t < T, has only two elements.

Lemma 1 implies that if we allow small enough changes in

sensing agent:. The sensing agents have only local informad(), then the projection of any interpolation poipt onto
tion of OQ but still they have to estimate the distance, alongQ(t), as defined in the previous section, is unique.
0Q, from their clockwise and counterclockwise neighbors To avoid abuse of notation, leb,(p;,pi+1,t) be the

in order to calculate their speed. The estimﬁt(ePn,Pm)

pseudo-distance along@Q(t) between the instantaneous

is obtained by the approximating polygon formed by therojection of two interpolation points ont@Q(t). Let ¢
interpolation points. In practice any agent will speed up ibe the last instant of time in which the sensing agent
it is closer to the agent behind it, and slow down if cIosemeasuredDA(pZ,p,H) Then the error| Dy (p;, piy1,t) —
to the agent in front of it. With a saturation-like function: DA(pl,pl+1,t0)| is bounded and the result is stated as

sat(v;(t)) = max{vmin, min{v;(t), vmax}}, we will impose
though thatd < vmin < v;(t) < vmax for all ¢

B. Estimate Update and Pursuit Algorithm

In this section we present an algorithm that allows
sensing agents to equally distribute thg |nterpolat|on
points alongd@, according to the pseudo- -distanBa. Also

follows.

Lemma 2: Let v: [to,T] x [0,1] — R? describe the
boundary 9@ along time. If y(¢,s) is a smooth function
of both its arguments, then fdr > to, Dx(pi,pit1,t) =
D (pi, pi+1,to) + g(t — to) for all ¢ € {1,...,njp}, where
g(t) is continuous ang(0) = 0. The quantityD » (p;, pi+1,t)
denotes the pseudo-distance between two consecutive inter

the algorithm uniformly distributes the, sensing agents polation points at time given that they were projected onto



0Q(t) from their positions at time,. The number — ¢, is
bounded from above bt = max, g, %}“”, wherev

is the speed of the agent. R
Lemma 2 is due to the fact the the pseudo-distabgeis

the composition of smooth functions and only continuous

Name: ESTIMATE UPDATE AND PURSUIT ALGORITHM functions int, so it is continuous int. Therefore, if the
Goal: Uniformly distribute the interpolation points according boundary changes slowly, then the corrective t@(mf to)
to the pseudo-distanc®,, and the sensing agents e i ; ; o
accord"fg 1 tho are Ieng>t\ﬁ. 9 ag is just like a noise. If we can prove tthA(pi,pi+17t)
Data: Location of the interpolation points, unitary tangent ~ g€ts close to the target value, we will prove that also
vector atoQ at those points, last value @, between Dy (pi,pi+1,t) will get close to the target vector due to
any two consecutive interpolation points, local tangent Lemma 2
and local curvature of the boundaf\Q). ) . .
Requires: At to = 0 p; lie on Q and Dy between any two Theoraﬂ 3: The evolution of the disagreement vectors
interpolation points is known. defined by (2) and by (3) under thesEIMATE UPDATE AND
Assume data is as stated in (1). At every sensing instant, geataaf PURSUIT ALGORITHM is input-to-state stable with respect
position P;(t) = P(t) performs: to estimation noise and deformation of the bounday(z). |
L: if Dy(or41, P(t)) > 2D} (Pvow—1, Prow), then Proof: We first prove the ISS property for the dynamics
2. update the set of observationsxTeurreR™ := NexTeurreru | Of d(k). Let us suppose tha®Q(t) is time-invariant, that
{P(®)}, no error affects the calculation af\yow—1, the center of
3: else ] the Voronoi cell of the interpolation poinpyow—1 (i.€.,
4: update the set of observatioB&FFERARC! := BUFFERARCU the buffers used by the agen-ts are continuous and not
{P@)}. discrete). Suppose that a sensing agent has passed by the

5: end if i i

& estimatey’(P(1)), R(P(1)), andDs (opats (1)) point pyow, andhthen |tdcarc11.0pt|rljally placgwow—_1- AS 3

70 if NEXTBUFFER% 0 andpg,i # Pyowi 1y then consequence, the pseudo- istanPe$pnow—2, Pnow—1) an

8. update the interpolation poifkow by projecting it ontodQ: D>\$pNOW_1,pNOW) will take new values that can be expressed
as follows, (see Figure 1):

p:lrow =035, 05 = argminoj eaurrerarc | (05 — Prow) - trowlls

—~ ~ 1~
+_3 z
9. update the se8UFFERARC and generate the SRDWARC by: D (Prnow—2, Prnow—1)" = 4DA (Prow—2, Prow—1) + 4D)‘(pN°W*1’pN°W)’
~ 1~ 3~
BUFFERARC' := BUFFERARC\ {oL41,...,05}, D (prnow—1,Prow) T = ZD)\(pNOW—QypNOW—I) + li(pNOW—LPNow).
NOWARCT := {or11,.. 05},

10: calculateCyow—1 := or, and update the position gfyow—1 by

+ — e
Pnow—1 T %% )
11: communicate with data center: transminow—1, Pnows

Pnow—2

' (Pnow—1), D)/\\(pNOW727pN9\W71)y D (pnow—1,pnow) and P,
receivepow+1, ¥ (Pnow+1), Dx(Pnow; Prnow+1), Dy(pwow-zPnow-1) A e o o
12:  update the counterow and the set ASTARC by 3 Dalpow 1on)
+ . o g _ \ /
NOW™ := NOW + 1, LASTARC™ := {og, ..., 05}, Do 1:7s0u) D (pron 1s0m)
2
13:  update the seBUFFERARC and NEXTBUFFER as follows:
14: if Joq € BUFFERARCU NEXTBUFFER S.t. D (0j41,0q) > R
25A (Prnowt — 15 Prowt ). then Fig. 1. This figure shows how the pseudo-distaigg betweenpyow—2
15: NowT — 17 Fow and pnow—1, and betweemyow—1 and pyow changes after agent has
optimally placedpyow—1-
BUFFERARC' :={0j,1,...,04},
NEXTBUFFER' := {0g4+1,...,0L4M+7}, Fori e {1,...,np}, defined; € R™>"e by
10: e 3/4, ifj=k=diorj=k=i-1,
(A)je=41/4, ifj=i—1,k=d,orifj=1i, ,k=i—1,
BUFFERARC! := BUFFERARCU NEXTBUFFER Sk, otherwise.
NEXTBUFFERT := 0. . .
Then theA; are the dynamics matrices for the system
18: end if ~ ~
19: end if D\(t2) = A;Dx(t1),

20: communicate withP;;q and P;_;: receive Now'*! nowi~1,
transmitNow*. Communicate with the data center: receive the|po-where t, > t; is the time when the interpolation point

iti i ; ; it i i1 ) ) ) )
z‘g(\,’\ﬂif’f the interpolation points with id betweerow™™ and| ;¢ maved by a sensing agent to its new Voronoi center,

21: calculatev; (): v;(t) = sat(vo + k(L(P;, Pip1) — L(P;_1, P;))).|  assuming that between andt, no other interpolation point

is moved. If at the same instant more interpolation points
are relocated, then the dynamics matrix is the product of
all the A; that correspond to the relocated interpolation
points. We can now relax the assumptions and we can
consider slowly time-varying)Q. Let t* be thek-th time
that p; is optimally placed by an agent. Before optimally



placing p;, the agent will projecp;.;. Because the bound- matrices. We can then upperboubidd(k + 1)) — V(d(k))
ary has changed, the pseudo-distadieg(p;, pi11,t*) will  as follows:

differ from Dy (pi, pit1,tr,1) by some noisey(tF — ¢ 1).
Therefore the system is evolving according to a dynamical V(d(k + 1)) = V(d(k)) < —as([|d(k)[)) +a([[oul),
system of the form: whereas ([[d(k)]]) = $7d(k) (2, o(du]) = (2+1)]dul.
ES ES _ By [14] the system described by (6) is input-to-state stable
Kyt — A, k . k _ k=1
Dy(t)" = 4 (D’\(ti) teipg(ts —tip )) o @) Since the system (6) is ISS, we can now relax the assumption

wheree; is the column vector with null entries but thigh  thatno error effect the calculation Gfiow—1 and still be able

component that is equal to Let AT = sup, 5 L(Q())  to conclude thaD, will asymptotically get close to the equi-
S min : H H H H H H

Note thatAT < +oo since by assumption the lengfh of thellbrium of the unforced system, i.e., the interpolationrisi
boundarydQ(t) is uniformly upperbounded. This means tha@® uniformly distributed according ,. This is simply

at most afterAT any interpolation point is updated at least?®c@use also this error enters linearly in the system (6).
once. Any time that an agent updates any interpolation point e can now prove the ISS property for the dynamics of
p; the vectorD), evolves according to (4), wher& — t?:ll dL. Let us suppose that th#&)(¢) is time-invariant and that

is upperbounded bAT. the sensing agents can actually compute without error the

BecauseAT is finite, there exists a sequence of instant§C 1ength distance between them and their clockwise and
7, With k& € No, such that across the intervé,_,, 7] cou_nterclockW|se nelghb_ors. The dynamics Igt) can be
every interpolation point has been updated at least once B§rived as follows. Consider

an agent. In other words: L(Pi(t),PiH(t)) E— @

Dy(k+1) = A(k)Dx(k) + u(k), k€ N, 5)  where
ij\]f&()a we iQentifyro =0, andt, = k, and WhergA(k;) = Vie1 =0 + k(L (Pi1, Prvo) — L(P5, Piy1)),  (8)
I Aj, gk € {1,....mip}. The graph associated with o 5 (L(P.Pout)— L(P s P 9
A(k) is connected and!(k) is ergodic. Furthermored(k) vi =vo +k (L (P, Piy1) (Pic1, P2)). ©)
is doubly stochastic because the product of double stachasgubstituting now equations (8) and (9) in equation (7), we
matrices. The value of the indey depends on the order in have:
which the interpolation points are updated. It is easy to Se& b, (1)
that niy < M (k) < nanjp. Consider now the disagreement

vector d(k) defined in (2). Recalling (5), and thad(k) If the saturation on the speeds is not active, we have:
is doubly stochastic, we can write the update law of the

 Pis1(8) = k(L (Pis1, Piy2)=2L (Piy Piyt)+L (Pie1, P,) ).

disagreemend (k): —12 _12 (1) e (1)
d(k+1) = A(k)d(k) + 6u(k), keNo,  (6) Lty=k| : - - - : |L(t)=kAL().
o ... 1 =2 1

wheredu(k) = u(k) — 1T+i:k)1. BecauseA(k) is ergodic, 1 0 ) 5

the equilibrium point of the unperturbed system is the origi

which means that, if1(k) is equal to0, asymptotically the periNE A(c;) IF THE MEZLER SECTION IS COMMENTED

system (5) will reach“i%l. If we introduce the saturation on the speedsthen the
Let V(d(k)) = d(k)Td(k) be a Lyapunov function dynamics ofL becomes

candidate for the dynamics @f(k). Then: L(t) = kA(er, ..., e )LL),

V(d(k+1)) = V(d(k)) = —d(k)" R(k)d(k) where A(cy, .. ., ¢y,) is defined in Section I, with = ng,
+ su(k)Tou(k) + 20u(k)T Ak)d(k), a= mln{“mzx(’a”é’)’jc"’“m‘"}. To calculate the lowerbound of,

«, suppose that the saturation on the velocity is active for

where—R(k) = (A(k)" A(k) — I,). By Theorem 1in [13] o sensing agernit This is equivalent to saying that

it can be proved thatR(k) is positive semidefinite and

the only eigenvalue at the origin is associated with the v; =vo + ki (L(P;, Piy1) — L(Pi—1, P;)),

eigenvectorl that is orthogonal tal(k). ) . )
Let A, be a generic element of the set of cardinatifyi+ Wherek; = kc;, ¢; < 1. We can think of the saturation

(nip+1)!1++ - -+ (nipna)! containing all the possible matrices function as a change in the gain in the control lawy,lf=

obtained by multiplyingd/ matricesA;, with nj, < M < Ymax then

nanip andi € {1,...,np}, such that the graph associated ) Vrmax — Vo Vrmax — Vo

- : : K = > —
with A, is connected. Let) = {r € R|det (r]nip - " (L(P, Pr) — L(P_1, P)) —  L(0Q)
(ATA, ~ In,)) = 0} \ {0} and r, = min; |rj|, then i Tvmac v
37 = min, r, < 0 because we are considering a finite set of k—k L(OQ)



If v; = vmin, then just an estimate through the interpolation poirﬁs,Using
the change of variables in equation (3), and recalling that

L — Yo — Umin > Yo = Ymin A(t)1 = 0, for all t, we have:
Y (L(Pi, Pigr) — L(Pia, ) — L(0Q) (® )
k. 1 vg— vmin ud’(t) + 0L(t) = A(t)0L(t) + A(t)ou;(t) + uq(t),
“=% 7k 10g) .
wheredu; = u; — 221 |t follows that

Therefore a lowerbound for theg is given by themin{vmax— ) ° )

Vg, Vg — Umin}m. It can be proved (see Lemm??) OL(t) = A(t)0L(t) + A(t)ou,(t) + dug(t),  (11)
that the new matricesl(cy,...,c,,), like Ay, are negative

o . L - With duy(t) = () — %(t). The system described by
jv?twlsr?élrgit:é;,heitzgly eigenvalue at the origin is assomatee'quation (11) is input-to-state stable (with inpl(t)du; (t)+
: L . du(t)y) because (i) the unforced system is exponentially
Let us consider the disagreemeiti as described by (3), o, 16%nd (i) the right-hand-side of (11) is differentéaind

then .
N uniformly globally Lipschitz indL and A(t)du;(t) + du(t)q
OL(t) = Aler, - eng)OL(1), (10) (see [16]). The ISS property guarantees that,if the error
and the candidate Lyapunov functio (¢L(¢t)) = betweenL and its estimatd, is small and ifu, is smaller,
SLT(t)0L(t), then then the agents will get close to the equilibrium point of)(10

. which corresponds to have the agents uniformly distributed

V(OL(t)) = 20L(t)Ac1, - - ., en)OL(t) < 0, according to Ifhe arc length. The Igrgeps is and thye slower

where the equality holds only if the entriesdlf are all zero. the deformation 0d(Q is, then the smallen; andu, are, and

Sincec; belong to a compact set, the matricés:,...,c,,) the closer ta0 the disagreemeniL will get asymptotically.

belong to a compact set, and since the eigenvalues of a matrix u

are a continuous function of its entries (see [15]) theneher .

exists an upperboundp < 0 for the eigenvalues that are C. Smulations

different from zero and as a consequence: In this section we present results of two different simu-
. ) lations obtained with the implementation of thesEMATE
V(L)) < —p[OL@)[I"- UPDATE AND PURSUIT ALGORITHM. In the first simulation

We can then conclude that the system (10) is exponentialfpe boundarydQ is time invariant, while in the second is
stable. time varying.

Let us now analyze how the pursuit objective can still 1) Time-invariant boundary: In this simulation we use

be achieved when the boundary is slowly-varying and wheﬁg‘;g’xsggjh%%?ﬁgnézgr?&vg g;: approximation of the non-

the instead ofL.(P;, P;+1) the agents use only the approxi-

mation L(P;, P;+1). Let uy(t) be the vector that expresses ~(0) = (2 + cos(1076) + 0.5 Sin(4ﬁ9)) |:CQS(2ﬂ9):| .

the change in the arc length distance between any two sin(270)
consecutive agents due to the deformationd6f(t), and  The outcome is shown in Figure 2. In order to calculate their
let ud(t) = IT:‘l—j(”l, then speeds, the sensing agents uge= 1, andk = 0.05. The
saturation function for the speed has lower limif, = 0.5

uq(t) = dua(t) +ug’(?). and upper limitvmax = 2. The number of interpolation points

Let Lo¥(t) = "LM) 1 then: is njp = 30, while A = 1. The simulation time i$0 seconds
"ta and the sampling tim@.01 seconds. The plots in Figure 2
L(t) = L*(t) + 6L(t) = L*(0) 4+ ug"(t) + 6L(1), corresponds to the positions of the interpolation points an
and taking the derivative respect to time of both sides wi'® Sensing agents at the initial and final configuration® Th
have: mterpolgt.lon pPoiNtyow: fgr ie{l,...,nat comc[de with .
L(t) = (t) + 5L(t). the positions of the sensing agents. The other interpolatio

points are randomly distributed on the boundary. In the last

The quantitya”(¢) is bounded because the arc length is &ame one can also see the approximating polygon and how

composition of smooth function ihand the parametrization close it is to the actual boundary.

of the boundaryo@. In the case of slowly time-varying  Since the pseudo-distand®, and the arc lengtii, can be

boundary the variation in time of the vectdr(¢) is due, calculated after the simulation is completed, we fiseand

not only to the fact that the agents speed up and slow downinstead of their estimat®, and L to show the algorithm

as imposed by the algorithm, but also to the deformation qferformance. Figure 3 does indeed show the convergence

0Q: of the algorithm. In the first plot we can see that the
s = ) - . consensus on the pseudo-distaibdp;, p; 1), between any
L(#) = ABL(E) + da(t) = AB L) + wi(t)) + da(?), two consecutive interpolation poin)f(s, is rga?:hed. The tityan

where A(t) = A(cy, ..., cpn,), While u;(t) € R"%*1 is the MaX;e(1,....np} Dy(pi,piv1) — MilGe (1, np) Dy (pi,pit1)

noise due to the fact that the agents do not know exactly tfltwes not vanish because of numerical errors in the estimate

arc length distance between them and their neighfiarbut D). The second plot shows how the agents get uniformly



Initial Configuration . Final Configuration Initial Configuration t = 50.sec

t = 100,sec . Final Configuration
Fig. 2. This figure shows initial and final configuration after
50 seconds simulation obtained by the implementation of the
ESTIMATE UPDATE AND PURSUIT ALGORITHM with na = 3,

np = 30, vo = 1, k = 0.05, A\ = 12. §Q is time invariant.

The sensing agents’ positions are represented by the triangles anc
are initialized to be on the boundaf}). In the last frame also the
approximating polygon is shown. S

max D — min 1), —Are length distances Fig. 4. This figure shows four different instants of the0 seconds
A simulation obtained by implementing thesEMATE UPDATE AND

PURSUIT ALGORITHM with na = 3, nip = 30, vo = 1, k =

0.05, A = % The boundaryo@ is slowly time-varying in this

= R case. The sensing agents positions are represented by triangles and
. initialized to be on the boundar§@. The last frame also shows
— : the approximating polygon.
" time®(sec) * * ” ©0 " time®(sec) * 7

Arc length distances

max Dy — min Dy

Fig. 3. ESTIMATE UPDATE AND PURSUIT ALGORITHM This plots .
refers to the case ofQ being time-invariant. In the first plot L
from right it is shown the errormaxie{ly,,,_,mp}Dx(pi,piﬂ) -

minge (1, np} Dx(pi, pi+1) Vs time. In the second plot we show \
the arc length distances between the three sensing agents. Iy

2888

oslg
S

° Hirhe"(sec) ¢ T ¢ *T Hime (secy ¢ 7
spaced along the boundary. The steady state values of the

arc length distances oscillates arouhd which is the target Fig- 5. ESTIMATE UPDATE AND PURSUIT ALGORITHM.

value. The noise is again due to the fact that the agents onl\ is figure refers to the case ofQ being slowly time-

timate th | th usina th it fthe intefi varying. In the first plot from the right we shown the er-
estimate the arc length using the positions of the intetjeia ror maX;e (1,...,np} D (Pis Pit1) —Minie (1, npy Dr(pi, pit1) VS

points. . . . . time. The second plot shows the arc length distances between the
2) Sowly time-varying boundary: In this simulation we hree sensing agents.

usedn, = 3 sensing agents to have an approximation of the

non-convex boundargQ(t) described by:

4(O,1) = <2 2 (2 + cos(1078) + Sin(4”9))£) {CPS(%@)] . time 7 the pseudo-distance between their radial projection
t 2 /) |sin(2r6) onto dQ(r). The disagreement in the placement of the
with 6 € [0,1), t; = 200 seconds as shown in Figure 4.interpolation points, wher®, is redefined as just explained,
The values ofvg, k, vmin, Umax @nd A are respectivelyl, is shown in the first plot of Figure 5.
0.05, 0.5, 2, and 2. The simulation time i200 seconds, the ~ The arc length between any two consecutive sensing
sampling time).01 seconds. The plots in Figure 4 correspondgents is shown in the second plot of Figure 5. The three
to the positions of the interpolation points and the sensingistances increase with time becadg@(), the total length
agents at four different instants= 0, ¢t = 50, ¢ = 100, and  of the boundary, increases with time.
t = 200 seconds respectively. The algorithm is initialized
with the agents on the boundary. The interpolation points
Pnvow: Coincide with the positions of the sensing agents. The In this paper we have addressed the problem of boundary
other interpolation points are randomly distributed. la kst  estimation and tracking by means of robotic sensors. We have
frame we can also see the approximating polygon and hopresented an algorithm to position interpolation pointgl
close to the actual boundary is. From the frames in Figurethhe boundary in such a way as to obtain an approximating
it is clear that the sensing agents can adapf@schanges. polygon with some optimality features.

The pseudo-distanc®,, is well defined only if the in- The mobile agents are equipped with sensors that pro-
terpolation points belong to the boundafy). Since the vide local information on the tangent and curvature of the
boundary changes with time, the interpolation points arboundary. The algorithm allows the robots to place a set
only for some time on the boundary after a sensing agent$ interpolation points uniformly spaced according to the
has projected them. So, we consider as pseudo-distarestimate of the pseudo-distande,. The position of the
between any two consecutive interpolation points in a gertainterpolation points is stored in a data fusion center and

IV. CONCLUSIONS



is available on-demand to the agents. The vertices of the
approximating polygon are the interpolation point posisio
The algorithm is proven to converge even if the boundary is
slowly-moving. Tools from consensus analysis allow us to
prove the correctness of the algorithm.
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