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Distributed algorithms for polygonal approximation of convex contours

Sara Susca

Abstract— We propose algorithms that compute polygon
approximations for convex contours. This geometric problem
is relevant in interpolation theory, data compression, and
has potential applications in robotic sensor networks. The
algorithms are based on simple feedback ideas, on limited
nearest-neighbor information, and amount to gradient descent
laws for appropriate cost functions. The approximations are
based on intuitive performance metrics, such as the area of the
inner, outer, and ‘“‘outer minus inner” approximating polygons.

I. INTRODUCTION

In applications such as monitoring of environmental pro-
cesses it is important to be able to approximate the contour
of the region of interest. For some specific monitoring tasks
such as the containment of a region of interest (e.g., an
oil spill) or the specification of an initial condition for
the prediction of certain environmental phenomenon it is
meaningful to obtain contour approximations that resemble
as much as possible the region to be determined. Finding
efficient or optimal approximating polygons is also relevant
in other applications like solving interpolation problems or
data compression. It is useful in fact to be able to represent
a contour for which no concise mathematical expression is
known by only using a few points. It turns out that con-
structing an optimal polygonal approximation of a contour
has been a research subject for mathematicians and engineers
across the last three centuries. Still interesting problems
continue to remain unsolved especially for the general setting
of non-convex bodies. Arguably, the extension of polygonal
approximation to non-convex and time-varying contours will
provide a novel challenging problem in boundary estimation,
tracking, and surveillance.

In this paper we investigate distributed algorithms enabling
a robotic sensor network to generate an approximating
polygon for any given convex planar contour. As a key
modeling assumption, the nodes of the sensor network are
the vertices of the approximating polygon. We require that
the approximating polygon minimizes a certain meaningful
metric. Boundary estimation and tracking is also a relevant
problem in computer vision; the so-called “snake algorithms”
were introduced in the seminal paper [1]. Some references
on the boundary estimation problem for robotic sensor net-
works include [2], [3], [4], [5]. A different and interesting
application of boundary estimation and tracking is presented
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in [6]; here a feedback law is proposed to steer the tip
of an atomic force microscope so that the imaging time is
drastically reduced.

As pointed out by the authors in [7], in the XIX century it
was known how to geometrically characterize the polygon,
enclosed into a given convex body, that minimizes the area
difference between itself and the enclosing convex body. On
the other hand, the geometric characterization of a polygon,
enclosing a given convex body, that again minimizes the
difference of the areas is more complex and less intuitive;
to the best of our knowledge, the earliest reference on this
matter appeared only in 1949 by Trost, see [8]. Sometime
in the XX century it was also proved that for a planar
body the approximation error, for various useful metrics,
goes to zero as C/nQ, where n is the number of vertices
of the interpolating polygon. For example, in 1975 McClure
and Vitale [9] give sharp estimate for the constant C' using
support functions. They also suggest two different methods
to construct asymptotically efficient approximating polygon,
even though both approaches are not suited to a distributed
implementation. For a more detailed list of references we
refer to the beautiful surveys [10] and [11]. Finally, a recent
reference related to our work is [12].

Given n points on a convex contour, it is possible and
natural to define an enclosed (i.e., inscribed) polygon and
an enclosing (i.e., circumscribed) polygon to the contour.
Here the faces of the enclosing polygon are subsets of
the tangent lines to the convex contour. We adopt three
geometrically-motivated error metrics that the approximating
polygon can minimize. They are described as follows. The
first two metrics we considered are the difference between
the area enclosed in the contour and the following areas:
the inner polygon area and the outer polygon area. The
third metric is the sum of the previous two metrics. We
derive the expressions, two of which are novel contributions
of this paper, of the error metrics as functions of the
vertex positions of the approximating polygon. We propose
three feedback laws to dynamically construct the optimal
approximating polygon using gradient descent. These feed-
back laws rely only on local information about the contour
and about the immediate neighboring vertices. We analyze
the dynamical system behavior of these feedback laws and
present simulation results. Even though the algorithms are
designed for smooth convex contours they can be extended
to non-smooth convex contours. We also present discrete-
time feedback laws that allows the nodes to reach locally
optimal configurations for two of the metrics introduced.

The paper is organized as follows. In Section II we
define some notation and the three performance metrics
used through the paper. In Sections III and IV we present

6512



45th IEEE CDC, San Diego, USA, Dec. 13-15, 2006

the continuous time gradient descent algorithms and their
respective discrete time versions to construct the best inner
and outer approximating polygon, while in Section V we
present an algorithm to construct the polygon minimizing
the outer minus inner area.

II. NOTATION AND PROBLEM STATEMENT

Let @ C R? be a bounded, convex body and 0Q its bound-
ary. Let T C R? denote the unit circle. We parametrize OQ
by a map v: T — 0@, and represent its signed curvature by
k: T — R. We assume that x remains positive as we traverse
the curve v in a counter-clockwise manner corresponding
with the parameter s increasing. We alternatively use the
notation t(s) = +'(s), Vs € T, and define n: T — R? so
that n(s) is the unit outward normal vector at y(s) € 9Q
for all s € T. With a slight abuse of notation, we sometimes
refer to the particular tangent and normal vectors at a point
pi €0Q as t; andng, i € {1,...,N}.

Let p1,...,pn be the positions of IV agents constrained
to be on JQ and let P(R?) denote the parts of R?; i.e.
the collection of all subsets of R?. Since @ is a convex
set, the set-valued map Pr: (0Q)N — P(R?), that assigns
to a tuple (21,...,2,) € (0Q)N the polygon generated
by the vertices {z1,...,2,}, satisfies Im P; C P(Q). In
other words, Pr(z1,...,2y) is the convex hull of the set
{z1,...,2n8}

Let H denote the set-valued map H: 9Q — P(R?) such
that for any p € 0Q, with p = y(s), n = n(s), for some
s € T, we have H(p) = {z € R?|(p — 2) - n < 0}. That is,
H(p) is the half-plane containing () and with boundary given
by the line passing through p and tangent to 0(), as shown
in Figure 1. Now we can define the function Pg: (0Q)N —
P(R?) as follows Pgr(z1,...,2x) = H(z1) N+ N H(zn).

Fig. 1. H(p;) and its boundary £(p;) = £(p;)T U €(p;)~.

The intersection of half-planes defines a convex region of
the space R? containing (Q, but not in general a polygon. To
generate a polygon some constraints on the half-planes have
to be imposed. Let £(p;) = OH(p;) be the line that passes
through p; and is the boundary of H(p;). Let us denote by
lp)t ={2€R%lz=p;+At;, A\ >0} and {(p;)~ = {z €
]R2|Z =p;+ /\t,‘ s A< 0}, then é(pl) = é(p,‘)—’_ U é(pi)_. If
the intersections £(p;)™ N €(p;1+1)~ # () for any consecutive
nodes, then Pg(p; ...,pn) defines an exterior polygon, as
shown in Figure 2, whose edges lie in £(p;), ¢ € {1,...,N},
and contains both @ and Pr(p1,...,pN).
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R L(p1) " N Upa)~

Fig. 2. From the left to the right: three points defi ning an outer polygon,
three points not defi ning an outer polygon.

We quantify the approximation error of () through dif-
ferent measures of area that we specify in the following.
The inner set approximation error metric is defined as
E(Q,P) = Area(Q \ P), where P C Q. Equivalently,
the outer set approximating error metric is defined as
Eo(Q, P) = Area(P \ Q) where Q C P. Now, given sets
P, C Q C P, we can define the symmetric difference error
metric as ES(Q,Pl,Pg) = PAP, = (Pg\Pl)U(Pl\PQ)

III. INNER-POLYGON APPROXIMATION ALGORITHMS

In the following sections we present distributed descent
algorithms for the approximation of smooth convex bodies.
The algorithms of this section are based on the interpolation
error E ;.

In order to find a characterization of the configurations
{p1,...,pn} C OQ which minimize the inner set approxi-
mation error metric, observe that:

E(Q, Pr(p1,-..,pN)) = Area(Q)—Area(Pr(p1,...,pN)) -

Assume that the set of points {pi,...,pnx} is ordered in
a counter-clockwise direction.! Then, an expression for the
Area(Pr(p1,...,pn)) can be obtained as

N
1
Area(Pr(p1,...,pN)) = B § (TrYk+1 — Trr1yk), (D)
k=1

where p, = (z1,yr) are the coordinates of the k** point.
The dynamical system defined as the gradient descent of E ;

. OE;
i = api ,

ie{l,...,N},

guarantees that the p; converge to the set of critical points
of E ;. This dynamical system can be rewritten as follows:

L OArea(Pr(p1,...,pn))
Pi = Proj pq pi
¢ 2
_ <t» . 8Area(P1(p1,---7pN))) " @
i apl (]

'In what follows we use the identifi cation 0 = N and N + 1 = 1 for
the indices ¢ € {1,..., N}.
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where proj 5, means the projection on the vector t; tangent
to the contour Q) at p;. Substituting (1) in (2), we obtain

e ()

1 s

— <2tiT { i:j _zli:l ]) t;, ic{l,...,N}.
As it can be seen, p; depends on p;_1, piy1, and t;, @ €
{1,..., N}. This requires that every agent has knowledge
of the positions of its immediate clockwise and counter-
clockwise neighbors and of the gradient of the contour
at its position. Equation (2) (and hence (3)) describes the
gradient flow of the area of the approximating polygon and

it guarantees that the agents positions converge to a set of
critical points so that

-

or, equivalently, t; is parallel to (p;11 — pi—1), for i €
{1,..., N}. Unfortunately we can not say that every critical
point is an extremum. Consider the situation where () has the
shape of an equilateral triangle with smoothed-out corners
(see Figure 3). Despite the configuration shown in the figure
satisfies condition (4), it is not a local minimum. As the
figure shows, this is a saddle-point configuration, since we
can grow or diminish the error by moving the nodes in
appropriate ways.

v A

Fig. 3. From left to right: saddle point confi guration, confi guration
that increases the error E 7, confi guration that decreases the error Ep,
confi guration corresponding to a minimum error confi guration.

3)

Yi+1 — Yi—1

e } =0, Vie{l,...,N}, @&

The characterization (4) of critical points was already
obtained in the XIX century according to [7]. The paper [7]
additionally shows how the critical-point configurations sat-
isfy the condition that points remain closer in regions of
higher mean curvature, which is a desirable condition for
shape representation. It is believed [10] that as the number
of nodes increases, the type of configurations that satisfy (4)
correspond only to global error minima.

Simulations inner-polygon approximation algorithm: Fig-
ure 4 shows the results of the implementation of the inner-
polygon approximation algorithm. The eleven nodes are on
the contour described by, for 6 € [0,1):

7(8) = (2.1 + sin(276)) (Z?;((;tg;) ' ”

A. Discrete-time inner-polygon approximation algorithms

Here we present two discrete-time versions of the algo-
rithm of the previous section. The first algorithm exploits an
a priori labelling of nodes and requires that each agent has
available the position of its closest two neighbors along the
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Maximization of polygon are
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Fig. 4. Implementation of inner-polygon approximation algorithm

contour. The second algorithm does not require an a-priori
labelling of nodes but each agent is required to have some
knowledge about a subarc of the contour.
Algorithm 1. Assume each node p; has knowledge about its
own label number i € {1,...,N}. At each discrete time
instant that we index by k£ € N we define:

ik 1) = { q(pi-1(k), pi+1(k)), %f Z =k mod N,
pi(k), ifi#£k mod N,
(6)
where q(p;—1(k),pi+1(k)) is the closest point to p;(k) on
the arc in 0Q from p;_1(k) to p;11(k) such that its tangent
at 0Q) is parallel to the line p;—1(k)p;t1(k).

Proposition 3.1: The dynamical system (6) is a descent
algorithm for E ; and convergent to the set of critical points
of E I-

Proof: Let Py be the area of the polygon generated by
p1(k),...,pn(k) and let ¢ be congruent mod N with k.
We have that P, = T}, + Pk, where T}, is the area of the
triangle generated by p;_1(k), p;(k) and p;11(k), and Py
is the area of the polygon generated by the complementary
set of nodes. Since JQ is convex, it is easy to see that
Ty < Tyy1, where Ty, is the area of the new triangle
with vertices p;—1(k), p;(k + 1), p;+1(k). In this way, one
can obtain:

Py =Ty + Py <Tjp1 + P = Py,

the area of the inner polygon is maximized and the error E ;
is minimized. Clearly, only when a set of critical points is
reached, the algorithm leaves the nodes stationary. |

Remark 3.2: 1t is easy to envision extensions of Algo-
rithm 1 to a setting where alternating but spanning sets of
independent nodes alternate their motion. °
Algorithm 2. The following is an algorithm that does not
require a labelling of agents, but requires knowledge about
part of the contour. For each k£ € N define:

q(pi—1(k),piv1(k)), pi(k) & Vi,

7
pi(k), otherwise, 2

pi(k+1) :{
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for ¢« € {l,...,N}, and where V; is given by the
union of certain arcs on O as we describe next. Let
(21,22) denote the arc on 9Q going from z; to 29 in a
counter-clockwise direction, for any z1, zo € 9Q. Given
i €{1,..., N}, consider the arc (p;_2, p;+2) Which contains
the points q(q(pi,pit2),pi-1)s 9(q(Pi—2,p:); A(Pit2,pi))
and  q(q(pi—2,pi),pir1). Going from p; o towards
piv2 we can define arcs with q(q(pi—2,p:),Dit1)
and  q(pi—1(k),pit1(k)), with q(q(pi, piv2),pi—1) and
q(pi-1(k),pi+1(k)), and with q(q(pi—2,p:), q(Pi+2,Pi))
and  ¢q(pi—1(k),pix1(k)) as extremes respectively.
With a slight abuse of notation, let us denote these
arcs by (¢(q(pi-2:pi), Pit1), a(Pi-1(k), pit1(K))),
(a(q(pi; pit2), pi-1),a(Pi-1(k), piv1(k))) and
(q(q(pi—2,pi); q(Piv2,pi)), a(pi—1(k), piy1(K))). The
set V; is the union of these three arcs along the contour.
Because of convexity, a node p; can detect if it belongs
to any of the above defined arcs by knowing the arc
(pi—2,pit2). Basically, the statement p; ¢ V; is equivalent
to the following statement: moving p; towards the
positions  q(pi—1(k),pi+1(k)), q(a(pi-2,pi), 4(Pi+2,pi))s
q(q(pi, pi+2), pi—1) and q(q(pi, pi+2), pi—1) requires that p;
moves in the same counter-clockwise or clockwise direction.

It can be checked that V; is in fact a connected arc along
the contour 0Q).

Here is our main analysis result in this section. We omit
the proof for space reasons and we refer to a forthcoming
technical report.

Theorem 3.3: The dynamical system (7) is a descent
algorithm for E ;.

Remark 3.4: Stationary configurations of (7) are not nec-
essarily critical points of E ;. A node p; might become stuck
at a position such that p; € V; and t; is not parallel to
Di—1Pi+1- The reason for this is that either p;_; or p;;; are
themselves stationary. A set of nodes could be “unlocked”
by running a leader-election algorithm between neighbors
and giving priority of motion to the consensual leader. This
operation respects the descent nature of the algorithm and
guarantees that we reach a desired critical configuration. e

IV. OUTER-POLYGON APPROXIMATION ALGORITHMS

Following [8], one can obtain a geometric characterization
of the configurations py, ..., py in 9Q that provide an opti-
mal outer polygon approximation that minimizes Eo, when
Q@ is strictly convex. This characterization is established
through the corresponding unit tangent vectors ti,...,tn,
the angles & = A(t;,t;41), ¢ € {1,..., N} (measured in
counter-clockwise order), and assumes that:

@) L(pi—1)t N Ll(pit1)” # 0,

(ii) the tangent at p; forms a triangle, as shown in Figure 5.
We briefly summarize the result in the following.
Theorem 4.1: ([8]) Under conditions (i) and (ii), define

the triangles 7; = A; B;C; whose vertices are given by the
intersections B; = £(p;r1)” NL(p))T, C; = L(pix1)™ N
l(pi—1)* and A; = l(p;)” N{(pi—1)™". Then, the following
formula holds:

0 _ _OArea(T)

FriP11.12

Fig. 5. Assumptions (i) and (ii) on every three nodes, p;_1, p; and p;41
for formula (8) to be applicable.

Let p; A; (resp. B;p;) denote the length of the segment
defined by p; and A; (resp. by p; and B;). An expression
for the above partial derivative is given by:

 OArea(T;) 06 (piA‘ — B;pi) AiB; 9&; 9
o0& Opi 2siné;siné; 1 Op; ©)
That is, the critical configuration for p; that falls under
assumptions (i) and (ii) must satisfy B; p; = p; A;. Alterna-
tively, we have the expression:
Bipi = (Pit1 —pi) My _ (pi —pi—1) M1 — DA, .

t;-mniq t;-n;_g

In the following, we make use of Theorem 4.1 to design
a control law that asymptotically leads the nodes to a local
minimum configuration for Ep. Unlike [8], we handle the
cases where the Pg(p1,...,pn) is not necessarily bounded
and where Assumptions (i) and (ii) are not necessarily met.

Lemma 4.2: Let p1 = v(s1), p2 = (s2) € 9Q, with
s1 < s2. The angle £ = £(t1,t2) can be obtained as:

& = atan2(ty) — atan2(t1) = atan2(ns) — atan2(ny),

where the function atan2: R2 — R is defined by
atan2(v) = £((1,0),v), for v € R%
Let Qr, Qqi, Qur and Qpy denote the four quadrants in
R2 Define the sets S; = (QrUQm) \ (0 (QIUQH)) and
= Q1 U Qqv. Observe that for v = (v!,v?) € R?\ {0},
we can write:

M

arctan , if ves,

(S

atan2(v) =

< C‘C

arctan ( o7 ) +m, if v € Ss.
Therefore we can define §; = A(t;,t;41) as the function

& R? x R? — R such that:

7 2

2 2

arctan (t1 ) — arctan (t—l) ,
5

i+1
if t;,ti41 € S1 or t;,t;41 € 5o,

&i(titip1) =
2

arctan (i’l“) — arctan ( ) + 7,
i+1

if t;11 € 51, t; € Sy or vice-versa.

The function &;(t;,t;+1) is discontinuous in the regions:

R? [ t; € S1, tit1 € 0(QiUQN)},
R? | t; € (Q1UQm), tit1 € Sa}.

D, = {(tiati—i-l) S R? x
Dy = {(ti,ti+1) S R? x
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Since &;(t;,t;+1) is discontinuous, its gradient is not well
defined everywhere. However, the gradient admits a contin-
uous extension to R? x R2:

%(thtiﬁ*l) = (tzzﬁ _t'}) )

tq,t2 € R?.
o, 1,02

Let us use this information to define our control law. Denote
by R = [~00,+0o0] and define the following values for i,
XeR ie{l,...,N}:

(Pz‘ - pi—l) R

) ti-m;_; #0,
Hi = ti-n;
+ 00, otherwise ,
(Pit1 — pi) “ M1
t; - n 0
Ai = t; i B 20,
+ o0, otherwise .

The distances p; and \; are graphically shown in Figure 5.
Observe that because @) is strictly convex, p; and \; can not
be both +00. Now, by means of \; and pu;, we define the
dynamical system:

piz—satv(ui—)\i)ti, ’iE{L...,N}, (10)

where the function sat,: R — R, defined for some positive
saturation value v € (0, +00), is given by:

T, x| <w
sat, () = { N o] <

Vs x| >v.

We use the convention | + co| =
operations in R.

Theorem 4.3: Let the number of nodes N be
N > 3. The control law (10) decreases monotonically

Eo(Q, Pe(p1,...,pN)). A critical point (p3,...,pJ)
satisfies A\f = pf forall i € {1,...,N}.

+ 00, and the usual

Again, we omit the proof of this result for space reasons and
we refer to a forthcoming technical report.

Simulations of outer-polygon approximation algorithm:
Figure 6 shows the result of the implementation of the outer-
polygon approximation algorithm. The eleven nodes are on
the contour described by (5).
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Fig. 6. Implementation of outer-polygon approximation algorithm.

A. Discrete-time outer-polygon approximation algorithms

It is easy to prove that an algorithm analogous to Algo-
rithm 1 in the previous section guarantees convergence to a
local extremum of Eo. We state the analogous results here
omitting the corresponding proof.

Algorithm 3. Assume each node p; has knowledge about its
own label number i € {1,...,N}. At each discrete time
instant that we index by k£ € N we define:

q(pi-1(k), piv1(K)),
where G(p;—1(k),pi+1(k)) is the closest point to p;(k) on

)
the arc in Q) from p;_1 (k) to p;11(k) such that its tangent
at 0Q) satisfies \; = p;.

ift=%k mod N,

(k1) =
pik+1) { ifi#k modN,

V. OUTER MINUS INNER POLYGON APPROXIMATION
ALGORITHMS

An alternative cost function that quantifies the approxi-
mation of the boundary of a convex body @, is provided by
the measure Es(Pgr(p1,...,pN), P1(p1,-..,pnN)). Here we
establish new computations of %, i€ {l,...,N}, when
the outer polygon is well defined. This will lead to a new
type of gradient decent algorithm.

Lemma 5.1: Let p;, piy1 € 0Q. Assume that t; 1 X t; #
0. Then, the area A of the triangle formed by the lines
passing through p; 1 —p;, £(p;) and £(p;+1) can be expressed
as:

A= 1 (0 - (pi = pit1))(Mit1 - (pi — Pit1))
2 (ni X l’li+1) - e3

(1)

where e; = (0,0, 1) and n; X n; 14 is interpreted as a vector
in R3.
Let us denote by A(p;, pit+1,ni,n;41) = A; the area (11)
corresponding to p;, p;4+1. We can write our cost function as
ES(PE(pla s 7pN)7PI(p17 cee 7pN))
N
= Z A(pis Pig1, M, Ny 1).
i=1
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If we consider p;, n;, as functions depending on the param-
eter s € [0, 1], we have that

OEs(Pg(p1;---,pN), Pr(p1, - ,pn)) _ 0Ai  9Aia
0s 0s 0s '’
where we have used the shorthand notation A;, i €
{1,...,n}. Now for example, we can develop the expression
for 814(197:5_1’ as follows:
0A;—1  0A;_10p;  0A;_1Ony
ds  Op; Os On; Os

On the other hand, the Frenet-Serret equations imply

dt dn

Tt~ r(so)n(so) , Tspon K(s0)t(s0)

where t and n are tangent and normal vectors such that
t X n points towards the reader. Therefore, the expression in
the partial derivative of A;_; admits the following rewriting:

04 _[04i _
k(s o,

B 0A; N
Os Op; v

In the following we include the explicit expressions for
i—1 i
Op;

and ‘=1 Let us use the notations:

81’1i

81’li

0Ai— [3147:_1 8A¢_1]

Op; | oz Oys onl 7 on?

Then, one can compute that:

0Ai-1  (pi—pi1) - (2nj_yn}, 0,1 xnf)
or;, 2(n;_; x n;) ’
QA1 (pi—pi-1)(mi—1 X n, 2n}_n})
oy 2(n;—; x nj") ’
0A; 4 _ n%(nifl < (pi —Pi71)2)
on} 2(n;_1 x nj)? ’
0A; 1 o n%(nifl - (pi —Pi71)2)
on? 2(n;—1 x n) ’

where n;_; x nj = nl n? + nln? ;. To summarize, the

gradient control law for each node is:

04

) 04,
—pi =

Op;

0A;_1
8111'

0A; ]

— k(ss) [ on

Opi

Simulations for the inner/outer polygon approximation:
Figure 7 show the results of inner/outer polygon approxima-
tion. The eleven nodes are on the contour described by (5).

0Ai—y |:6A1',—1 3A7:_1}
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Fig. 7. Implementation of inner/outer-polygon approximation algorithm

VI. CONCLUSIONS

We have discussed various geometric optimization prob-
lems and corresponding gradient flows. Future works will
focus on nonsmooth contours such as polygons, non-convex
sets, and more general algorithms for optimal interpolation
of boundaries.
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