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Abstract— This paper proposes power-aware coverage algo-
rithms for mobile sensor networks. In order to balance the
energy expenditure across the network and make nodes with
high power compensate for those with low power, we propose
two modified Lloyd-like algorithms. The first limits the velocity
at which each node can travel, while the second incorporates
a new definition of region of dominance depending on energy
content. We introduce a power aware aggregate cost function
and analyze the algorithms performance with regards to it.
Various simulations illustrate this performance and compare
both algorithms.

I. INTRODUCTION

Mobile and static sensor networks hold the promise to
impact a large number of applications for exploration, envi-
ronmental monitoring, safety and recovery operations. It is
envisioned that next network generations will make use of
small low power mobile devices that operate in a distributed
manner. Due to their modest sizes and weights, these systems
will have limited resources to put into their different com-
munication, computation and motion sub capabilities. Power
management becomes then a crucial issue for these systems.

Motion coordination algorithms being proposed for multi-
vehicle systems should also include power considerations.
In particular, power redistribution over the multi-vehicle
system could be employed together with coordination plans
to diminish the possibilities of single agent failure. In this
regard, the overall sensor network lifetime of a coordination
algorithm or, the operational time until a first agent runs
out of batteries, could be considered as another robustness
measure for these distributed systems. Network-wide energy-
minimizing policies can, combined with individual energy-
minimizing laws, further contribute to limit the overall power
consumption.

The topic of power-aware algorithms is the subject of
extensive research in the areas of static sensor networks
and mobile middleware, see e.g., [1], [2], [3], [4], [5]. To
the best of our knowledge, there has been limited treatment
of power-awareness in the cooperative control area, see [6],
[7]. Related work is that where distributed Receding Horizon
strategies have been investigated to plan optimal local vehicle
trajectories or optimization of formations in multi-vehicle
systems, see e.g., [8], [9], [10]. Power reallocation would be
complementary to an approach that proposes global optimal
energy motion coordination schemes.
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This paper is a first attempt to analytically address the
power-aware question in the context of coverage problems.
Thus we propose two power-aware Lloyd-like algorithms
for the coverage of the convex region of an N -dimensional
space. Our objective is to determine algorithms that (i) aug-
ment the network lifetime, and (ii) achieve task redistribution
according to the energy content of agents. The first algorithm
includes agents’ energy dynamics in the usual Lloyd algo-
rithm, which guarantees that agents do not run out of energy.
The second algorithm makes an additional use of a power-
aware partition of the space to redistribute the coverage load
across the network. Unlike the tessellations used to account
for the cost of a location in e.g. market area analysis in
locational optimization, here we use the power weighted

metric tessellation. This enables the definition of simpler,
convex regions of dominance for each agent, which results
in faster computations. We show that the second proposed
algorithm is gradient descent with respect to a modified
power-aware coverage cost function, and we compare both
algorithms in simulation. As expected, simulations indicate
that the second algorithm more effectively redistributes the
dominance region assigned to each agent depending on their
power.

The paper is organized as follows. In Section II we recall
useful concepts from locational optimization and introduce
generalized Voronoi partitions associated with weighted met-
rics. In Section III, we develop a power-aware partition with
its associated cost function. We introduce two power-aware
algorithms in Section IV and analyze them from the point
of view of a power-aware coverage cost function. Section V
discusses the performance of the algorithms in simulation.
Finally we point out lines for future research in Section VI.

II. PRELIMINARIES AND NOTATION

In this section we review some known facts about Voronoi
partitions and locational optimization problems defined using
general metric functions. Our main reference is [11] for
spatial tessellations, and [12] for an introduction to the
discipline of locational optimization.

A. Generalized Voronoi partitions

Let Q be a convex polytope in RN including its interior,
and let ‖ · ‖ denote the Euclidean norm. We will use R≥0

to denote the set of positive real numbers. We denote the
interior of Q by Int(Q). We call a map φ : Q → R≥0 a
distribution density function if it represents a measure of a
priori known information that some event takes place over Q.
Equivalently, we can consider Q to be the bounded support of
the function φ. Let P = (p1, . . . , pn) ∈ Qn be the location
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Fig. 1. Comparison between ordinary Voronoi regions (left) and power-
weighted regions (right). Agent weights are in parenthesis. Note that, in the
power-aware regions, agent 1 is not in its region of dominance and that
agent 3 has no region of dominance in Q.

of n sensors, each moving in the space Q. Along the paper,
we interchangeably refer to the elements of the network as
sensors, agents, vehicles, or robots. Because of noise and loss
of resolution, the sensing performance at point q taken from
the ith sensor at the position pi degrades with the distance
‖q−pi‖ between q and pi; we can describe this degradation
with a non-decreasing differentiable function f : R≥0 →
R≥0. Thus, f (‖q − pi‖) provides a quantitative assessment
of how poor the sensing performance is.

A partition of RN is a collection of n polytopes A =
{A1, . . . , An} with disjoint interiors whose union is RN . The
ordinary Voronoi partition of RN generated by P is V(P ) =
{V (p1), . . . , V (pn)}, where for i ∈ {1, . . . , n},

V (pi) = {q ∈ R
N | ‖q − pi‖ ≤ ‖q − pj‖, ∀j '= i} .

When is clear from the context we will use the shorthand
notation Vi = V (pi). The mass and the centroid of the
Voronoi region Vi, i ∈ {1, . . . , n} are defined as:

MVi
=

∫

Vi

φ(q)dq , CVi
=

1

MVi

∫

Vi

qφ(q)dq . (1)

If Q is the bounded support of φ, then MVi
< +∞ and

CVi
∈ Int(Q); see [13]. When MVi

= 0, then we will
consider any point in RN as a centroid for Vi. When two
Voronoi regions Vi and Vj are adjacent (i.e., they share an
edge), pi is called a Voronoi neighbor of pj . The set of
indices of the Voronoi neighbors of pi is denoted by Ni.
Clearly, j ∈ Ni if and only if i ∈ Nj . We also define the
(i, j) face as ∆ij = Vi ∩ Vj .

With the introduction of agent weighting, the correspond-
ing generalized Voronoi diagram must use weighted met-

rics. The following weighted metrics yield non-equivalent
Voronoi partitions. The multiplicatively weighted, additively

weighted, and power metrics [11] are:

dM
w (q, p) =

1

w
‖p − q‖ ,

dA
w(q, p) = ‖q − p‖ − w ,

dP
w(q, p) = ‖q − p‖2 − w ,

for any q, p ∈ RN . The generalized Voronoi regions as-
sociated with these metrics are non-equivalent and have
very different characteristics. In particular, the generalized
Voronoi regions associated with dM

w could be non-convex,
and may have holes or disconnected boundaries. Conversely,

the regions associated with dA
w may be empty, are star-

shaped with respect to the generator, and the boundaries are
defined by either hyperbolic arcs or a straight line segments.
Regions associated with dP

w are, notably, convex polygons.
Generators, however, might not be in their regions.

We will make use of the power metric to model the energy
content of a set of mobile sensors. This choice is motivated
by the great computational simplification provided when
dealing with convex polytopes. We denote the partition cre-
ated by the power metric as Ve(P ) = {V e(p1), . . . , V e(pn)}
where for each i ∈ {1, . . . , n},

V e(pi) = {q ∈ R
N | dP

wi
(q, pi) ≤ dP

wj
(q, pj) , ∀j '= i} .

When it is clear from the context, we will use the shorthand
notation V e

i = V e(pi). Defined in an analogous manner
to (1), MV e

i
and CV e

i
will denote the mass and the centroid

of the generalized Voronoi region V e
i . When MV e

i
= 0,

then we will consider that any point in RN is a centroid
for V e

i . Similarly as before, each generalized Voronoi region
V e

i generated by pi has a set of neighbors N e
i , and a

pair of neighbors under the power metric share the face
∆e

ij = V e
i ∩ V e

j .

Figure 1 illustrates the difference between Voronoi and
generalized Voronoi regions, when these are intersected with
a convex polytope Q. In the figure, Q ⊂ R2, where the
vertices of Q are at (0, 0), (15, 0), (12, 10), (5, 15), (0, 10).

B. Locational optimization problems

Locational optimization problems consider the minimiza-
tion of the following type of cost functions:

H(P,A) =
n

∑

i=1

∫

Ai

f(‖q − pi‖)φ(q)dq . (2)

Minimization is understood with respect to P ∈ RNn and a
partition A.

This definition assumes that sensors are identical, or
homogeneous. In some instances, it is more appropriate to
consider that agents do not have the same capabilities. This
can be reflected by the introduction of weights.

Let W = (w1, . . . , wn) ∈ Rn be a tuple of real parameters
which represent some weights associated with each of the
locations P = (p1, . . . , pn), respectively. The cost functions
in (2) can then be extended to:

He(P, W,A) =
n

∑

i=1

∫

Ai

f(dwi
(q, pi))φ(q)dq , (3)

where dw : RN ×RN → R≥0 is a weighted metric for some
w ∈ R.

III. POWER-AWARE COVERAGE METRIC

Here we introduce a power-metric cost function to assess
the coverage provided by a mobile network. The power
content of vehicles will be specified through the inclusion
of a certain weight in measuring the distance to points in
the space.
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Consider a tuple of points (p1, . . . , pn) representing the
positions of n identical sensors moving in Q. Assume that
each pi has an “energy content” quantified by Ei ∈ [0, E] ⊆
R for all i ∈ {1, . . . , n}, where E represents the maximum
battery capacity of each sensor.

Let E −Ei be the power reserve of agent i ∈ {1, . . . , n},
which defines the weight ei = Ei−E, i ∈ {1, . . . , n}. Then,
the cost of a point pi to cover a point of the space q ∈ Q
becomes:

dP
ei

(q, pi) = ‖q − pi‖
2 − ei = ‖q − pi‖

2 + (E − Ei),

for all i ∈ {1, . . . , n}. In this way, dP
ei

(q, pi) ≥ 0 for all
i ∈ {1, . . . , n}. Observe also that we can interpret dP

ei
as the

distance between extended states (q, E) and (pi, Ei), i ∈
{1, . . . , n}.

In other words, the cost will depend on how physically
close the sensor pi is to q and on how “charged” it is;
i.e., how close Ei is to the maximum battery capacity E.
Let E = (e1, . . . , en), then from (3) we obtain a cost that
takes into account that sensors are not equal:

He(P, E ,Ve(P )) =
n

∑

i=1

∫

V e
i

dP
ei

(q, pi)φ(q)dq

=

∫

Q

min
i∈{1,...,n}

f(dP
ei

(q, pi))φ(q)dq . (4)

Roughly speaking, (4) is the expected minimum distance
of points q ∈ Q to the set of sensors p1, . . . , pn, where
the distance includes energy considerations. For example, a
point equidistant from two sensors will fall in the region of
dominance of the one with greater energy.

Remark 1: Another weighted distance metric could be

dP
Ei

(q, pi) = ‖q − pi‖
2 − E2

i .

This would still produce a power-weighted Voronoi diagram,
but the derivation for the above metric is more involved.
The above result does not, however, affect the focus of this
paper, which is introducing power considerations during the
execution of coverage algorithms. •

Function (4) naturally extends the cost:

H(P,V(P )) =

∫

Q

min
i∈{1,...,n}

f(‖q − pi‖)φ(q)dq . (5)

considered in [14]. Note also that in the limit case for
which the energy available to each agent E is very large;
i.e., for which any finite-length motion will not substantially
decrease it, then the minimization of (4) is equivalent to the
minimization of the usual cost (5).

To see this, suppose that Ei is specified as a time depen-
dent function Ei : R → [0, E], for i ∈ {1, . . . , n}. Suppose
Ei(t) ≈ Ej(t) after a finite time t. This implies:

dP
ei

(q, pi) ≤ dP
ej

(q, pj)

⇐⇒ ‖q − pi(t)‖
2 ≤ ‖q − pj(t)‖

2 , ∀ q ∈ Q .

Then Vi(t) ≈ V e
i (t) for all i ∈ {1, . . . , n} and minimizing

He is equivalent to minimizing H.

In any case, the minimization cost He leads to final
configurations for coverage with a more balanced region
assignment based on the power content of agents.

IV. POWER-AWARE GRADIENT DESCENT FLOWS

In this section we present power-aware control algorithms
that minimize H in (5) and He (4). In the following we
assume that the motion of each sensor can be fully controlled
as ṗi = ui, i ∈ {1, . . . , n} and we consider the energy
dynamics:

Ėi =

{

−u2
i , if Ei ≥ 0 ,

0 , if Ei = 0 .
(6)

Lloyd’s algorithm, see [14], with the additional energy
dynamics is then expressed as:

ṗi = −sat(pi − CVi
) ,

Ėi = −‖sat(pi − CVi
)‖2 ,

(7)

where

sat(pi − CVi
) =















pi − CVi
, if ‖pi − CVi

‖ ≤ 1 ,

pi − CVi

‖pi − CVi
‖

, if ‖pi − CVi
‖ > 1 .

When energy restrictions are not considered, Lloyd’s al-
gorithm is a gradient descent algorithm for H, see [14]. A
continuous, power-aware version of this algorithm could be
defined as follows:

ṗi = −k(Ei) sat(pi − CVi
) ,

Ėi = −k(Ei)
2 ‖sat(pi − CVi

)‖2 ,
(8)

where k : [0, E] → [0, 1] is such that k(x) =
x

E
. The

introduction of k(Ei) limits velocity based on the current
energy level Ei.

Both algorithms (7) and (8) are gradient descent algo-
rithms for the ordinary cost function H. However, they are
not gradient descent algorithms for the weighted cost (4).
Consider instead:

ṗi = −k(Ei) sat(pi − CV e
i
) ,

Ėi = −k(Ei)
2(t) ‖sat(pi − CV e

i
)‖2 .

(9)

Observe that when V e
i ∩ Q = ∅, then MV e

i
= 0 and we can

consider that pi = CV e
i

.
Lemma 2: The choice of the k(Ei) function in the dy-

namics (8) and (9) guarantees that Ei only approaches zero
asymptotically.

Proof: We prove this fact only for (8), since the proof
for (9) is analogous. From (8), we have that:

Ėi = −
E2

i

E2
‖ sat(pi − CVi

)‖2,

which implies that

Ei(t) =
E2

1 + E
∫ t

0 ‖ sat(pi − CVi
)‖2(s) ds

,

that is, Ei(t) decreases with time, but in the worst case it
will be zero only at infinity.
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In order to prove that algorithm (9) is a gradient descent
algorithm for He, we first compute the gradient and Lie
derivative of (4).

Theorem 3: Let He be given by (4). Consider a general
vector field X = (X1, . . . , Xn), where

Xi = (Xpi
, XEi

) : Q × [0, E] → R
N × R , (10)

for all i ∈ {1, . . . , n}. Then, the Lie derivative of He with
respect to X is given as:

LXHe =
n

∑

j=1

(

2MV e
j
(pj − CV e

j
)Xpj

− MV e
j
XEi

)

. (11)

Proof: Since the density function φ has bounded
support on Q, we can consider that the integration domain
in He is RN . All the subsequent computations are done with
this simplification. The Lie derivative of He with respect to
X becomes:

n
∑

i,j=1

[

Xpj

∂

∂pj

∫

V e
j

(

‖q − pi‖
2 + (E − Ei)

)

φ(q)dq

+ XEj

∂

∂Ej

∫

V e
i

(

‖q − pi‖
2 + (E − Ei)

)

φ(q)dq
]

.

Since the regions V e
i are convex, we can compute the

foregoing partial derivatives via the Conservation of Mass
law [13]:

d

dx

∫

Ω(x)
ϕ(q, x)dq =

∫

Ω(x)

dϕ(q, x)

dx
dq

+

∫

∂Ω(x)
ϕ(γ, x)nt(γ)

∂γ

∂x
dx ,

where n : ∂Ω(x) → RN , q 2→ n(q) denotes the unit outward
normal to q ∈ ∂Ω(x), and γ : D → Ω(x), D ⊆ RN denotes
a parametrization of the family {Ω(x) ⊆ RN |x ∈ D} of
star-shaped sets. Let d̄P

ei
(q, pi) = dP

ei
(q, pi)φ(q). Using the

Conservation of Mass law,

∂

∂pj

n
∑

i=1

∫

V e
i

d̄P
ei

(q, pi)dq =

∂

∂pj

∫

V e
j

d̄P
ej

(q, pj)dq +
∑

i∈N e
j

∂

∂pj

∫

V e
i

d̄P
ei

(q, pi)dq

=

∫

V e
j

∂

∂pj
d̄P

ej
(q, pj)dq +

∫

∂V e
j

d̄P
ej

(q, pj)n
t
j

∂γj

∂pj
dγj

+
∑

i∈N e
j

∫

∂V e
i

d̄P
ei

(q, pi)n
t
i

∂γi

∂pj
dγi .

Note that the boundary V e
j is the union of planes ∆e

ij , i ∈
N e

j , such that

∫

∂V e
j

d̄P
ej

(q, pj)n
t
j

∂γj

∂pj
dγj =

∑

i∈N e
j

∫

∆e
ij

d̄P
ei

(q, pi)n
t
j

∂γj

∂pj
dγj .

Note also that the normals nj = −ni are constant along ∆e
ij ,

and that d̄P
ej

(q, pj) = d̄P
ei

(q, pi) when q ∈ ∆e
ij , ∀ i ∈ N e

j .
Then, we have that:

∫

∂V e
j

d̄P
ej

(q, pj)n
t
j

∂γj

∂pj
dγj

+
∑

i∈N e
j

∫

∂V e
i

d̄P
ei

(q, pi)n
t
i

∂γi

∂pj
dγi = 0 .

and therefore,

∂

∂pj

n
∑

i=1

∫

V e
i

d̄P
ei

(q, pi)dq =

∫

V e
j

∂

∂pj
d̄P

ej
(q, pj)dq

=

∫

V e
j

∂

∂pj

(

‖q − pj‖
2 + (E − Ej)

)

φ(q)dq

= 2

∫

V e
j

(pj − q)φ(q)dq = 2MV e
j
(pj − CV e

j
) .

The analysis of the partial derivatives with respect to Ei can
be repeated in an analogous way. We have that:

∂

∂Ej

n
∑

i=1

∫

V e
i

d̄P
ei

(q, pi)dq =

∫

V e
j

∂

∂Ej

(

‖q − pj‖
2 + (E − Ej)

)

φ(q)dq

= −

∫

V e
j

φ(q)dq = −MV e
j

.

Therefore,

LXHe =
n

∑

j=1

(

2MV e
j
(pj − CV e

j
)Xpj

− MV e
j
XEj

)

.

From equation (11) we clearly see that the terms −MV e
j
XEj

are going to augment the value of the cost function as the
energy content of each agent decreases. Similarly, any energy
replenishing strategy will decrease the value of He. Using
Theorem 3 we can now state:

Proposition 4: Let the vector field X in (10) be defined
by (9). Then the flow defined by X is a gradient descent
algorithm for He. Furthermore, the flow converges to the
invariant set

{(p1, E1, . . . , pn, En) ∈ Qn × [0, E]n |

pi = CV e
i

or Ei = 0, ∀i ∈ {1, . . . , n}} .
Proof: The substitution of the dynamics for pi and Ei

into (11) lead to:

LXHe =
n

∑

i=1

MV e
i
(pi − CV e

i
)sat(pi − CV e

i
)k(Ei) (−2 + k(Ei)) .

Observe that dHe

dt
≤ 0 since (pi−CV e

i
)sat(pi−CV e

i
) ≥ 0 and

0 ≤ k(Ei) < 2. The set of points (pi, Ei) where LXHe = 0
is given by:

pi(t) − CV e
i
(t) = 0 , or k(Ei)(t) = 0 .
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Since Q is a compact set, by LaSalle’s invariance principle;
see [15], the flow (9) will approach the largest invariant set
contained in LXHe = 0.

V. SIMULATIONS

In this section, we present comparisons of the performance
of the different control laws proposed in the previous sec-
tions. In all simulations, we define Q ⊂ R2, where the
vertices of Q are at (0, 0), (15, 0), (12, 10), (5, 15), (0, 10).
We also consider a density function φ : Q → R≥0 given as
φ(x1, x2) = exp

[

− 1
9

(

(x1 − 8)2 + (x2 − 8)2
)]

.

Starting from the same initial positions in all runs, the
initial energy supply of 8 robotic agents is Ei = 10, i ∈
{1, . . . , 4} and Ei = 2 for i ∈ {5, . . . , 8}. In addition, we
assume agents become incapacitated when Ei ≤ 0.5.
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Fig. 2. Three simulation runs using law (7) (a), law (8) (b), law (9) (c).
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Fig. 3. Energy aware cost function evaluation using law (7) (light solid),
law (8) (dashed), and law (9) (heavy solid). All costs are shifted such that
the minimum cost of the three simulations is 1.

TABLE I

FINAL ENERGY AND φ-WEIGHTED AREAS OF DOMINANCE

Law (7) Law (8) Law (9)
Agent Ei Area Ei Area Ei Area

1 3.59 6.74 5.44 5.76 5.47 9.59
2 0.89 5.96 3.69 3.62 4.13 4.14
3 1.67 8.39 4.21 4.17 4.27 5.59
4 2.61 6.04 6.28 4.07 4.18 4.49
5 0.50 0.00 1.23 2.67 1.27 1.07
6 0.50 0.00 1.39 3.29 1.51 0.80
7 0.46 0.00 1.09 2.49 1.09 0.79
8 0.44 0.00 1.62 1.06 1.56 0.67

The simulation in Figure 2(a) illustrates failure of the four
vehicles with low initial energy content. Because movement
of agents is not dependent on energy, agents with little energy
cease to function. Consequently, the remaining four vehicles
must repartition the assigned region, increasing each agent’s
area of dominance.

The second simulation row in Figure 2(b) uses law (8),
which allows the vehicles to expend energy proportional to
their reserves. However, is not optimal in the power-aware
sense as defined by (4). That is, the region of dominance
of each agent takes no consideration of the energy content
of neighbors, as is illustrated in the cost-function evaluation,
Figure 3. The power-aware cost function, He, increases along
the flow evolution.

Observe that the graphs in Figure 3 have been plotted up
to a time when agents have reached their final configurations
(centroids) or their energy content becomes less or equal than
0.5.

The final simulation row in Figure 2(c) utilizes the full
power-aware algorithm from (9). Through the use of power-
aware partitions, Ve(P ), as opposed to ordinary partitions,
V(P ), the resulting cost function He is minimized, as is
stated by Proposition 4. The difference between the power
weighted and ordinary Voronoi regions is revealed through
the comparison of Figures 2(b) and 2(c), and Table I. Table I
shows in detail the final energy content of each node with
the area of its region of dominance. We can see (i) a more
balanced energy consumption among the agents using law (9)
and (ii) the area of the region of dominance of each agent
better reflects their energy capacity. In particular, the sum
of the areas for the agents 1, 2, 3, 4 is larger with (9) than
with (8). In general the final outcome depends strongly on
the initial conditions. On average we have seen the behavior
that we show here.

To explore the energy balancing in more detail, we include
a simulation in 1D. In this simulation, four agents have the
same initial positions, and varying initial energies. Agents
1, 2, 3, 4 start at positions 3.3, 4.6, 5.1, 5.3 with energies
15, 5, 2, 1, respectively, and they must cover the region q ∈
[0, 20], with φ(q) ≡ 1.

The simulation shows the energy expenditure balancing
that takes place to some extent using the power-aware
scheme. Although energy expenditure might be higher in
each node as compared with that as a result of law (8),
we can observe a certain balancing that makes agents with
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Fig. 4. 1D position and energy evolution comparison between law (8)
(light lines) and law (9) (heavy lines) with agent numbers as indicated.
Initial energy contents are 15, 5, 2, 1 for agents 1, 2, 3, 4 respectively.

lower energy spend less power using (9) than using (8). In
this simulation, the node with least energy spends less at
the cost of all other nodes spending more. The increased
expenditure of power on each of the other agents is also
explained by the fact that they have to move further to
reach the centroids of their larger regions of dominance.
The balancing is most noticeable when the initial energies
satisfy max Ei(0) 4 min Ei(0) for i ∈ {1, . . . , n}. As with
Figure 3, the graphs in Figure 4 have been plotted up to a
time when either agents’ positions have almost stabilized or
E ≤ 0.5.

VI. CONCLUSIONS AND FUTURE WORK

We have presented new power-aware algorithms for cov-
erage problems. We have introduced a new cost function that
allows us to analyze and compare the performance of these
algorithms. In particular, the second algorithm leads to a final
configuration where agents with higher power are assigned
regions with higher area.

More involved energy and vehicle dynamics are also a
point of future research. In particular we will investigate the
impact energy harvesting capabilities of vehicles due to, e.g.,
solar panels as well as developing gradient decent algorithms

for nonholonomic dynamics.
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