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On Synchronous Robotic Networks—Part I:
Models, Tasks, and Complexity
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Emilio Frazzoli, Member, IEEE

Abstract—This paper proposes a formal model for a network of
robotic agents that move and communicate. Building on concepts
from distributed computation, robotics, and control theory, we de-
fine notions of robotic network, control and communication law,
coordination task, and time and communication complexity. We
illustrate our model and compute the proposed complexity mea-
sures in the example of a network of locally connected agents on a
circle that agree upon a direction of motion and pursue their im-
mediate neighbors.

Index Terms—Complexity measures, cooperative control, coor-
dination tasks, distributed algorithms, formal models, robotic net-
works.

I. INTRODUCTION

A. Problem Motivation

THE study of networked mobile systems presents new chal-
lenges that lie at the confluence of communication, com-

puting, and control. In this paper, we consider the problem of de-
signing joint communication protocols and control algorithms
for groups of agents with controlled mobility. For such groups
of agents, we define the notion of communication and control
law by extending the classic notion of distributed algorithm in
synchronous networks. Decentralized control strategies are ap-
pealing for networks of robots because they can be scalable and
they provide robustness to vehicle and communication failures.

One of our key objectives is to develop a theory of time and
communication complexity for motion coordination algorithms.
Hopefully, our formal model will be suitable to analyze objec-
tively the performance of various coordination algorithms. It
is our contention that such a theory is required to assess the
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complex tradeoffs between computation, communication, and
motion control or, in other words, to establish what algorithms
are scalable and implementable in large networks of mobile au-
tonomous agents. The need for modern models of computation
in wireless and sensor network applications is discussed in the
well-known reports [1], [2].

B. Literature Review

The literature on multirobot systems is very extensive. Ex-
amples include the survey in [3] and the recent special issue [4]
of the IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION.
Together with this literature, our starting points are the stan-
dard notions of synchronous and asynchronous networks in dis-
tributed [5], [6] and parallel [7] computation. This established
body of knowledge on networks is, however, not applicable to
the robotic network setting because of the agents’ mobility and
the ensuing dynamic communication topology.

An important contribution towards a network model of mo-
bile interacting robots is introduced in [8]. This model consists
of a group of identical “distributed anonymous mobile robots”
characterized as follows: No explicit communication takes
place between them, and at each time instant of an “activation
schedule,” each robot senses the relative position of all other
robots and moves according to a prespecified algorithm. A
related model is presented in [9], where as few capabilities
as possible are assumed on the agents, with the objective of
understanding the limitations of multi-agent networks. A brief
survey of models, algorithms, and the need for appropriate
complexity notions is presented in [10]. Recently, a notion of
communication complexity for control and communication
algorithms in multirobot systems was analyzed in [11]; see,
also, [12]. The general modeling paradigms discussed in [13]
and [14] do not take into account the specific features of robotic
networks. The time complexity of a class of coordinated motion
planning problems is computed in [15]. The convergence rate
and communication overhead of two cyclic pursuit algorithms
are examined in [16].

C. Statement of Contributions

A key contribution of this paper is a model for robotic net-
works, which properly takes into account some important dy-
namical, communication, and computational aspects of these
systems. Our model is meaningful and tractable, it describes fea-
sible operations and their costs, and it allows us to study trade-
offs in control and communication problems. We summarize our
approach as follows. A robotic network is a group of robotic
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agents moving in space and endowed with communication ca-
pabilities. The agents’ positions obey a differential equation and
the communication topology is a function of the agents’ rela-
tive positions. Each agent repeatedly performs communication,
computation, and physical motion in the following way. At pre-
determined time instants, the agents exchange information ac-
cording to the communication graph and update their internal
state. Between successive communication instants, the agents
move according to a motion control law, computed as a function
of the agent location and of the internal state. In short, a control
and communication law for a robotic network consists of a mes-
sage-generation function (what do the agents communicate?), a
state-transition function (how do the agents update their internal
state with the received information?), and a motion control law
(how do the agents move between communication rounds?). The
time complexity of a control and communication law (aimed at
solving a given coordination task) is the minimum number of
communication rounds required by the agents to achieve the
task. We also provide similar definitions for mean and total com-
munication complexity. We show that our notions of complexity
satisfy a basic well-posedness property that we refer to as “in-
variance under reschedulings.” To the best of our knowledge, the
proposal of studying the complexity of coordination algorithms
for synchronous robotic networks under a comprehensive mod-
eling framework presented here is a novel contribution on its
own.

Next, we illustrate the proposed framework with the example
of a network of agents moving on the unit circle under the ac-
tion of a novel agree-and-pursue control and communication
law. Despite the apparent simplicity, this example is remark-
able in that it combines a leader election task (in the internal
states) with a uniform deployment task (in the agents positions),
i.e., it combines two of the most basic tasks in distributed algo-
rithms and cooperative control, respectively. We prove that the
agree-and-pursue law achieves consensus on the agents’ direc-
tion of motion and equidistance between the agents’ positions.
Furthermore, we provide upper and lower bounds on the time
and total communication complexity of the proposed law. These
complexity estimates build on known and novel results on the
convergence rates of discrete-time dynamical systems defined
by tridiagonal Toeplitz and circulant matrices presented in the
Appendix. The companion paper [17] builds on this framework
to establish complexity estimates for motion coordination algo-
rithms that achieve rendezvous and deployment.

D. Organization

Section II presents a general approach to the modeling of
robotic networks by formally introducing notions such as com-
munication graph, control and communication law, and network
evolution. Section III defines the notions of task and of time and
communication complexity. We also study the invariance prop-
erties of the complexity notions under rescheduling. Section IV
provides bounds on the time and communication complexity
of the agree-and-pursue law. We gather our conclusions in
Section V. The Appendix contains the results on discrete-time
dynamical systems defined by tridiagonal Toeplitz and circulant
matrices.

E. Notation

We let . We let
denote the Cartesian product of sets . We let and

denote the strictly positive and nonnegative real numbers,
respectively. We let and denote the natural numbers and
the nonnegative integers, respectively. For , we let
and denote the Euclidean and the -norm of , respec-
tively (we also recall ). We define
the vectors and in . For

, we say that (respectively, ) if there
exist and such that for all

(respectively, for all ). If
and , then we use the notation .

II. A FORMAL MODEL FOR SYNCHRONOUS

ROBOTIC NETWORKS

Here, we introduce a notion of robotic network as a group
of robotic agents with the ability to move and communicate ac-
cording to a specified communication topology. Our model is
inspired by the synchronous network model in [5] and has con-
nections with the hybrid systems models in [13] and [14].

A. Physical Components of a Robotic Network

Here, we introduce our basic definition of physical quantities
such as the agents and the ability of agents to communicate. We
begin by providing a basic model for how each robotic agent
moves in space. A control system is a tuple , where

1) is a differentiable manifold, called the state space;
2) is a subset of containing 0, called the input space;
3) is a subset of , called the set of allowable initial

states;
4) is a -map with for

all .
We refer to and as a state and an input of
the control system, respectively. We will often consider con-
trol-affine systems, i.e., control systems with

. In such a case, we represent as the ordered
family of -vector fields on .

Definition II.1 (Network of Robotic Agents): A network of
robotic agents (or robotic network) is a tuple
consisting of the following:

1) , called the set of unique identifiers (UIDs);
2) is a set of

control systems, called the set of physical agents;
3) is a map from to the subsets of ,

called the communication edge map.
If for all , then the robotic network
is called uniform.

Remark II.2:
1) By convention, we let the superscript denote the vari-

ables and spaces corresponding to the agent with unique
identifier ; for instance, and denote
the state and the initial state of agent , respectively. We
refer to as a state of the
network.

2) The map models the topology of the communica-
tion service among the agents: At a network state
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, agent can send a message to agent
if the pair is an edge in .

Accordingly, we refer to as the
communication graph at . When and what agents commu-
nicate is discussed in Section II-B. Maps from to
the subsets of are called proximity edge maps and arise
in wireless networks and computational geometry, e.g., see
[18].

To make things concrete, let us present an example of robotic
network. Let be the unit circle and measure positions on
counterclockwise from the positive horizontal axis. For

, we let be the geodesic distance between and
defined by , where

and
are the path lengths from to traveling clock-

wise and counterclockwise, respectively. Here, is
the remainder of the division of by .

Example II.3 (Locally Connected First-Order Agents on the
Circle): For , consider the uniform robotic network

composed of identical agents of the
form . Here, is the vector field on de-
scribing unit-speed counterclockwise rotation. We define the
-disk proximity edge map on the circle by setting

if and only if and

B. Control and Communication Laws for Robotic Networks

Here, we present a discrete-time communication, continuous-
time motion model for the evolution of a robotic network. In
our model, the robotic agents evolve in the physical domain in
continuous time and have the ability to exchange information
(position and other variables) at discrete-time instants.

Definition II.4 (Control and Communication Law): Let be
a robotic network. A control and communication law for
consists of the following sets:

1) , an increasing sequence of time in-
stants with no accumulation points, called communication
schedule;

2) , a set containing the element, called the communi-
cation alphabet; elements of are called messages;

3) , , sets of values of some logic variables ,
;

4) , , subsets of allowable initial values for
the logic variables;

and of the following maps:
1) , called mes-

sage-generation functions;
2) , , called

state-transition functions;
3) ctl ,

called control functions.
If is uniform and if
ctl ctl, for all , then is said to be uniform and is
described by a tuple ctl .

We sometimes refer to a control and communication law as a
motion coordination algorithm. Roughly speaking, the rationale

behind Definition II.4 is the following: for all , to the
th physical agent corresponds a logic process, labeled , that

performs the following actions. First, at each time instant
, the th logic process sends to each of its neighbors in the

communication graph a message (possibly the message)
computed by applying the message-generation function to the
current values of and . After a negligible period of time
(therefore, still at time instant ), the th logic process
updates the value of its logic variables by applying the state-
transition function to the current value of and and to the
messages received at time . Between communication instants,
i.e., for , the motion of the th agent is determined
by applying the control function to the current value of , the
value of at time , and the current value of . This idea
is formalized as follows.

Definition II.5 (Evolution of a Robotic Network): Let be
a robotic network and be a control and communication law
for . The evolution of from initial conditions

and , is the collection of curves
and , satisfying

ctl

where and

with and . In the previous
equations, the curve (describing the messages
received by agent ) has components , given by

if , and
otherwise.

With slight abuse of notation, we let denote
the curves and , for .

Remark II.6 (Properties of Control and Communication
Laws): A control and communication law is:

1) Time-independent if all message-generation, state-transi-
tion, and control functions are time independent; in this
case, can be described by maps of the form

,
and ctl , for .

2) Static if is a singleton for all ; in
this case, can be described by a tuple

ctl , with
and ctl , for

.
3) Data-sampled if the control functions have the following

property: Given a time , a logic state , an
array of messages , a current state , and
a state at last sample time , the control input

ctl is independent of . In this
case, the control functions in can be described by maps
of the form ctl , for

.
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Remark II.7 (Idealized Aspects of Communication Model):
We refer to as a synchronous control and communication law
because the communications between all agents takes always
place at the same time for all agents.

The set is used to exchange information between two
robotic agents; the message indicates no communication.
We assume that the messages in the communication alphabet

allow us to encode logical expressions such as and
, integers, and real numbers. A realistic assumption on

would be to adopt a finite-precision representation for integers
and real numbers in the messages. Instead, in what follows, we
neglect any inaccuracies due to quantization.

In many uniform control and communication laws, the mes-
sages interchanged among the network agents are (quantized
representations of) the agents’ states and logic states. We
will identify the corresponding communication alphabet with

; the message generation function
is referred to as the standard

message-generation function.
Remark II.8 (Groups of Robotic Agents With Relative-Posi-

tion Sensing): Although we focus on robots with communica-
tion capabilities, at the cost of additional notation, it is possible
to include sensors in our treatment. A control and communica-
tion law can be implemented on a group of robots that can sense
each other’s relative position if the law 1) is static and uniform,
2) relies on communicating only the agents’ positions (e.g., the
message-generation function is the standard one), and 3) entails
a control function that only depends on relative positions (as op-
posed to absolute positions).

Remark II.9 (Congestion Models): Two types of congestion
problems affect a robotic network. First, wireless transmissions
can interfere: Node receives a message transmitted by node

only if all other neighbors of are silent, i.e., the transmis-
sion medium is shared among the agents. As the density of
agents increases, so does wireless communication congestion.
For uniformly randomly placed nodes in a compact environ-
ment, the maximum-throughput communication range of
each node decreases [19] with the number of nodes; in a -di-
mensional environment, the appropriate scaling law is

. This is referred to as the connectivity regime in
percolation theory and statistical mechanics. Second, agents can
collide: As the number of agents increases, so should the area
available for their motion or, vice-versa, their size should shrink.
In the approach proposed by [20], robots’ safety zones decrease
with decreasing robots’ speed. In other words, in a -dimen-
sional environment, individual nodes of a large ensemble have to
move at a speed decreasing with , and in particular, at a speed
proportional to . In summary, one way to incorporate con-
gestion effects into the robotic network model is to assume that
the parameters of the physical components of the network de-
pend upon the number of robots.

C. Agree-and-Pursue Control and Communication Law

Here, we present an example of a dynamic control and com-
munication law with the aim of illustrating the proposed frame-
work. The following coordination law is related to leader elec-
tion algorithms as studied in the distributed algorithms liter-
ature, e.g., see [5] (more will be said about this analogy in

Remark IV.3), and to cyclic pursuit algorithms as studied in
the control literature, e.g., see [21] and [16]. Despite the ap-
parent simplicity, this example is remarkable in that it com-
bines a leader election task (in the logic variables) with a uni-
form agent deployment task (in the state variables), arguably
two of the most basic tasks in distributed algorithms and coop-
erative control, respectively. Another advantage of the agree-
and-pursue law is that its correctness and performance can be
characterized as we will show in Section IV.

We consider the uniform network of locally connected
first-order agents in introduced in Example II.3. We now de-
fine the agree-and-pursue law, denoted by - , as the
uniform, time-independent, and data-sampled law loosely de-
scribed as follows:

[Informal description] The logic variables are
(the agent’s direction of motion) taking values in
(meaning clockwise and counterclockwise) and (the
largest UID received by the agent, initially set to the agent’s
UID) taking values in . At each communication round,
each agent transmits its position and its logic variables.
Among the messages received from agents moving towards
its position, each agent picks the message with the largest
value of . If this value is larger than its own value,
the agent resets its logic variable with the selected mes-
sage. Between communication rounds, each agent moves
in the counterclockwise or clockwise direction depending
on whether its logic variable is or . For

, each agent moves times the distance to the
immediately next neighbor in the chosen direction, or, if
no neighbors are detected, times the communication
range .

Next, we define the law formally. Each agent has logic vari-
ables , where , with ar-
bitrary initial value, and , with initial value
set equal to the agent’s identifier . In other words, we define

and we set . Each agent
operates with the standard message-generation function,

i.e., we set and ,
where . Define an ordering in the logic
set by saying that if

. Given a physical state , a logic state
, and an array of messages , the state-transition

function is defined by

if
otherwise

where

such that

and or

and

For , given a logic state , an array of
messages , and a state at last sample time , the
data-sampled control function ctl is
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Fig. 1. The agree-and-pursue control and communication law in Section II-C
with N = 45; r = 2�=40, and k = 7=16. Disks and circles correspond
to agents moving counterclockwise and clockwise, respectively. The initial po-
sitions and the initial directions of motion are randomly generated. The five
pictures depict the network state at times 0, 9, 20, 100, and 800.

if and

if . An implementation of this control and commu-
nication law is shown in Fig. 1. As we will show later, along the
evolution, all agents agree upon a common direction of motion
and, after suitable time, they reach a uniform distribution.

III. COORDINATION TASKS AND COMPLEXITY MEASURES

In this section, we introduce concepts and tools useful to ana-
lyze a control and communication law. We address the following
questions: What is a coordination task for a robotic network?
When does a control and communication law achieve a task?
And with what time and communication complexity?

A. Coordination Tasks

Our first analysis step is to characterize the correctness prop-
erties of a control and communication law. We do so by defining
the notion of task and of task achievement by a robotic network.

Definition III.1 (Coordination Task): Let be a robotic net-
work and let be a set.

1) A coordination task for is a map
.

2) If is a singleton, then the coordination task is said to be
static and can be described by a map

.
Additionally, let be a control and communication law for .

1) The law is compatible with the task
if its logic vari-

ables take values in , that is, if , for all .
2) The law achieves the task if it is compatible with

and if, for all initial conditions and
, the corresponding network evolution
has the property that there exists

such that for all .
Remark III.2 (Temporal Logic): Loosely speaking, achieving

a task means obtaining and maintaining a specified pattern in
the agents’ positions or in their logic variables. In other words,
the task is achieved if at some time and for all subsequent times
the predicate evaluates to true along system trajectories. It is
possible to consider more general tasks through more expres-
sive predicates on trajectories. Such predicates can be defined
through various forms of temporal and propositional logic, e.g.,
see [22].

Example III.3 (Direction-Agreement and Equidistance
Tasks): Consider the uniform network of locally con-
nected first-order agents in and the agree-and-pursue control

and communication law - with logic variables
taking values in . This network and this law
were introduced in Example II.3 and Section II-C, respectively.
There are two tasks of interest. First, we define the direc-
tion-agreement task by

if and only if

where , and
. Second, for , we define

the static equidistance task - by
- if and only if, for all

In other words, - is true when, for every agent, the dis-
tances to the closest clockwise neighbor and to the closest coun-
terclockwise neighbor are approximately equal.

B. Complexity Notions for Control and Communication Laws
and for Coordination Tasks

We are finally ready to define the key notions of time and
communication complexity. These notions describe the cost that
a certain control and communication law incurs while com-
pleting a certain coordination task.

Definition III.4 (Time Complexity): Let be a robotic net-
work and let be a coordination task for . Let be a control
and communication law for compatible with .

1) The (worst-case) time complexity to achieve with
from is

for all

where is the evolution of from
the initial condition .

2) The (worst-case) time complexity to achieve with is

The time complexity of a task can be also defined by taking
the infimum among all compatible laws that achieve it.

Next, we define the notions of mean and total communication
complexities for an algorithm. We begin by discussing the cost
of realizing one communication round. At each communication
round, each agent generates a certain number of messages, des-
tined to neighboring agents as defined by the communication
edge map. We indicate the set of all non-null messages gener-
ated during one communication round with
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To compute the cost of delivering all such messages to the in-
tended recipients, we introduce the following function.

Definition III.5 (One-Round Cost): A function
is a one-round cost function if ,

and implies .
A one-round cost function is additive if, for all

implies
.

More specific detail about the communication cost depends
necessarily on the type of communication service (e.g., unidi-
rectional versus omnidirectional) available between the agents.
We postpone our discussion about specific functions to
Section III-C.

Definition III. 6 (Communication Complexity): Let be a
robotic network, be a control and communication law that
achieves the task , and be a one-round cost function.

1) The (worst-case) mean communication complexity and the
(worst-case) total communication complexity to achieve

with from are,
respectively,

MCC

TCC

where and is the
evolution of from the initial condition .
(Here, mean communication complexity is defined only for

with the property that .)
2) The (worst-case) mean communication complexity

and the (worst-case) total communication com-
plexity to achieve with are the supremum of
MCC

and TCC

, respectively.
Note that by (worst-case) mean communication complexity

we intend the worst case over all initial conditions and the mean
over the time required to achieve the task.

Remark III.7 (Infinite-Horizon Mean Communication Com-
plexity): The mean communication complexity measures the
average cost of the communication rounds required to achieve
a task over a finite time horizon; a similar statement holds for
the total communication complexity. One might be interested in
a notion of mean communication complexity required to main-
tain true the task predicate for all times. Accordingly, the infi-
nite-horizon mean communication complexity of from ini-
tial condition is

IH-MCC

Note that a similar notion is presented in [11] for a different
robotic network model.

Remark III.8 (Communication Costs in Unidirectional and
Omnidirectional Wireless Channels): Here, we discuss some
modeling aspects of the one-round communication cost func-
tion described in Definition III.5. Broadly speaking, it is diffi-

cult to encompass with a single abstract model the cost of all
possible communication technologies. In unidirectional models
of communication (e.g., wireless networks with unidirectional
antennas), messages are sent in a point-to-point fashion. For this
model, we make the simplified convention that is pro-
portional to the number messages in , that is,

cardinality , where is the cost of sending a
single message. This one-round cost function is additive. This
number is trivially upper bounded by twice the number of edges
of the complete graph, which is . Therefore, we have
MCC .

In omnidirectional models of communication (e.g., wireless
networks equipped with omnidirectional antennas), a single
transmission made by a node can be heard by several other
nodes simultaneously. For this model, we make the simplified
convention that is proportional to the number of
turns employed to complete a communication round without
interference between the agents (this choice is related to the
well-studied media access control problem in wireless com-
munications). This number is trivially upper bounded by .
Therefore, we have MCC .

C. Law Rescheduling for Driftless Agents

In this section, we discuss the invariance properties of the
notions of time and communication complexity under the
rescheduling of a control and communication law. The idea
behind rescheduling is to “spread” the execution of the law over
time without affecting the trajectories described by the robotic
agents. Our objective is to formalize this idea and to examine
the effect on the notions of complexity introduced earlier. For
simplicity, we consider the setting of static laws; similar results
can be obtained for the general setting.

Let be a robotic network where
each physical agent is a driftless control system. Let

ctl be a static control and
communication law. Next, we define a new control and com-
munication law by modifying ; to do so, we introduce some
notation. Let , with , and let
be an -partition of , that is, are disjoint and
nonempty and . For , define the message-gen-
eration functions by

(1)

if and , and
otherwise. According to this message-generation function, only
the agents with unique identifier in will send messages at
time , with . Equivalently, this can be stated
as follows: According to (1), the messages originally sent at
the time instant are now rescheduled to be sent at the time
instants , where is defined
by . Fig. 2 illustrates this idea.

For , define the control functions ctl
by

ctl

ctl (2)
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Fig. 2. Under the rescheduling, the messages that are sent at the time instant t under the control and communication law CC are rescheduled to be sent over the
time instants t ; . . . ; t under the control and communication law CC .

if and , and ctl
otherwise. Here, is the inverse of , de-

fined by , and for ,
the function is the unique
linear map between the two time intervals. Roughly speaking,
the control law ctl makes the agent wait for the time intervals

, with , to execute any motion. Accord-
ingly, the evolution of the robotic network under the original law

during the time interval now takes place when all
the corresponding messages have been transmitted, i.e., along
the time interval . The following definition sum-
marizes this construction.

Definition III.9 (Rescheduling of Control and Commu-
nication Laws): Let be a robotic
network with driftless physical agents, and let

ctl be a static control and
communication law. Let with and let
be an -partition of . The control and communication law

ctl defined by (1)
and (2) is called a -rescheduling of .

The following result shows that the total communication
complexity of remains invariant under rescheduling.

Proposition III.10 (Invariance Under Rescheduling): With
the assumptions of Definition III.9, let

be a coordination task for . Then, for all

Moreover, if is additive, then, for all

MCC MCC

and, therefore, TCC TCC , i.e.,
the total communication complexity of is invariant under
rescheduling.

Proof: Let and denote the network
evolutions starting from under and ,
respectively. From the definition of rescheduling, one can verify
that, for all

for

for

(3)

By definition of , we have , for
all , and .

Let us rewrite these equalities in terms of the trajec-
tories of . From (3), one can write

, for all and .
Therefore, we have

for all , and

where we have used the rescheduled message-genera-
tion function in (1). Now, note that by (3),

, for all and all . There-
fore,
and we can rewrite the previous identities as

for all , and

which imply that
. As for the mean communication

complexity, additivity of implies

where we have used . We conclude
the proof by computing

where and .
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Remark III.11 (Appropriate Complexity Notions for Drift-
less Agents): Given the results in the previous theorem, one
should be careful in choosing the notion of communication
complexity to evaluate control and communication laws. For
driftless physical agents, rather than the mean communication
complexity mean communication complexity, one should really
consider the total communication complexity total commu-
nication complexity, since the latter is invariant with respect
to rescheduling. Note that the notion of infinite-horizon mean
communication complexity defined in Remark III.7 satisfies
the same relationship as mean communication complexity,
that is, infinite-horizon mean communication complexity

IH-MCC for any -partition
of .

IV. DIRECTION-AGREEMENT AND EQUIDISTANCE

As introduced in Example II.3, Section II-C and Example
III.3, consider the uniform network of locally connected
first-order agents in , the agree-and-pursue control and
communication law - , and the two coordination
tasks and - , respectively. The following result
characterizes the complexity to achieve these coordination
tasks with - .

Motivated by Remark II.9, we model wireless communica-
tion congestion by assuming that the communication range is
a monotone nonincreasing function of the
number of agents . It is convenient to define the function

that compares the sum of the communica-
tion ranges of all the robots with the length of the unit circle.

Theorem IV.1 (Time Complexity of Agree-and-Pursue Law):
In the limit as and , the network , the
law - , and the tasks and - together
satisfy the following:

1) - ;
2) if is lower bounded by a positive constant as

, then

- -

- -

If is lower bounded by a negative constant, then
- does not achieve - in general.

Proof: In the following four steps, we prove the two upper
bounds and the two lower bounds.

Step 1) We start by proving the upper bound in statement 1).
We claim that - ,
and we reason by contradiction, i.e., we assume that there exists
an initial condition which gives rise to an execution with time
complexity strictly larger than . Without loss of
generality, assume . For ,
define

In other words, agent is the agent moving counterclockwise
that has smallest counterclockwise distance from the initial po-
sition of agent . Note that is well defined since, by hypoth-

esis of contradiction, is for .
According to the state-transition function of - (cf.
Section II-C), messages with can only travel coun-
terclockwise, while messages with can only travel
clockwise. Therefore, the position of agent at time can
only belong to the counterclockwise interval from the position
of agent at time 0 to the position of agent at time 0.

Let us examine how fast the message from agent travels
clockwise. To this end, for , define

In other words, agent has equal to , is moving
clockwise, and is the agent furthest from the initial position of
agent in the clockwise direction with these two properties.
Initially, . Additionally, for , we
claim that

This happens because either 1) there is no agent clockwise-
ahead of within clockwise distance and, therefore,
the claim is obvious, or 2) there are such agents. In case 2), let

denote the agent whose clockwise distance to agent is
maximal within the set of agents with clockwise distance from

. Then

where the first inequality follows from the fact that at time
there can be no agent whose clockwise distance to agent
is less than . Therefore, after

communication rounds, the message with
has traveled the whole circle in the clockwise

direction, and must, therefore, have reached agent . This is
a contradiction.

Step 2) We now prove the lower bound in statement 1).
If for all , then , and the upper
bound reads - . Obviously,
the time complexity of any evolution with an initial con-
figuration where for

and - is
the complete graph, is lower bounded by 1. Therefore,

- . If for all ,
then we conclude - .
Assume now that for sufficiently large . Con-
sider an initial configuration where for

, and the agents are placed
as depicted in Fig. 3. Note that, after each communication
round, agent 1 has moved in the counterclockwise

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on October 24,2023 at 23:00:57 UTC from IEEE Xplore.  Restrictions apply. 



MARTÍNEZ et al.: SYNCHRONOUS ROBOTIC NETWORKS—PART I: MODELS, TASKS, AND COMPLEXITY 2207

Fig. 3. Initial network configuration useful for establishing the lower bound of
TC(T ; CC - ). We set distc(� (0); � (0)) 2 ]r; r + " [
and distc(� (0); � (0)) 2 ]0; " [, for some " > 0.

direction, while agent has moved in the clockwise
direction. These two agents keep moving at full speed towards
each other until they become neighbors at a time lower bounded
by

We conclude

-

Step 3) We now prove the upper bound in 2). We begin by
noting that the lower bound on implies .
Therefore, - belongs to and is
negligible as compared with the claimed upper bound estimates
for - - . In what follows, we therefore
assume that has been achieved and that, without loss
of generality, all agents are moving clockwise. We now prove
a fact regarding connectivity. At time , let be the
union of all the empty “circular segments” of length at least ,
that is, let

In other words, does not contain any point between two
agents separated by a distance less than , and each connected
component of has length at least . Let be the
number of connected components of ; if is empty,
then we take the convention that . Clearly,

. We claim that, if , then is non-
increasing. Let be the distance between any two con-
secutive agents at time . Because both agents move in the same
direction, a simple calculation shows that

This means that the two agents remain within distance , and
therefore connected, at the following time instant. Because the
number of connected components of does not
increase, it follows that the number of connected components
of cannot increase. Next, we claim that, if , then
there exists such that . By contradiction,
assume for all . Without loss of gener-
ality, let be a set of agents with the properties that

, for , that
and belong to the boundary of , and that there is
no other set with the same properties and more agents. (Note
that this implies that the agents are in counterclock-
wise order.) One can show that, for

for . If we define
, then the

previous equations can be rewritten as

where the linear map
is defined in the Appendix. This is a dis-

crete-time affine time-invariant dynamical system with unique
equilibrium point . By case 2) in Theorem A.3
in the Appendix, for , the solution to
this system reaches a ball of radius centered at the equi-
librium point in time . (Here, we used
the fact that the initial condition of this system is bounded.)
In turn, this implies that is larger than

in time . We are
now ready to find the contradiction and show that
cannot remain equal to for all time . After time

, we have

Here, are the number of agents in each isolated
group, and each connected component of has length at
least . Now, take and the
contradiction follows from

In summary, this shows that the number of connected
components of decreases by one in time

. Note that being
lower bounded implies and, therefore,
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. Iterating this ar-
gument times, in time , the set will become
empty. At that time, the resulting network will obey the dis-
crete-time linear time-invariant dynamical system

(4)

where the linear map
is defined in the Appendix. Here,

, with the convention
. By case 3) in Theorem A.3 in the Appendix, in

time , the error two-norm satisfies the
contraction inequality , for

. We convert this inequality on two-norms into an
appropriate inequality on -norms as follows. Note that

. For
and for of order

This means that the desired configuration is achieved
for , that is, in time

. In summary, the equidistance task is
achieved in time .

Step 4) Finally, we prove the lower bound in 2).
As before, - is negligible as
compared with the claimed lower bound estimate for

- - and, therefore, we assume
that has been achieved. We consider an initial
configuration with the following properties: 1) agents are
counterclockwise-ordered according to their unique identi-
fier, 2) the set is empty, and 3) the interagent distances

are given by

where and where is the eigenvector of
corresponding to the eigen-

value
(see (A.7) in the Appendix). One can verify that

and that
. In turn, this implies that

and that . Take . The
argument described in the proof of case 3) in Theorem A.3
leads to the following statement: the two-norm of the difference
between and the desired configuration decreases
by a factor in time of order . Given an initial error
of order and a final desired error of order , we set

and obtain the desired result that it takes time of
order to reduce the two-norm error, and therefore,
the -norm error to size . This concludes the proof.

To conclude this section, we study the total communication
complexity of the agree-and-pursue control and communication
law. We consider the case of a unidirectional communication

model with one-round cost function depending linearly on the
cardinality of the communication graph.

Theorem IV.2 (Total Communication Complexity of Agree-
and-Pursue Law): In the limit as and , the
network , the law - , and the tasks and

- together satisfy the following:
1) if as , then

TCC -

otherwise, if as , then

TCC -
TCC -

2) if is lower bounded by a positive constant as
, then

TCC - -
TCC - -

Proof: The upper bounds in 1) and 2) follow immediately
from the inequality TCC MCC
and from the fact that the number of edges in - is in .
To prove the lower bounds, we follow the steps and notation in
the proof of Theorem IV.1. Regarding the lower bounds in 1),
we examine the evolution of the initial configuration depicted
in Fig. 3. From Step 2) in the proof of Theorem IV.1, recall that
the time it takes agent 1 to receive the message with
is lower bounded by . Our proof strategy is
to lower bound the number of edges in the graph until this event
happens. Note that, at initial time, there are edges in the
communication graph of the network, and therefore,
messages get transmitted. At the next communication round,
agent 1 has moved counterclockwise and, therefore,
the number of edges is lower bounded by . Iterating this
reasoning, we see that after communication
rounds, the number of edges is lower bounded by . Now,
if , then , and there-
fore, the total communication complexity is lower bounded by

On the other hand, if , then
, and after time steps, we lower bound the

number of edges in the communication graph by the number of
edges in a chain of length , that is, . Therefore, the total
communication complexity is lower bounded by

The two lower bounds match when .
Regarding the lower bound in 2), we consider first the case

when . In this case, the network obeys the discrete-
time linear time-invariant dynamical system (4). Consider the
initial condition that we adopted for Step 4). We know it
takes time of order for the appropriate contraction
property to hold. At , the maximal interagent distance is
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and it decreases during the evolution. Because each
robot can communicate with any other robot within a distance

, the number of agents within communication range of a
given agent is of order , that is, of order .
From here, we deduce that the total communication complexity
belongs to .

Remark IV.3 (Comparison With Leader Election): Let us
compare the agree-and-pursue control and communication law
with the classical Lann–Chang–Roberts (LCR) algorithm for
leader election (see [5, Ch. 3.3]). The leader election task con-
sists of electing a unique agent among all agents in the network;
it is, therefore, different from, but closely related to, the coor-
dination task . The LCR algorithm operates on a static
network with the ring communication topology, and achieves
leader election with time and total communication complexity,
respectively, and . The agree-and-pursue law op-
erates on a robotic network with the -disk communication
topology, and achieves with time and total communi-
cation complexity, respectively, and .
If wireless communication congestion is modeled by of
order as in Remark II.9, then the two algorithms have
identical time complexity and the LCR algorithm has better
communication complexity. Note that computations on a pos-
sibly disconnected, dynamic network are more complex than
on a static ring topology.

V. CONCLUSION

We have introduced a formal model for the design and analysis
of coordination algorithms executed by networks of robotic
agents. In this framework, motion coordination algorithms
are formalized as feedback control and communication laws.
Drawing analogies with the discipline of distributed algorithms,
we have defined two measures of complexity for control and
communication laws: the time and the communication com-
plexity to achieve a specific task. We have defined the notion
of rescheduling of a control and communication law and ana-
lyzed the invariance of the proposed complexity measures under
this operation. These concepts and results are illustrated in a
network of locally connected agents on the circle executing a
novel “agree-and-pursue” coordination algorithm that combines
elements of the leader election and cyclic pursuit problems.

The proposed notions allow us to compare the scalability
properties of different coordination algorithms with regards to
performance and communication costs. Numerous avenues for
future research appear open. An incomplete list include the fol-
lowing: 1) modeling of asynchronous networks (see, however,
[23], [24], and [9]), 2) robustness analysis with respect to fail-
ures in the agents (arrivals/departures) and in the communica-
tion links (see, however, [18], [25]–[27]), 3) probabilistic ver-
sions of the complexity measures that capture, for instance, the
expected performance and cost of coordination algorithms (see,
however, [11]); 4) quantization and delays in the communica-
tion channels (see, however, [28] and the literature on quantized
control), and 5) parallel, sequential, and hierarchical compo-
sition of control and communication laws. On the algorithmic
side, the companion paper [17] provides time-complexity esti-
mates for coordination algorithms that achieve rendezvous and
deployment, and discusses other open questions.

APPENDIX

TRIDIAGONAL TOEPLITZ AND CIRCULANT

DYNAMICAL SYSTEMS

This Appendix presents some key facts about convergence
rates of discrete-time dynamical systems defined by certain
classes of Toeplitz matrices; see [29]. To the best of our knowl-
edge, the results presented in Theorem A.3 on tridiagonal
Toeplitz matrices and in Theorem A.4 are novel contributions.
The results on stochastic circulant matrices in Theorem A.3
are related to the literature on Markov chains [30]; see also
the recent developments in [31] and [32]. For and

, define the Toeplitz matrices
and by

...
. . .

. . .
. . .

...

and

...
. . .

. . .
. . .

...

The matrices and are tridi-
agonal and circulant, respectively, and only differ in
their and entries. Note our convention that

. The following results are

discussed, for example, in [29, Example 7.2.5 and Exercise
7.2.20].

Lemma A.1 (Eigenvalues of Tridiagonal Toeplitz and Circu-
lant Matrices): For and , the following state-
ments hold:

1) for , the eigenvalues and eigenvectors of
are, for

and

2) the eigenvalues and eigenvectors of are, for

and for

and

Remarks A.2:
1) The set of eigenvalues of is contained in the

real interval , if , and in
the interval in the complex plane

, if .
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2) The set of eigenvalues of is contained in the
ellipse on the complex plane with center , horizontal axis

, and vertical axis .
3) Recall from [29] the following: a) a square matrix is normal

if it has a complete orthonormal set of eigenvectors, b)
circulant matrices and real-symmetric matrices are normal,
and c) if a normal matrix has eigenvalues ,
then its singular values are .

We can now state the main result of this Appendix.
Theorem A.3 (Tridiagonal Toeplitz and Circulant Dynamical

Systems): Let , and . Let
and be solutions to

with initial conditions and , respectively.
The following statements hold:

1) if and , then
, and the maximum time required for

(over all initial conditions ) is ;
2) if and , then

, and the maximum time required for
(over all initial conditions ) is

;
3) if , and ,

then , where ,
and the maximum time required for

(over all initial conditions ) is
.

Proof: Let us prove fact 1). We start by bounding from
above the eigenvalue with largest absolute value, that is, the
largest singular value of

Because for any , the matrix

is stable. Additionally, for , we bound
from above the magnitude of the curve as

In order to have , it is sufficient that

, that is

(A.5)

To show the upper bound, note that as , we have

Now, assume without loss of generality that and consider
the eigenvalue of . Note that

. (If ,

then consider the eigenvalue .) For ,
define the unit-length vector

(A.6)

and note that, by case 1) in Lemma A.1, is an eigen-
vector of with eigenvalue .
Note also that all components of are positive. The tra-
jectory with initial condition satisfies

and, therefore, it will enter

only when satisfies (A.5). This completes the
proof of fact 1).

Next, we consider statement 2). Clearly, is
stable. For , we compute

because of the nilpotency of . Now, we can bound
from above the magnitude of the curve as

Here, we used and

. Therefore,

in order to have , it suffices that
, that is

A sufficient condition for , for , is
that . For, if , then is
bounded from above by the line . Furthermore, the
line is a lower bound for the line if

. In summary, it is true that
whenever

This completes the proof of fact 2).
The proof of fact 3) is similar to that of fact 1). We analyze the

singular values of . It is clear that the eigenvalue
Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on October 24,2023 at 23:00:57 UTC from IEEE Xplore.  Restrictions apply. 



MARTÍNEZ et al.: SYNCHRONOUS ROBOTIC NETWORKS—PART I: MODELS, TASKS, AND COMPLEXITY 2211

corresponding to is equal to 1; this is the largest singular
value of and the corresponding eigenvector is .
In the orthogonal decomposition induced by the eigenvectors
of , the vector has a component along the
eigenvector . The second largest singular value is

Here, is the norm in . Because of the assumptions on
, the second largest singular value is strictly less than 1.

For , we bound the distance of from as

This proves that . Also, for
and as , we have

Here, because . From this, one deduces the
upper bound in 3).

Now, consider the eigenvalues

and

of , and its associated
eigenvectors (cf. case 2) in Lemma A.1)

(A.7)

Note that the vector belongs to . More-
over, its component along the eigenvector is 0.
The trajectory with initial condition satisfies

and,
therefore, it will enter only when

This completes the proof of fact 3).
Next, we extend these results to another interesting set of ma-

trices. For and , define the augmented
tridiagonal matrices and by

...
. . .

. . .
. . .

...

If we define

...
. . .

. . .
. . .

and

...
. . .

. . .
. . .

then the following similarity transforms are satisfied:

(A.8)

To analyze the convergence properties of the dynamical
systems determined by and ,
we recall that , and we define

.
Theorem A.4 (Augmented Tridiagonal Toeplitz Dynamical

Systems): Let , and with and
. Let and be

solutions to

with initial conditions and , respectively.
The following statements hold:

1) , where
, and the maximum time required for

(over all initial
conditions ) is ;

2) , where
, and the maximum time required for

(over all
initial conditions ) is .
Proof: We prove fact 1) and observe that the proof of fact

2) is analogous. Consider the change of coordinates
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where and . A quick calculation shows
that , and the similarity transformation de-
scribed in (A.8) implies

Therefore, . It is also clear that

Consider the matrix in parenthesis determining the trajectory
. This matrix is symmetric, its eigen-

values are 0 and the eigenvalues of , and its
eigenvectors are and the eigenvectors of

, padded with an extra zero and premultiplied
by . These facts are sufficient to duplicate, step by step, the
proof of fact 1) in Theorem A.3. Therefore, fact 1) follows.

We conclude this Appendix with some useful bounds whose
proof is straightforward.

Lemma A.5: Assume and
jointly satisfy

Then, and
.
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