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Abstract— We present a procedure to adapt an interpola-
tion scheme to represent spatial fields as they are measured
by a mobile sensor network. The procedure incorporates
new sensor (synchronous) measurements in a similar fash-
ion to a Kalman filter-like recursion. Using ideas from
distributed consensus algorithms, we show how the scheme
corresponding to nearest-neighbor interpolations admits
decentralization over a directed proximity graph related
to the Delaunay graph.

I. INTRODUCTION

An intensive research activity is being directed to the
development of coordination algorithms that allow the
practical use of multi-vehicle sensor networks. Examples
of such systems used in exploration and scientific ven-
tures include multi-buoy systems, coordinated gliders for
oceanographic research, and unmanned aerial vehicles
(UAVs) for e.g., atmospheric observation.

Typically, these sensor networks are required to com-
municate with a central data fusion station that gathers
all the measurement information to produce an approx-
imation of the fields of interest. Although it is useful
to have all the information at one place so that users
can have access to it, the possibility of placing part of
the estimation load on the vehicles themselves would
make their reaction to events more efficient. In order to
make this possible, the identification of suitable meth-
ods for cooperative estimation and conditions for their
distributed computation should be investigated.

Literature review. The investigation of the require-
ments for information processing in a decentralized setup
dates back to the ’80; see e.g., [1], and is related to
the area of sensor fusion. The synthesis of distributed
coordination algorithms for multi-agent and sensor sys-
tems is the subject of current research. In particular,
consensus algorithms [2], [3] have been widely analyzed
and proposed for sensor fusion [4], and as a way to
decentralize Kalman filters [5]. The devise of optimal
sensor placement or motion coordination plans have been
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recently addressed to improve estimation procedures
such as Kalman filters for target tracking [6], or the
optimal sampling of spatial fields [7]. The assumption
of fixed communication topologies or the existence of
a central station that is able to fuse information and
communication with all vehicles is a restriction mostly
considered. A related paper to the present work is [8],
which investigates user information retrieval protocols
from a static sensor network based on a nearest-neighbor
partition of the space. However, [8] leaves the problem
of sensor data fusion unaddressed. Another related issue
that we do not treat here is that of energy efficient
estimation or detection in sensor networks.

Statement of contributions. We analyze a procedure
to modify (nearest-neighbor) interpolation schemes to
represent spatial fields by a multi-vehicle system. The
interpolation provides an estimate of the field, which
is refined via a Kalman filter-like recursion as new
measurements are collected. We derive the expression of
the optimal gains of the filter and obtain conditions under
which the scheme admits decentralization in the nearest-
neighbor interpolation case. One of such conditions
requires agents to reach consensus on the values of the
optimal gains. The required inter-vehicle communication
graph should also contain a newly-identified proximity
graph that is related to the Delaunay graph.

Organization of the paper. The paper is organized
as follows. In Section II, we state the main problem
scenario and review basic concepts on Voronoi partitions
and spatial interpolation methods. In Section III, we
propose how to adapt a (nearest-neighbor) interpolation
scheme by means of a Kalman filter-like procedure.
This includes the derivation of the optimal gains that
should be computed at each step of the discrete-time
algorithm. Finally, Section IV presents the requirements
for distributing the adaptive interpolation method.

II. PROBLEM STATEMENT AND PRELIMINARIES

Here we state the general problem scenario with
given assumptions, and introduce basic preliminaries on
Voronoi partitions and spatial interpolation methods.
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A. Motivating Problem and Assumptions

Let R≥0 (resp. R>0) denote the positive real numbers
including 0 (resp. the strictly positive real numbers)
and let {p1, . . . , pn} denote the positions of n vehicles
moving on a compact and convex region of the space
Q ⊆ R3. We assume each vehicle i ∈ {1, . . . , n}
is endowed with physico-chemical sensors and is able
to take point measurements zi of certain scalar field
φ : R × Q → R≥0. For example φ might represent an
environmental substance such as salinity concentration
in the sea or aerosol pollutant in the atmosphere.

For simplicity we will consider here that φ is static;
i.e., φ : Q → R≥0. This is a reasonable assumption when
measuring substance concentrations such as aerosol
fields (which do not change considerably with time under
mild weather conditions). We will also assume that the
measurements zi, i ∈ {1, . . . , n}, are affected by a
spatially and temporally uncorrelated white noise. That
is, zi(t) = φ(pi(t)) + εi(t), with εi(t) ∼ N (0, σ),
∀t ≥ 0, i ∈ {1, . . . , n}, and E[εi(t)εj(s)] = 0 if either
i (= j, or t (= s ∀ t, s ≥ 0, and i, j ∈ {1, . . . , n}.

B. Voronoi Partitions and the Delaunay Graph

Let ‖ · ‖ denote the Euclidean norm in R3. Recall that
the (Euclidean) Voronoi partition of Q ⊆ R3 associated
with a set of n distinct points P = {p1, . . . , pn} ⊆ Q
is a collection of sets V (P) = {Vi(P)}n

i=1 such that
∪n

i=1Vi(P) = Q, and Vi(P) is the region defined as:

Vi(P) = {q ∈ Q | ‖q − pi‖ ≤ ‖q − pj‖ for all j (= i} ,

for all i ∈ {1, . . . , n}. We will usually refer to Vi(P)
as Vi. It is easy to see that pi belongs to its Voronoi
region Vi, i ∈ {1, . . . , n}. We say that pj is a Voronoi
neighbor of pi if and only if Vi and Vj have a non-empty
intersection. We denote the set of Voronoi neighbors of
i as Ni. This relationship gives rise to the undirected
Delaunay graph, GD = (V, E), defined over the set of
vertices V = {1, . . . , n} and edge set E = {(i, j) | i ∈
Nj , j ∈ {1, . . . , n}}. For a detailed treatment of
Voronoi partitions and the Delaunay graph we refer the
reader to [9].

C. Spatial Interpolation Methods

There are several methods available to predict multi-
variate fields φ : Q → R≥0 from scattered data.

In the absence of measurement noise, the general
formulation of a spatial interpolation problem is the fol-
lowing: Given the n values of the studied phenomenon,
zi = φ(pi), i ∈ {1, . . . , n}, measured at discrete points
{p1, . . . , pn}, find a function Φ : Q → R≥0 such that
Φ(pi) = zi, for all i ∈ {1, . . . , n}.

An interpolant Φ is called global (resp. local), when
the value of Φ at any point q ∈ Q depends on all
the data values (resp. only on data values at “nearby”
points). Global interpolants are affected by the addition
or deletion of data values and by changes in the location
of data sites, while local interpolants are only affected
at a vicinity of the changes. The required scalability
properties of distributed systems and their decentralized
nature make local interpolants more readily adaptable for
groups of multiple vehicles.

Some of the most widely used local interpolation
methods include Inverse Distance Weighted Interpolation
(IDW), Nearest and Natural Neighbor Interpolations
(NN), and interpolations based on a Triangulated Ir-
regular Networks (TIN) [10], [9], [11]. The simplest
interpolation of a function over Q is given by the nearest
neighbor rule:

φ(q) = zi , ‖q − pi‖ < ‖q − pj‖, j (= i .

The resulting function is discontinuous at the boundaries
of the Voronoi regions Vi(P) associated with the location
of sites P . An extension of this method is the Natu-
ral Neighbors interpolation method, defined as follows.
Given a point q ∈ Q and a set of locations P , compute
V (P ∪ {q}). The value Φ(q) is a linear combination
Φ(q) =

∑
i∈N (q) wizi, where N (q) denotes the set of

neighbors of q in the Delaunay graph associated with
V (P∪{q}) and {wi}i∈N (q) are a priori defined weights.

Although the NN approaches do not give rise to con-
tinuous representations, they are computationally very
fast and can be easily extended to any bounded set
of any dimension. In comparison, the TIN approaches
require the computation of a set of generalized tetrahedra
in Rn, which can lead to complications when defining
partitions of compact domains. A solution to deal with
this problem, see [9], requires the placement of many
nodes along the boundary of Q.

Here we will investigate a means of refining the
simpler nearest-neighbor interpolation, and leave for
future works the investigation of other local and global
interpolation methods.

III. CENTRALIZED INTERPOLATION FILTER

This section describes the centralized interpolation
filter scheme that makes use of the NN interpolation rule
and is refined through a Kalman filter-like procedure.

From now on assume that there is a scheduling time
sequence T = {t! | $ ∈ N} known by each agent that
synchronizes the taking of the n independent measure-
ments zi(t!), i ∈ {1, . . . , n}, t! ∈ T. This is a reasonable
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assumption for static fields, where waiting time periods
for all vehicles can be established.

Let P! = {p!
1, . . . , p

!
n} denote the positions of the n

vehicles at time t! ∈ T and let V (P!) = {V !
1 , . . . , V !

n}
denote the associated Voronoi partition of Q. We define
the class of functions C = {ψ : R × Q → R>0 | ∀ t ∈
R, ψ(t, ·) is piecewise constant as a function of Q}
and let C = {ψ : R×Q → R | ∃ψ ∈ C such that ψ(t, ·)
∼ N (ψ(t, ·), σ) and E[ψ(t, p)ψ(s, q)] = 0 for t (=
s or p (= q}. Now we define an (nearest-neighbor)
observation operator, Q : T × Qn × C → C , for a
given time schedule T, tuples of positions P! ∈ Qn,
$ ∈ N, and spatio-temporal fields ψ ∈ C . That is,
Q(t!,P!, ψ) ∈ C is a new static spatial field defined as:

Q(t!,P!, ψ)(q) =
n∑

i=1

(ψ(t!, p
!
i) + ε(t!, p

!
i)) · 1V !

i
(q) ,

for all q ∈ Q. Here ψ(t!, p!
i) + ε(t!, p!

i) is the mea-
surement of ψ that sensor at p!

i takes, where ε : R ×
Q→ R is a white noise such that ε(t, p) ∼ N (0, σ),
E[ε(t, p)ε(s, q)] = 0 for t (= s or p (= q. The function
1V !

i
(q) is the indicator function 1V !

i
(q) = 1, if q ∈ V !

i ,

otherwise 1V !
i
(q) = 0. In other words, Q provides a

snapshot of a given ψ according to measurements at
vehicle sites P! at time t! ∈ T. For simplicity we will use
the notation Q!ψ ≡ Q(t!,P!, ψ), whenever it is clear
that the sites P! correspond to the vehicles’ positions
at time t! ∈ T and ε!i = ε(t!, p!

i), for $ ∈ N and
i ∈ {1, . . . , n}. Associated with it, one can define an
averaged observation operator as Q : T×Qn×C → C

such that Q!ψ ≡ Q(t!,P, ψ) =
∑n

i=1 ψ(t!, pi)1V !
i
(q).

Let φ : Q → R≥0 be the static field we would like
to represent. After taking a collective measurement of
φ at time t0 = 0, the first estimate can be taken to
be φ0 = Q0 φ = E[Q0 φ]. As new measurements are
taken, we use an update rule inspired by a Kalman filter
to refine the interpolation. The convex combination:

φ! = φ!−1 + W!(Q!φ−Q!φ!−1), $ ≥ 1 ,

yields an estimated value φ! = E[φ!] of the field φ at
time t!. By an induction argument, one can see that:

φ! = φ!−1 + W!(Q!φ−Q!φ!−1) , $ ≥ 1. (1)

As in a Kalman filter,W! plays the role of the gain
at time t! ∈ T. The combination (1) is a weighted
sum of the predicted value of the field, φ!−1, and the

measurement innovation, Q!φ−Q!φ!−1, where Q!φ is

the new observation of φ and Q!φ! is the predicted
measurement. The update rule (1) is understood as a
point-wise equality for all q ∈ Q.

Given ψ ∈ C and an approximation E[ψ̂] ≈ ψ, with
ψ̂ ∈ C , we define the minimum square error (MSE) as:

MSE(ψ, ψ̂) =

∫

Q

E[(ψ(q) − ψ̂(q))2] dq .

In the following, we obtain an expression for
MSE(φ, φ!), $ ∈ N, in order to find the optimal value of
the gains which minimize this error. For simplicity we
will use the notation MSE(φ, φ!) ≡ MSE!, $ ∈ N.

Lemma 1: The following equalities hold for all $ ∈ N

and q, p ∈ Q:

E[φ!−1(q)Q!φ(p)] = φ!−1(q)Q!φ(p) ,

E[Q!φ(q)Q!φ(p)] = Q!φ(q)Q!φ(p) + σ2 ,

E[Q!φ(q)Q!φ!−1(p)] = Q!φ(q)Q!φ!−1(p) + σ2 .

Using these formulas, one can obtain the expression:

E[φ!(q)φ!(p)] = φ!(q)φ!(p)+σ2Π!
s=1(1−Ws)

2. (2)

Proof: See the proof in the extended report [12].

Lemma 2: The following equalities hold for all $ ∈ N:

E[(Q!φ)
2] = (Q!φ)

2 + σ2 ,

E[(Q!φ!−1)
2] = (Q!φ!−1)

2 + σ2
(
1 + Π!−1

s=1(1 − Ws)
2
)

,

E[φQ!φ] = φQ!φ ,

E[φQ!φ!−1] = φQ!φ!−1 ,

E[φ!−1 Q!φ!−1] = φ!−1 Q!φ!−1 + σ2Π!−1
s=1(1 − Ws)

2 .

Using these formulas and Lemma 1, it is possible to
obtain the recursive expression for $ ≥ 1:

MSE! = MSE!−1 +

W 2
!

( ∫

Q

(Q!φ−Q!φ!−1)
2 dq + σ2Π!−1

s=1(1 − Ws)
2MQ

)

− 2W!

( ∫

Q

(φ− φ!−1)(Q!φ−Q!φ!−1) dq

+ σ2Π!−1
s=1(1 − Ws)

2MQ

)
, (3)

where MQ is the volume of Q, MQ =
∫

Q
dq.

Proof: See the proof in the report [12].

Theorem 3: For given values Ws, s ∈ {1, . . . , $− 1},
the optimal gain W ∗

! that guarantees MSE! ≤ MSE!−1,
for all $ ∈ N, and is a local minimum of MSE! is:

W ∗
! =

∑n
i=1(φ(p

!
i) − φ!−1(p

!
i))

∫
V !

i
(φ(q) − φ!−1(q))dq + C

∑n
i=1(φ(p

!
i) − φ!−1(p

!
i))

2MV !
i

+ C
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where C = σ2Π!−1
s=1(1 − Ws)2MQ and MV !

i
is the

volume or mass of the Voronoi region V !
i ; i.e., MV !

i
=∫

V !
i

dq, i ∈ {1, . . . , n}.

Proof: Taking the partial derivative of MSE! with
respect to W! in (3) and equating this to zero, we obtain:

W!

( ∫

Q

(Q!φ−Q!φ!−1)
2 dq+σ2Π!−1

s=1(1−Ws)
2MQ

)

−

∫

Q

(φ− φ!−1)(Q!φ−Q!φ!−1) dq

− σ2Π!−1
s=1(1 − Ws)

2MQ =
1

2

∂MSE!

∂W!
= 0 .

The critical value of the gain, W ∗
! , is thus given by:

∫
Q

(φ− φ!−1)(Q!φ−Q!φ!−1)dq + C
∫

Q
(Q!φ−Q!φ!−1)

2 dq + C
,

which satisfies
∂ 2MSE!

∂W 2
! |W∗

!

> 0; thus W ∗
! is a local

minimum. Now, using that V (P!) is a partition of Q:

∫

Q

(Q!φ(q) −Q!φ!−1(q))
2 dq

=
n∑

i=1

∫

V !
i

(Q!φ(q) −Q!φ!−1(q))
2 · 1V !

i
(q) dq

=
n∑

i=1

∫

V !
i

((Q!φ(q) −Q!φ!−1(q)) · 1V !
i
(q))2 dq

=
n∑

i=1

∫

V !
i

((
n∑

j=1

(φ(p!
j) − φ!−1(p

!
j)) · 1V !

j
(q))1V !

i
(q))2dq

=
n∑

i=1

∫

V !
i

(φ(p!
i) − φ!−1(p

!
i))

2 · 1V !
i
(q)dq

=
n∑

i=1

(φ(p!
i) − φ!−1(p

!
i))

2MV !
i

,

where we have used the fact that 1V !
i
(q) · 1V !

j
(q) is

identically zero for all i (= j except for a set of measure
zero, ∂V !

i ∩ ∂V !
j . A similar computation leads to:

∫

Q

(φ− φ!−1)(Q!φ−Q!φ!−1) =

n∑

i=1

(φ(p!
i) − φ!−1(p

!
i))

∫

V !
i

(φ(q) − φ!−1(q))dq .

Thus the claimed expression for W ∗
! is obtained. Finally,

to see that MSE! ≤ MSE!−1 with W ∗
! , we substitute

0 = W ∗
! ·

1

2

∂MSE!

∂W! |W∗

!

into (3) to obtain:

MSE! =

MSE!−1 −W ∗
!

( ∫

Q

(φ− φ!−1)(Q!φ−Q!φ!−1) + C
)

= MSE!−1 −
(
∫

Q
(φ− φ!−1)(Q!φ−Q!φ!−1) dq + C)2

∫
Q

(Q!φ−Q!φ!−1)
2dq + C

≤ MSE!−1 , ∀$ ∈ N ,

since the factor we subtract to MSE!−1 is positive.

Remark 4: The computation of the optimal gain, W ∗
! ,

requires precise knowledge about the value of the inte-
gral of φ over the Voronoi regions V !

i , i ∈ {1, . . . , n}
(integral in the numerator). With limited information
about φ, each vehicle can only compute this value
approximately through e.g., quadrature rules [13].

Suppose φ is Lipschitz over Q and let Ω ⊆ Q.
A quadrature rule for the computation of

∫
Ω φ(q)dq is

defined as:

∫

Ω
φ(q)dq ≈

m∑

k=1

φ(qk) · MAk
(4)

where qi ∈ Ω and {Ak}m
k=1 is a partition of Ω associated

with (q1, . . . , qm) ∈ Ωm. The subtraction of both terms
in (4) can be bounded as follows:

∣∣
∫

Ω
φ(q)dq −

m∑

k=1

φ(qk) · MAk

∣∣

≤
m∑

k=1

∫

Ak

|φ(q) − φ(qi)|dq ≤ L
m∑

k=1

∫

Ak

|q − qi|dq,

where L is the Lipschitz constant of φ. When k → ∞,
MAk

≈ 0, the above is a good approximation. For a
finite number of measurements in Ω, it can be proven
that the quadrature is minimized for Ak Voronoi regions
and qk ∈ Ak being at the centroids of these regions;
i.e., qk = CAk

, with MAk
· CAk

=
∫

Ak
qdq, for all

k ∈ {1, . . . ,m}. Based on this, each vehicle could take
the simple approximation

∫
V !

i
φ(q)dq ≈ φ(CV !

i
)MV !

i

(optimal), or
∫

V !
i
φ(q)dq ≈ φ(p!

i)MV !
i

(non-optimal);

see [13]. The gain obtained in this way, Ŵ! is an
approximation of W ∗

! . As more measurements of φ are
stored by vehicles (e.g., possibly taken along a path from
p!

i to CV !
i

) the approximation will improve and we will

have Ŵ! → W ∗
! as $ → ∞. From now on, we will

assume that this type of approximation is taking place.•
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IV. DISTRIBUTED INTERPOLATION FILTER

The decentralization of the previous interpolation filter
can only be done if vehicles can compute the approx-
imated gains W ∗

! , $ ∈ N, in a distributed manner. On
the other hand, it is not necessary that each vehicle
maintains a global representation of φ, but just a local
one over its region V !

i , i ∈ {1, . . . , n}. In this section, we
derive necessary conditions on vehicle communication
that allow the distributed implementation of the filter.

Our first assumption is that each robotic agent or
vehicle will be able to take measurements and commu-
nicate with others according to a refined time scheduling
sequence T defined as follows. Let T = {t!}!∈N be
a time scheduling sequence for synchronous vehicle
measurement. Consider {sm

! }K!

m=1 for each $ ∈ N and
K! ∈ N such that:

[t!, t!+1] = [t!, t!+s1
! ]∪[t!+s2

! ]∪· · ·∪[t!+sK!−1
! , t!+1] ,

where t!+1 = t! + sK!

! . In this way, T = {t! + sm
! | $ ∈

N , m ∈ {1, . . . ,K!}}. We use the notation t!m = t! +
sm

! ∈ T from now on.
At each time t!m ∈ T, we assume that an undirected

communication graph is established. That is, G(t!m) =
({1, . . . , n}, E(t!m)), with E(t!m) the set of edges in
the graph at time t!m. That is, i and j can exchange a
message at time t!m ∈ T if and only if (i, j) ∈ E(t!m).
The idea is that the distributed computation of the gain
W ∗

!+1 will be done through communication rounds at the
times t!1, . . . , t!K!

, as follows.
Suppose that φ0 ≡ 0 and the following assumptions

on agent i ∈ {1, . . . , n} hold for all time t!:

(i) Each agent i has knowledge of V !
i and φ!−11V !

i
.

(ii) Each agent i has taken new measurements φ(p!
i)

and φ(CV !
i
), after having moved from p!

i to CV !
i

.

Under these assumptions, agent i will be able to com-
pute:

N !
i (0) =

(φ(p!
i) − φ!−1(p

!
i))

(

φ(CV !
i
)MV !

i
−

∫

V !
i

φ!−1dq

)

+ C ,

D!
i (0) = (φ(p!

i) − φ!−1(p
!
i))

2MV !
i

+ C ,

where C = σ2MQΠ!−1
s=1(1−W ∗

s )2. After K! communi-
cation rounds take place, agents are able to update the
values of N !

i (m) and D!
i (m), m ∈ {1, . . . ,K!}, obtain

the positions of new Voronoi neighbors at time t!+1, and
new information that allows them to compute φ!1V !+1

i
.

The update of N !
i (m), D!

i (m), is given in Theorem 5.
The computation of φ!1V !+1

i
is explained in Theorem 6.

Theorem 5: Let $ ∈ N be fixed. Consider the par-
ticular case of a time schedule T = {trm} with r ∈
{1, . . . , $} and infinite number of communication rounds
after t!, {sm

! }m∈N. At time t! suppose that Assump-
tions (i) and (ii) hold for each agent. Denote by G(m),
m ∈ N the communication graphs at times t!m. Define
the consensus algorithms:

N !
j (m + 1) =

n∑

i=1

F i
j (m)Ni(m),

D!
j(m + 1) =

n∑

i=1

F i
j (m)Di(m),

Here F (s) is a stochastic matrix such that F (m) =
(I+Deg(m))−1(I+A(m)), where A(m) (resp. Deg(m))
is the adjacency matrix (resp. the degree matrix) of the
graph G(m). If there exists a M > 0 such that for
any m0 ∈ N the union ∪m0+M

m=m0
G(m) is connected, then

N !
j (m)/D!

j(m) → W ∗
1 exponentially fast as m → +∞,

for all j ∈ {1, . . . , n}.
Proof: The proof is a consequence of the con-

vergence properties of consensus algorithms, see [2],
[14]. For undirected graphs, the consensus limit val-
ues are given by 1

n

∑n
i=1 N !

i (0) and 1
n

∑n
i=1 D!

i (0)
respectively and then N !

j (m)/D!
j(m) converges to

(
∑n

i=1 N !
i (0))/(

∑n
i=1 D!

i (0)) = W ∗
! .

The exponential convergence nature of consensus al-
gorithms is also a well known fact, see [14], and it de-
pends on the degree of connectivity of the graphs G(m)
and the number of agents n. In fact, a weaker notion
of strongly rooted graph and weaker assumptions on
connectivity allow to deduce an exponential convergence
rate to some consensus value, see [14].

The best possible decentralization procedure would
allow each vehicle to know exactly φ! over Q, for all
$ ∈ N. A less stringent procedure is one where vehicles
just have information of φ! on their Voronoi regions
V !+1

i , $ ∈ N. In fact, this is at least necessary for
each vehicle to compute N !

i and D!
i . The degree of

decentralization is further determined via the following
class of proximity graphs.

We define the graph G∗(t!) = ({1, . . . , n}, E∗(t!)),
via the set of neighbors of i ∈ {1, . . . , n} at time t! ∈ T:

N ∗
i ($) = {j ∈ {1, . . . , n} | V !−1

j ∩ V !
i (= ∅}, $ ∈ N .

Observe that, contrary to the Delaunay graph, these are
only directed graphs. In order to compute φ!1V !+1

i
each

agent needs to communicate with neighbors N ∗
i ($+ 1)

and the Delaunay neighbors Ni($+1). This is discussed
in the following theorem.
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Theorem 6: Let {p1, . . . , pn} be a robotic network
moving over a region Q. Suppose they can syn-
chronously take new measurements of a field φ : Q −→
R as specified by a time scheduling sequence T. Assume
also that agents can compute the gains W ∗

! , t! ∈ T, in
a distributed manner, e.g., as in Theorem 5. Then, the
coordinated computation of φ! can be done as a sum

of contributions φ!(q) =
∑n

i=1 φ
i

!(q), for all q ∈ Q, as
long as each agent can communicate with neighbors in

the graph G∗(t!), t! ∈ T. Here φ
i

!(q) = f i
!(q) · 1V !

i
(q)

is maintained by each vehicle, where:

f i
!(q) =

∑

j∈N∗

i (!)

f j
!−1(q)1V !−1

j
(q) + W ∗

! (φ(p!
i) − φ!−1(p

!
j)) ,

φ!−1(p
!
j) = f

kj

!−1(p
!
j) with p!

j ∈ V !−1
kj

, for all $ ∈ N,

and f j
0 (q) = φ(p0

j ), j ∈ {1, . . . , n}.
Proof: Let $ = 1. By definition, see Eq. 1:

φ1 = φ0 + W ∗
1 (Q1φ−Q1φ0)

Since {V !
j }

n
j=1 is a partition of Q for all $ ∈ N, then:

φ0(q) =
n∑

k=1

φ(p0
k)1V 0

k
(q) =

n∑

j=1

( n∑

k=1

φ(p0
k)1V 0

k
(q)

)
1V 1

j
(q) .

Since 1V 0
k
(q)1V 1

j
(q) (= 0 iff k ∈ N ∗

j (1), we have:

φ0(q) =
n∑

j=1

( ∑

k∈N∗

j (1)

φ(p0
k)1V 0

k
(q)

)
1V 1

j
(q) .

Using this fact, and Eq. 1, we obtain:

φ1(q) =
n∑

j=1

f j
1 (q)1V 1

j
(q)

with f j
1 (q) =

∑
k∈N∗

j (1) φ(p
0
k)1V 0

k
(q) + W ∗

1

(
φ(p1

j ) −

φ0(p
1
j )

)
. It is not difficult to see that the general case

follows easily by induction.
In other words, to maintain a data-base representation of
φ in its current region each vehicle needs to communi-
cate with others that were covering this portion of the
space before.

Knowledge of the regions V !−1
i , i ∈ N ∗

j ($) can
be obtained by knowing the positions of the Voronoi
neighbors of vehicle i at time $− 1. The cardinal of the
set N ∗

j ($) will depend on the given motion coordination
algorithm. For example, if the motion of vehicles is
prescribed to the centroids CV !−1

i
, it is reasonable to

expect that N ∗
j ($) ∩ Nj($ − 1) (= ∅. In general we can

not guarantee the graphs are connected. In order to apply
Theorem 5 one should guarantee communication over a
larger undirected graphs containing G∗($), $ ∈ N.

V. CONCLUSIONS

We have presented a simple refinement interpolation
scheme for static field representation and conditions for
its possible decentralization. Future work will address
the problem of how to limit the resolution of the filter
(considering a finite number of subregions for each
V !

i ) and the combination of the approach with specific
motion coordination plans.
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