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Abstract— We present modified nonlinear circumcenter
algorithms to achieve “practical” rendezvous when agents
take noisy measurements of their neighbors’ positions.
Assuming a uniform probability distribution of the noise in
a disk about the true position, we analyze the algorithms
in 1D. In particular, we provide a characterization of
the practical stability ball via deterministic and stochastic
analysis tools. The higher dimensional cases are discussed
in simulation and we propose modified “parallel” cir-
cumcenter algorithms that can be used with guaranteed
performance.

I. INTRODUCTION

Distributed cooperative systems are attracting an in-
tense research activity in the last years, see for in-
stance [1]. As a consequence of this, a wealth of al-
gorithms is being proposed together with novel analysis
tools to evaluate their performance. When doing this, one
important aspect to consider is that of robustness. Ideally,
a characterization of what are the typical degraded be-
haviors under the algorithm should be provided, together
with some discussion how those are affected by the
network size. If necessary, the algorithm should be
modified to guarantee different robustness aspects.

Motivated by this, we discuss how the nonlinear
Circumcenter Algorithm, see [2], can be made robust
with respect to measurement noise. This complements
the simulation analysis performed in [2] that showed
good performance of the algorithm under noise, and
the work [3] which considered an asynchronous version
of the algorithm. As we discuss later, a deterministic
approach is not enough to explain the behavior of the
algorithm under different communication graphs.

The Circumcenter Algorithm was first proposed by
Suzuki et al in [2] as a memoryless algorithm that allows
a network of robotic agents rendezvous to a common
location of the space. The algorithm was further studied
in [4], [5], and asynchronous versions of the algorithm
are presented in [6], [3].

With regards to the type of results presented here, the
papers [7], [8], [9] do a similar study of how consensus
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algorithms are robust to measurement, communication
noise, and quantization errors. However, the type of
algorithms considered here are based on the nonlinear
Circumcenter Algorithm, while those papers consider
linear consensus algorithms.

To be more precise, the contributions of this paper
can be summarized as follows. Assuming that each
agent measures neighbors’ positions up to an error
σ, (according to a uniform distribution in a disk of
radius σ), we propose two possible modifications of
the standard Circumenter Algorithm. The first version
restricts the constraint set to guarantee connectivity of
the network. The second version assumes that agents
filter their measurements of neighbors to make sure that
they are still within the connectivity radius r.

We analyze both algorithms in a 1D space. The imple-
mentation of the algorithm over the r-disk graph allows
to derive a deterministic analysis that shows convergence
to a ball of diamater twice the error σ independently of
the number of agents in the network. This is a type of
ISS result that requires that r > 7σ in the first version of
the algorithm. As shown in simulations, the analysis can
not be carried over for graphs different from the r-disk
graph. A stochastic analysis is necessary to extend the
determistic result to any graph, for r > 3σ, but at the
cost of having a convergence only in probability one.

The proofs presented here make a fundamental use of
the definition of the circumcenter in 1D, much simpler
than in higher dimensional spaces. However, simulations
seem to indicate that the algorithms work also in higher
dimensions. Under the assumption that all agents in
the network have knowledge of a common orientation
framework, we extend the new algorithms as modified
Parallel Circumcenter Algorithms. These algorithms can
be used with guaranteed performance.

The paper is organized as follows. Section II intro-
duces premilinary notions, the standard Circumcenter
Algorithm and Parallel Circumcenter Algorithm. Sec-
tion III introduces two possible modifications of the
Circumcenter Algorithm to cope with noise. Finally, the
last section presents some simulations of the algorithms.
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II. PRELIMINARIES AND ALGORITHM DESCRIPTION

We review here some notation for standard geometric
objects; for additional information we refer the reader
to [10] and references therein. We then recall the
Circumcenter and Parallel Circumcenter Algorithms as
discussed in [2], [4], [11]. In the last part of this section,
we present the new Modified Circumcenter Algorithms.

A. Basic geometric notions and notation

For a bounded set S ⊂ Rd, d ∈ N, we let co(S) denote
the convex hull of S. For p, q ∈ Rd, we let (p, q) =
{λp + (1 − λ)q | λ ∈ (0, 1)} and [p, q] = co({p, q})
denote the open and closed segment with extreme points
p and q, respectively. For a bounded set S ⊂ Rd,
we let CC(S) and CR(S) denote the circumcenter and
circumradius of S, respectively, that is, the center and
radius of the smallest-radius d-sphere enclosing S. The
computation of the circumcenter and circumradius of a
bounded set is a strictly convex problem and in particular
a quadratically constrained linear program. For p ∈ Rd,
B(p, r) and D(p, r) denote the open and closed ball of
center p and radius r ∈ R>0, respectively. Here, R>0

and R≥0 will denote the positive and the nonnegative
real numbers, respectively.

Let F(Rd) be the collection of finite point sets in
Rd; we shall denote an element of F(Rd) by P =
{p1, . . . , pn} ⊂ Rd, where p1, . . . , pn are distinct points
in Rd. Let G(Rd) be the set of undirected graphs whose
vertex set is an element of F(Rd). A proximity graph

function G : F(Rd) → G(Rd) associates to a point set
P an undirected graph with vertex set P and edge
set EG(P), where EG : F(Rd) → F(Rd × Rd) has the
property that EG(P) ⊆ P ×P \diag(P ×P) for any P .
Here, diag(P×P) = {(p, p) ∈ P×P | p ∈ P}. In other
words, the edge set of a proximity graph depends on the
location of its vertices. General properties of proximity
graphs, basics on graph theory and examples can be
found in [10], [12], [13].

In particular, we will make use of the r-disk proximity
graph Gdisk(r), for r ∈ R>0 and over a set of vertices
P . In this graph, two agents pi, pj ∈ P are neighbors iff
‖pi − pj‖ ≤ r. We denote the set of neighbors of agent
pi ∈ P in a proximity graph by:

Ni(G) = {j ∈ {1, . . . , n} | (pi, pj) ∈ EG(P)}.

For q0 and q1 in Rd, and for a convex closed set Q ⊂
Rd with q0 ∈ Q, let λ(q0, q1, Q) denote the solution of

the strictly convex problem:

maximize λ

subject to λ ≤ 1, (1 − λ)q0 + λq1 ∈ Q. (1)

Note that this convex optimization problem has the
following interpretation: move along the segment from
q0 to q1 the maximum possible distance while remaining
in Q. Under the stated assumptions the solution exists
and is unique.

B. Circumcenter Algorithms

The following is an informal description of the Cir-
cumcenter Algorithm defined for a proximity graph G ⊆
Gdisk(r), with r ∈ R>0.
Standard Circumcenter Algorithm:

Each agent performs: (i) it detects its neighbors
according to G; (ii) it computes the circumcen-
ter of the point set comprised of its neighbors
and of itself, and (iii) it moves toward this
circumcenter while maintaining connectivity
with its neighbors.

This algorithm was originally introduced in [2] and its
asymptotic convergence is guaranteed as proven in [5]
for any switching sequence of proximity graphs that
contains a strongly connected graph every l instants of
time, for some fixed l ∈ N. The asynchronous behavior
of the algorithm for was analyzed in [6], [3].

In [11], it was proven that, when implemented over a
1D space, it is not necessary to enforce the connectivity
constraint. In other words, step (iii) can be rephased as
“(iii) agent moves to the circumcenter of neighbors”.
Assuming that agents have knowledge of a frame with a
common orientation, we can extend the 1D algorithm
to arbitrary dimensions by means of a Circumcenter
Algorithm implemented in parallel as follows.
Parallel Circumcenter Algorithm:

Each agent performs: (i) it detects its neighbors
according to G; (ii) it projects the detected
positions to each axis of its frame; (iii) it
computes the circumcenters of each of the
projected sets of positions on each axis (iii)
it moves to the point whose coordinates are
given by each of those circumcenters.

For formal descriptions of these algorithms written in
pseudocode we refer the reader to [5], [11].

C. Modified Circumcenter Algorithm

Assume now that each agent i is able to detect a
perturbed position, pi

j ∈ D(pj , σ), of agent j, only. In
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other words, pj is the true position of agent j that agent
i measures as pi

j up to an error 0 < σ < r. With a

slight abuse of notation we will denote pi
i = pi. In what

follows, we assume a centered detection probability over
the disk D(pj , σ); that is, E[pi

j ] = pj , ∀ j ∈ Ni(G).
In particular, this is satisfied by the uniform probability
distribution over D(pj , σ) that we consider here. Given
a set of agents P ⊆ R, we will denote by pi

m =
min{pi

j | j ∈ Ni(G) ∪ {i}} (resp. pi
m = min{pj | j ∈

Ni(G) ∪ {i}} ) and pi
M = max{pi

j | j ∈ Ni(G) ∪ {i}}
(resp. pi

M = max{pj | pj ∈ Ni(G) ∪ {i}} ).
To still guarantee connectivity, a possibility is to

change the standard Circumcenter Algorithm by restrict-
ing the constraint set where agents are allowed to move.

Name: Modified Circ. Algorithm (MCA) v. 1
Goal: All agents practically rendezvous
Assumes: (i) r ∈ R+ is sensing radius

(ii) σ < r is the sensing error
(iii) Agents are initially connected by
G ⊆ Gdisk(r)

For i ∈ {1, . . . , n}, agent i executes at each time
instant in N:

1: acquire {pi
i1

, . . . , pi
ik
}, s.t. pi

j ∈ D(pj , σ) is within
error σ of true position pj , for each i! ∈ Ni(G)

2: compute Mi := {pi
i1

, . . . , pi
ik
}∪ {pi}, i! ∈ Ni(G)

3: compute Qi := ∩q∈Mi
D

(q + pi

2
,
r − σ

2

)

∪ {pi}

4: compute λ∗
i := λ(pi,CC(Mi), Qi)

5: set ui := λ∗
i (CC(Mi) − pi), i.e.,

move from pi to (1 − λ∗
i )pi + λ∗

i CC(Mi)

Here, we are implicitly assuming that each agent has
knowledge of the committed error σ. An alternative to
this algorithm is MCA v. 2 that filters the values pi

j . That

is, if ‖pj−pi‖ ≤ r then pi
j is taken so that ‖pi

j−pi‖ ≤ r.

In this case Qi can be defined in the standard way as:

Qi = ∩q∈Mi
D

(q + pi

2
,
r

2

)

.

Given P = {p1, . . . , pn}, from now on we will use the
notation p+

i for the next position of pi, i ∈ {1, . . . , n}
under any MCA.

Observe that while the intersection of disks

Di =
⋂

q∈Mi

D
(q + pi

2
,
r − σ

2

)

in MCA v. 1 might be empty, the set Qi is guaranteed
to be nonempty with the inclusion of {pi}. Note that it

could also happen that pi /∈ Di. The set Qi is defined
to guarantee connectivity as stated in the next lemma.

Lemma 1 (Connectivity Maintenance): Consider
Gdisk(r) for some r > 0 and let (pi, pj) ∈ EGdisk(r)(P).
Then, under the MCA, ‖p+

i − p+
j ‖ ≤ r.

Proof: This fact can be easily verified.

In 1D, the MCA v. 1 satisfies the following properties.

Lemma 2: (i) pi ∈ Di if and only if ‖pi − pi
M‖ ≤

r − σ and ‖pi − pi
m‖ ≤ r − σ.

(ii) Di ,= ∅ if and only if ‖pi
M − pi

m‖ ≤ 2(r − σ).
Lemma 3: Assume that q1 < CC(Mi) < q2 for agent

i ∈ {1, . . . , n} and some q1, q2 ∈ R. Then, under the
MCA v. 1,

(i) If Di ,= ∅ and

pi
m + pi

2
+

r − σ

2
− q1 > 0 , (2)

holds, then p+
i > q1.

(ii) If Di ,= ∅ and

pi
M + pi

2
− r − σ

2
− q2 < 0 . (3)

then p+
i < q2.

(iii) If Di = ∅ and q1 < pi < q2, then q1 < p+
i < q2.

Proof: For reasons of space we omit the proof of
this fact.

III. DETERMINISTIC ANALYSIS OF THE MODIFIED

CIRCUMCENTER ALGORITHM IN 1D

In this section we include a deterministic analysis of
the MCA v. 1 in 1D. The MCA v. 2 analysis becomes a
particular case as it uses less restrictive constraint sets.

Theorem 4: Let p1(0), . . . , pn(0) be the initial posi-
tions of a robotic network in R. Suppose the agents are
initially connected by Gdisk(r) for a sensing radius r > 0.
Let σ > 0 be the sensing error radius and {Pm =
(p1(m), . . . , pn(m))}m∈N∪{0} a sequence of positions
obtained by applying the MCA v. 1 with Gdisk(r). Then,
if r > 7σ, we have Pm → SD, as m → ∞, where

SD = {P ∈ R
n | diam(P ) ≤ 2σ} .

Proof: For space reasons we omit the
proof of this fact. We refer the reader to a
forthcoming extended version of this paper in
http://flyingv.ucsd.edu/sonia

Remark 5: This result holds independently of the
number of agents in the network, which in particular
does not affect the size of the practical stability ball.
As we show in simulations later, the ball does wander
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in space by the effect of noise. The theorem gives only
sufficient conditions for decreasing the diameter strictly
after two time steps. Simulations also show convergence
for smaller ratios r/σ.

IV. STOCHASTIC ANALYSIS OF THE MODIFIED

CIRCUMCENTER ALGORITHM IN 1D

In this section we present a stochastic analysis of
the MCA in 1D. This allows to trade in a weaker
convergence condition in probability one by a less
stronger assumption on r/σ and the possibility of using
any graph G ⊆ Gdisk(r). The analysis also becomes
much simpler by using the following supermartingale
convergence theorem (Doob’s theorem) taken from [14].

Theorem 6 (Supermartingale Convergence Theorem):

Suppose that Xt is a nonnegative random variable such
that E[X1] < +∞. Let Ft denote the history of process
Xt up to time t. If

E[Xt+1

∣

∣Ft] ≤ Xt, w.p.1

then Xt converges to a limit w.p.1.

Using this theorem we can obtain the main result in
this section. Before stating it, we include a useful lemma.

Lemma 7: Consider a set of random variables
{As}s∈{1,...,m} taking real values. Then,

(i) E[maxs As] = maxs E[As]
(ii) E[mins As] = mins E[As]

(iii) If A1 ≤ A2 then E[A1] ≤ E[A2].
Proof: We can derive (i) by observing that

E[As] ≤ E[max
s

As] = E[A∗] ≤ max E[As],

and similarly (ii) can be obtained. Finally, (iii) is a
consequence of the definition of the expectation.

Theorem 8: Let p1(0), . . . , pn(0) be the initial posi-
tions of a robotic network in R. Suppose the agents
are initially connected by G ⊆ Gdisk(r) for a sensing
radius r > 0. Let σ > 0 be the sensing error radius
and let {Pm = (p1(m), . . . , pn(m))}m∈N∪{0} denote a
sequence of positions obtained by applying MCA with
G. Then, if r > 3σ, we have E[Pm] → 0 as m → ∞.

Proof: For space reasons we omit the proof
of this fact. We refer the reader to a forthcom-
ing extended version that can be downloaded at
http://flyingv.ucsd.edu/sonia

Remark 9: The proof just presented makes use of the
standard Circumcenter Algorithm proof taken from [5]
and relies on the simpler definition of circumenter in
1D. As in the latter paper, this proof is valid for a

fixed graph G ⊆ Gdisk(r) and can also be extended to
allow certain switching of graphs G ⊆ Gdisk(r). We
refer the reader to a forthcoming report for the detailes
on this fact. The previous proof uses in a fundamental
way that E[CCi|t] = CCi. We conjecture that in higher
dimensions, at least we have that E[Ri|t] = Ri, where
Ri are the perceived local circumradius by agent i and
Ri is the actual local circumradius.

Proposition 10: The set of limit configurations de-
scribed in the previous theorem can be characterized to
be contained in:

(i) D
(

1
2 (max pi + min pi),

1
2 (r − σ)

)

for G.

(ii) D
(

1
2 (max pi + min pi), σ

)

for Gdisk(r).

Proof: If E[diam(p+
1 , . . . , p+

n )|(p1, . . . , pn)] = 0,

0 =E[diam(p+
1 , . . . , p+

n )|P] = max
i,j

E[‖p+
i − p+

j ‖|P]

≥ max
i,j

‖E[p+
i |P] − E[p+

j |P]‖ .

That is, E[p+
i |P] = E[p+

j |P] = p for all i, j ∈
{1, . . . , n}. In particular this implies that

p ∈
⋂

j∈{1,...,n}

({pj} ∪ Dj) =
⋂

j∈{1,...,n}

{pj} ∪
⋂

j∈{1,...,n}

Dj

(4)

and that the above intersection is nonempty. Since

⋂

j∈{1,...,n}

Dj =

[

pn − r − σ

2
, p1 +

r − σ

2

]

intersection (4) is nonempty if and only if:

pi = pj ∀i, j or pn − p1 ≤ r − σ . (5)

Both conditions imply that we have reached a ball of
diameter r − σ. In fact, if CC denotes the circumcenter
of the set of all agents, we have that:

pi ∈ D
(

CC,
r − σ

2

)

⊆
[

pn − r − σ

2
, p1 +

r − σ

2

]

,

(6)

∀ i ∈ {1, . . . , n}. Observe this is valid for any graph G.
Now consider the particular case of Gdisk(r). Condi-

tion (5) implies that p1 and pn are connected and we have
reached the complete graph. From the set content (6)
we also see that it will not be necessary to enforce
the constraint in the Modified Circumcenter Algorithm
v. 1 since it automatically holds. Therefore we have that
p+

i = CCi and p = E[CCi|P] = CC, ∀ i ∈ {1, . . . , n}.

Since CCi ∈ D
(

CCi, σ
)

, then it must be that p+
i ∈

D
(

CC(p1, . . . , pn), σ
)

, ∀ i ∈ {1, . . . , n}.
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V. SIMULATIONS

As with the standard Circumcenter Algorithm, the 1D
Modified Circumcenter Algorithm can be extended in
“parallel” to any dimension by means of a modification
of the parallel circumcenter algorithm. The following
is a formal description of this procedure. It assumes
knowledge of a frame {e1, . . . , ed},with ei ∈ Rd, for
all i ∈ {1, . . . , n}. We denote πa : Rd → R the
projection x = x1e1 + · · · + xde1 → xa relative to
ea for a ∈ {1, . . . , d}.

Name: Modified Parallel C. A. (MPCA) v. 1
Goal: All agents practically rendezvous
Assumes: (i) r ∈ R+ is sensing radius

(ii) σ < r is the sensing error
(iii) Agents are initially connected by
G ⊆ Gdisk(r)
(iv) Knowledge about a common refer-
ence frame B = {e1, . . . , ed} ⊆ Rd×d

For i ∈ {1, . . . , n}, agent i executes at each time
instant in N:

1: acquire {pi
i1

, . . . , pi
ik
}, s.t. pi

j ∈ D(pj , σ) is within
error σ of true position pj , for each i! ∈ Ni(G)

2: compute Ma

i := {πa(pi
i1

), . . . , πa(pi
ik

)} ∪
{πa(pi)}, i! ∈ Ni(G), a ∈ {1, . . . , d}.

3: compute Q
a

i := ∩q∈M
a

i

D
(q + πa(pi)

2
,
r − σ

2

)

∪
{πa(pi)}

4: compute λa,∗
i := λ(πa(pi),CC(Ma

i ), Q
a

i )

5: set ua
i := λa,∗

i (CC(Ma

i ) − πa(pi)), i.e.,
move from pi to a point with components (1−

λa,∗
i )πa(pi) + λa,∗

i CC(Ma

i ), for a ∈ {1, . . . , d}.

The convergence of this algorithm is guaranteed by
straightforward extensions of Theorems 4 and 8.

A. Simulations

Figure 1 shows a run of the MCA v. 2 for Gdisk(r) in
2D, 15 agents and 300 time steps. Here r = 6 and σ = 3.
The connectivity of the group of the 15 agents is shown
in the left box of Figure 1 while its evolution is shown
in the right box. As it can be seen in this figure and the
diameter evolution in Figure 3, the algorithm behaves
even better than expected from the 1D analysis. There
is a slight wandering of the practical stability ball. This
behavior is representative of what we have seen in many
repeated simulations with different initial conditions and
relations r/σ.

Fig. 1. MCA v. 2 for Gdisk(r), r = 3, σ = 1 in 2D

Although we do not include this result here, we have
been able to check that in 2D the circumcenter CC
of perturbed positions p̄i ∈ D(pi, σ) satisfies a bound
‖CC − CC ‖ = O(

√
Rσ), where R is the circumradius

of the unperturbed positions pi, i ∈ {1, . . . , n}. In fact a

bound ‖CC − CC ‖ =
√

Rσ
2 can indeed be reached by

some specific configuration and when R > 2σ. We will
summarize this results in a forthcoming publication.

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

Fig. 2. Diameter evolution of a network of 4 agents under the MCA
v. 1 for Gdisk(r), r = 3, σ = 1 in 1D.
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Fig. 3. Diameter evolution of a network of 50 agents under the MCA
v. 1 for Gdisk(r), r = 3, σ = 1 in 1D.

Simulations of the evolution of the diameter under the
MCA v. 1 for Gdisk(r) are shown in Figures 2 and 3 for
a network of 4 and 50 agents. In general we observe that

46th IEEE CDC, New Orleans, USA, Dec. 12­14, 2007 ThPI20.7

2373



0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

10

12

14

16

18

Fig. 4. Diameter evolution of 30 agent network for MCA v. 1 for
a fixed graph G which corresponds to the Limited Delaunay graph of
the initial positions, r = 3 and σ = 1 in 1D.

the smaller the group of agents, the increased wandering
of the stability ball and the larger its diameter. When
the number of agents is increased a filtering effect is
produced which favors the final outcome. Note that, for
the case of 50 agents, the diameter function remains
constant for some period of time. This is due to the
constraint enforcement that does not allow agents to
move, which can happen when r − σ is small. Since
the information about the neighbors positions changes
randomly in time according to a uniform distribution, it
is clear that eventually the constraint sets will become
nonempty and agents will be able to move. This is why
we believe the MCA works in fact for any r > σ. A
simulation of MCA v. 1 for a fixed graph G ⊆ Gdisk(r)
and 30 agents is shown in Figure 4. Convergence here is
much slower due to the fact that each agent has only two
neighbors. Note also that the diameter may increase at
any time, so a deterministic analysis like the for Gdisk(r)
is no longer feasible.

VI. CONCLUSIONS

We have introduced two possible modifications of the
Circumcenter Algorithm to cope with noisy measure-
ments of neighbors positions. We are currently working
on the extension of the results to 2D dimensions and the
possibility of using a family of switching graphs.
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