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SUMMARY

This paper presents distributed coverage algorithms for mobile sensor networks in which agents have

limited power to move. Rather than making use of a constrained optimization technique, our approach

accounts for power constraints by assigning non-homogeneously time-varying regions to each robot.

This leads to novel partitions of the environment into limited-range, generalized Voronoi regions. The

motion control algorithms are then designed to ascend the gradient of several types of Locational

Optimization functions. In particular, the objective functions reflect the global energy available to the

group and different coverage criteria. As we discuss in the paper, this has an effect on limiting each

agent’s velocity to save energy and balance its expenditure across the network. Copyright c© 2002

John Wiley & Sons, Ltd.
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1. Introduction

Mobile and static sensor networks hold the promise to impact a large number of applications

for exploration, environmental monitoring, safety and recovery operations. It is envisioned that

next network generations will make use of small low power mobile devices that operate in a

distributed manner [1]. Due to their modest sizes and weights, these systems will have limited

resources to divide between communication, computation and motion sub-capabilities. In this

way, power management becomes a crucial issue for these systems.

One key area of interest regarding mobile sensor networks is deployment to maximize

coverage, see for instance [2, 3, 4] and references therein. The ability to dynamically adjust to

changes such as agent failure or target acquisition give mobile networks an advantage over static

ones. Unfortunately, a drawback to mobile networks is that of increased power consumption.

Power-aware algorithms have been the subject of extensive research in static sensor networks

and mobile middleware, see [5, 6]. However, limited work on power constraints and deployment

has been done in the multi-vehicle sensor network field. The work of [7] and [8] utilize ordinary

Voronoi diagrams and a discrete algorithm to show convergence through simulations. Energy

considerations enter in their work as total distance traveled until convergence. Another related

result from [9] considers a network of agents performing scan lines over a region of interest with

energy and time constraints in mind. More involved vehicle energy dynamics are considered in

that work, and they address the relevant problem of speed management as well as optimizing

the number of agents necessary to provide adequate coverage in their deployment scheme.

This paper presents an alternative approach to the distributed deployment problem of mobile
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DEPLOYMENT ALGORITHMS FOR A POWER-CONSTRAINED MOBILE SENSOR NETWORK 3

sensor networks in which agents have limited energy budgets to move. To account for this, we

design algorithms that limit the maximum distance an agent can travel by a dynamically-

changing energy radius. This leads to a novel partition of the environment into limited-range,

generalized Voronoi regions that produces a more balanced region assignment. Our algorithms

seek to maximize objective functions involving: (i) the quantity of coverage as defined by area,

and (ii) the quality of coverage as defined by standard Locational Optimization theory [10].

The new partitions become very useful in order to obtain gradient algorithms that guarantee

local maximization of the objective functions. To do so, we consider a kinematic energy

expenditure model for each agent. The maximization of the objective functions will then require

that agents tune their speed as prescribed by the gradient information. The analysis provided

here extends and merges previous work in [11], where coverage algorithms for agents with

homogeneous, static sensor ranges is studied, and in [12], where energy partitions for coverage

are initially explored disregarding energy constraints on mobility. More precisely, the work

in [11] is extended to heterogeneous sensing radii that change dynamically as agents spend

energy.

We include simulations of each algorithm that show that the corresponding objective

functions are maximized. In particular we observe that the basic area-maximizing algorithm

may lead to situations where coverage remains constant and yet agents expend energy. To

avoid this, we modify our algorithm in two ways: (i) we limit further how fast agents can move

but still maximizing the area covered, and (ii) we redesign the algorithms so that a mixed

area-centroidal objective coverage function is maximized.

The paper is organized as follows. In Section 2 we define the problem and present

the objective functions that we would like to maximize. In Section 3, we present the
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4 A. KWOK, S. MARTINEZ

partition necessary to implement the maximization of the functions in a distributed way

with energy constraints. We analyze the objective functions in Section 4, and present their

gradient directions. Section 5 introduces a common gradient ascent algorithm with guaranteed

performance to apply to each case. In addition, we address some issues that may arise with

such flows. We present simulation results in Section 6 and discuss the performance of the

algorithms. Finally we point out lines for future research in Section 7.

2. Notation and Problem Definition

Let Q be a convex polytope in R
N including its interior, and let ‖ · ‖ denote the Euclidean

norm. We will use R≥0 to denote the set of positive real numbers. A map φ : Q → R≥0,

or a distribution density function, will represent a measure of a priori known information

distinguishing zones of Q which are more important than others. Equivalently, we consider Q

to be the bounded support of the function φ. We denote the interior of a set, S ⊂ R
N , as

Int (S), its complement as SC , and its boundary as ∂S. The cardinality of S is denoted as |S|.

A partition of Q is a collection of sets, A = {A1, . . . , An}, such that: (i) Int (Ai)∩ Int (Aj) = ∅

for all i 6= j and, (ii)
⋃n

i=1 Ai = Q.

Let P = (p1, . . . , pn) ∈ Qn be the location of n sensors, each moving in Q. We

interchangeably refer to the elements of the network as sensors, agents, vehicles, or robots. The

sensors have an associated energy content Ei such that 0 ≤ Ei ≤ Emax, for all i ∈ {1, . . . , n}.

As agents move, their energy reserve will change. We propose the following agent dynamics in

the augmented state (pi, Ei) ∈ Q × R≥0:

ṗi = ui , Ėi = −gi(‖ṗi‖) , (1)
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DEPLOYMENT ALGORITHMS FOR A POWER-CONSTRAINED MOBILE SENSOR NETWORK 5

where ṗi denotes the velocity of agent i such that ‖ṗi‖ ∈ [0, vmax], ui is the control input, and

gi : [0, vmax] → R≥0 is any increasing function such that gi(x) = 0 only at x = 0. Intuitively,

gi(x) captures the fact that energy expenditure increases as velocity increases. We will suppose

that gi = g for all i ∈ {1, . . . , n}.

We wish to deploy the robots to maximize a performance metric that quantifies coverage

and employs the guaranteed travel ranges for agents. In the most general sense, and motivated

by a Locational Optimization approach [10], we seek to maximize a general objective function

H(P, W ) =

∫

Q

max
i∈{1,...,n}

fi(dwi
(q, pi))φ(q)dq , (2)

where fi : R → R is a non-increasing function associated with the sensing quality of agent

i, and dwi
: R

N × R
N → R is some metric function weighted by a scalar wi ∈ R, for all

i ∈ {1, . . . , n}. These scalars will be related to the travel ranges for each agent. Depending on

the interpretation of coverage, H can be further specialized as we see in the following.

2.1. Energy-aware coverage

In [2], the metric dwi
(q, pi) in (2) was taken to be the square of the Euclidean distance. Thus,

dwi
(q, pi) = ‖q−pi‖2 and there is no weight associated with this metric. We propose a natural

extension of the results of [2] by considering a metric somehow weighted by the energy content

of each vehicle. As will be explained in a later section, we will choose

de
Ei

(q, pi) = ‖q − pi‖
2 − E2

i , (3)

dm
Ei

(q, pi) =
1

E2
i

‖q − pi‖
2 , (4)

called, respectively, the power-weighted metric and the multiplicatively-weighted metric,

see [10].
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6 A. KWOK, S. MARTINEZ

By modifying the Euclidean distance as in (3), (4), notice that a point q appears farther

away if the energy level of an agent is lower. The associated Locational Optimization function

for fi(x) = −x, becomes:

Hea(P, W ) =

∫

Q

max
i∈{1,...,n}

{−dwi
(q, pi)}φ(q)dq . (5)

2.2. Energy-limited coverage

We now formulate the notion of guaranteed travel range, the set of points that an agent can

reach if it travels in a straight line at any fixed velocity ‖ṗi‖ = vi ∈ (0, vmax] before running

out of energy. Without loss of generality, assume pi(t0) = 0 and Ei(t0) > 0 at some initial

time t0. We wish to find

R = min
vi∈(0,vmax]

‖pi(T )‖ , (6)

where T > 0 satisfies Ei(T ) = 0. From (1), and for a constant velocity different from zero, we

have that Ei(t) − Ei(t0) = −g(vi)(t − t0), and so

T =
Ei(t0)

g(vi)
+ t0 . (7)

Integrating ṗi from (1), we get pi(t) = (t − t0)vi. From (6) and (7), we obtain

R = min
vi∈(0,vmax]

∥

∥

∥

∥

Ei(t0)vi

g(vi)

∥

∥

∥

∥

. (8)

Note that if g(x) is a polynomial satisfying g(0) = 0, then (8) is well-defined. In addition, for

any other velocity profile ṽi(t) along a straight line path, the resulting travel range R̃ is such

that R̃ ≥ R.

For simplicity, we assume the following energy dynamics for each vehicle:

Ėi = −‖ṗi‖
2 = −‖ui‖

2 , i ∈ {1, . . . , n} . (9)
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DEPLOYMENT ALGORITHMS FOR A POWER-CONSTRAINED MOBILE SENSOR NETWORK 7

Without loss of generality, we can let vmax = 1, and from (8), the guaranteed travel range is

R = Ei(t0).

If we interpret coverage to be the set of all reachable points in Q, then under the previous

assumptions, the range of an agent i ∈ {1, . . . , n} is equal to the amount of energy Ei that it

has. Let Bi = B(pi, Ei) be a closed ball centered at pi with radius Ei and let Si = Bi \ Int (Bi)

be a sphere centered at pi with radius Ei. We will let R = Q ∩
⋃n

i=1 Bi denote the set of all

covered points by the group of agents. We now introduce various objective functions with the

energy constraint in mind.

Area Coverage. The simplest problem to solve given the energy-limited constraint is to

maximize area covered. Therefore, we can set fi(x) = 1[0,Ei](x) (i.e., the indicator function

of the set [0, Ei]) and dwi
(q, pi) = ‖q − pi‖. Under these assumptions, the general objective

function (2) becomes:

Ha(P, E) =

∫

Q

max
i∈{1,...,n}

1[0,Ei](‖q − pi‖)φ(q)dq =

∫

R

φ(q)dq . (10)

Centroidal Coverage. We can combine the energy-limited range with a typical objective

function from Locational Optimization to obtain:

Hc(P, E) =

∫

R

max
i∈{1,...,n}

{−dEi
(q, pi)}φ(q)dq . (11)

This has the interpretation of minimizing the mean distance from a point q to an agent at pi.

Mixed Coverage. We can combine (10) and (11) to strike a balance between quantity of

coverage and quality of coverage. We introduce two weights, κa, κc, to emphasize one over the

other. The mixed coverage objective function is:

Hm(P, E) = κaHa(P, E) + κcHc(P, E) . (12)
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8 A. KWOK, S. MARTINEZ

Base Return. Another modification to the coverage objective function (10) would be to

incorporate a “distance-from-home” cost. This addition has the practical interpretation

that agents need to have enough energy to return to the base where they started. One

implementation of such a constraint could have the following base-return objective function

Hbr(P, E) = Ha(P, E) −
n
∑

i=1

ρ(q0, pi, Ei) , (13)

where the function ρ penalizes distance from some home point q0. In applications where

distance from home is a strict constraint, one can use ρ(q0, pi, Ei) = exp[‖q0 − pi‖2 − E2
i ],

i ∈ {1, . . . , n}.

3. Limited-range, generalized Voronoi regions and associated proximity graphs

In order to come up with local deployment rules for each agent, it is convenient to assign

different regions of the space to them. Similarly as in [11, 12], the regions of dominance should

reflect each agent’s ability to cover an area. These assignments will also define the graphs

that determine the degree of decentralization of the proposed algorithms. In this section we

introduce novel partitions of R, De = {De
1, . . . , D

e
n} and DM = {Dm

1 , . . . , Dm
n }, based on

energy motion constraints.

3.1. Global partitions determined from the intersection of spheres

Let us consider a configuration like the one shown in Figure 1 where every two spheres Si, Sj

have an intersection Si ∩ Sj at two points. A possibility is to define De
i as the region given by

the intersection of Bi with halfplanes, H(pi, pj), ∀ i 6= j. The halfplanes H(pi, pj) contain pi

and have as a boundary the line passing through the points in Si ∩ Sj . Using a halfplane that

contains all such points provides a computationally convenient method of assigning regions of

Copyright c© 2002 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2002; 00:1–6

Prepared using rncauth.cls



DEPLOYMENT ALGORITHMS FOR A POWER-CONSTRAINED MOBILE SENSOR NETWORK 9

dominance. The halfplanes that define boundaries between two regions can also be thought of

as the convex hull of Si ∩ Sj in the case where |Si ∩ Sj | > 1. This intuitive construction can

be extended to cases where the spheres Si, Sj are tangent or have zero intersection through

the observation provided in the following lemma.

De
1

De
2

De
3

De
4

1

2

3

4

Figure 1. Proposed partition of R. The individual spheres are shown in dotted lines, along with the

boundaries of De
i in solid lines.

Lemma 1. The intersection of spheres Si generated by n agents with positions pi and energies

Ei for all i ∈ {1, . . . , n} induces a natural global partition of R
N which is the power-weighted

Voronoi diagram (PWVD), Ve = (V e
1 , . . . , V e

n ),

V e
i = {q ∈ R

N | ‖q − pi‖
2 − E2

i ≤ ‖q − pj‖
2 − E2

j } , (14)

for all i ∈ {1, . . . , n}.

Proof: Now we examine two intersecting spheres in order to formulate some expression for

the boundary points,

co(Si ∩ Sj) = {q ∈ R
N | ‖q − pi‖

2 − E2
i = ‖q − pj‖

2 − E2
j , ∀ i 6= j} .
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10 A. KWOK, S. MARTINEZ

Ei Ej

ri rj

si sj

pi pj

r

h

hs

Figure 2. Diagram for the derivation of the Voronoi boundary location.

Examining Figure 2, we can see that:















ri − rj = r ,

E2
i − ‖ri‖2 = E2

j − ‖rj‖2 .

Note that ri, rj and r are vectors, so if Ej > ‖r‖ in Figure 2, then the above relationships still

hold. We solve for rj in the first equation and substitute into the second:

E2
i − ‖ri‖

2 = E2
j − ‖ri − r‖2 = E2

j − ‖ri‖
2 + 2rT ri − ‖r‖2 .

Since r and ri point in the same direction, their inner product is the product of their individual

magnitudes,

rT ri = ‖r‖‖ri‖ =
E2

i − E2
j + ‖r‖2

2
⇒ ri =

E2
i − E2

j + ‖r‖2

2‖r‖

r

‖r‖
.

Note that even though we considered the intersection as in Figure 2, we can arrive at a similar

conclusion with a different type of intersection (i.e., one leading to an obtuse triangle.)
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We now return to the case illustrated in Figure 2. Points along each boundary co(Si ∩ Sj)

satisfy














‖ri‖2 + ‖hs‖2 = ‖si‖2 ,

‖rj‖2 + ‖hs‖2 = ‖sj‖2 .

Subtracting the two equations, we get

‖si‖
2 − ‖sj‖

2 = ‖ri‖
2 − ‖rj‖

2 = ‖ri‖
2 − ‖ri − r‖2

= ‖ri‖
2 − ‖ri‖

2 + 2rT
i r − ‖r‖2

= 2
E2

i − E2
j + ‖r‖2

2‖r‖
‖r‖ − ‖r‖2 = E2

i − E2
j .

This gives our final result,

‖si‖
2 − E2

i = ‖sj‖
2 − E2

j .

In other words, points q ∈ co(Si ∩ Sj) satisfy ‖q − pi‖2 − E2
i = ‖q − pj‖2 − E2

j . Note that

a set of points, q ∈ R
N that satisfy this property, exists regardless of whether or not Si, Sj

intersect. In fact, this boundary requirement is found in [10] as the defining property of the

power-weighted Voronoi partition, with a weighting factor of E2
i for each generating point pi.

�

It can be seen [10] that the boundary of a PWVD region is made of straight lines in two

dimensions, or (hyper-) planes in higher dimensions. Thus, each of the V e
i is convex. By

construction, this indeed creates a partition of R
N . According to [10], generator points pi may

fall outside their corresponding region V e
i . See Figure 3 for an illustration of the PWVD, Ve.

From now on, we adopt the following nomenclature. When two Voronoi regions V e
i and V e

j

are adjacent (i.e., they share an edge), pi is called a (power-metric) Voronoi neighbor of pj . The

set of indices of the power-metric Voronoi neighbors of pi is denoted by N e
i . We define the (i, j)
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12 A. KWOK, S. MARTINEZ

face as ∆e
ij = V e

i ∩V e
j . Note also that a definition for N e

j may be obtained from the dual of the

PWVD, the power-weighted Delaunay graph, Ge
D. The graph (P, E) → Ge

D = (P, Ee
D(P, E)) is

a type of proximity graph (see [11]) consisting of the vertices P and the edges Ee
D(P, E) such

that

Ee
D(P, E) = {(pi, pj) ∈ P × P \ diag(P × P ) | V e

i ∩ V e
j 6= ∅} .

In this way, we can define the neighbors of pi in Ge
D as:

N e
i = {pj ∈ P | (pi, pj) ∈ Ee

D(P, E)} . (15)

An alternate global partition to Ve can be determined by the following considerations.

Recall from Section 2 that if vi = vj = vmax, then two agents must spend all of their energy

to reach a point at the intersection of the energy spheres Si ∩ Sj . However, both agents do

not spend a proportionately equal amount of energy to reach points along the interior of the

boundary segments ∆e
ij ∩Bi. For this to be the case, the property that needs to be satisfied is

1
E2

i

‖q − pi‖2 = 1
Ej

‖q − pj‖2. In fact, this corresponds to the multiplicatively-weighted Voronoi

diagram (MWVD), VM = {V m
1 , . . . , V m

n }, such that:

V m
i =

{

q ∈ R
N |

1

E2
i

‖q − pi‖
2 ≤

1

E2
j

‖q − pj‖
2

}

, i ∈ {1, . . . , n} . (16)

Thus, given vi = vj = vmax, agents spend proportionately equal amounts of energy to reach

boundary points, ∆M
ij = V m

i ∩V m
j . According to [10], for this type of partition, generator points

pi lie in their regions, which may not be convex, may have holes and be disconnected. The

boundaries of these regions are composed of circular arcs. As in the power-weighted case (14),

the MWVD induces its own multiplicatively-weighted Delaunay graph, Gm
D , with corresponding

edges Em
D (P, E) and neighbors Nm

i .
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Figure 3 compares the power-weighted Voronoi partition with the multiplicatively-weighted

one, when intersected with a convex polytope Q. Notice that the intersected regions of Ve are

convex whereas the ones associated with Vm are not.

1(1)

2(1.5)

3(2)

4(2.5)

5(3)

1(1)

2(1.5)

3(2)

4(2.5)

5(3)

Figure 3. Comparison of the power-weighted (left) and multiplicatively-weighted (right) Voronoi

diagrams. Energy contents are shown in parentheses. Observe that agent 2 is outside its region in

the power-weighted case.

3.2. Limited-range partitions

Thus far, we have proposed two possible partitions of the entire space R
N , (14) and (16). We

now incorporate these two partitions with the limited range concept from Section 2.

In order to partition R = Q∩
⋃n

i=1 Bi, we propose that each element of De = {De
1, . . . , D

e
n}

(resp. Dm = {Dm
1 , . . . , Dm

n }) be defined as De
i = Q ∩ Bi ∩ V e

i (resp. Dm
i = Q ∩ Bi ∩ V m

i ),

i ∈ {1, . . . , n}. Agent regions of dominance, De
i (resp. Dm

i ), will have boundaries that consist

of Voronoi face segments ∆e
ij ∩Bi ∩Q (resp. ∆m

ij ∩Bi ∩Q), boundary segments ∂Q∩Bi ∩ V e
i

(resp. ∂Q ∩ Bi ∩ V m
i ), and energy radius arcs. We will refer to the union of all those arcs as

Arcs (De
i ), which gives ∂De

i =
⋃

j∈N e
i

(

∆e
ij ∩ Bi

)

∪(∂Q ∩ Bi ∩ V e
i )∪Arcs (De

i ) (resp. Arcs (Dm
i )
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14 A. KWOK, S. MARTINEZ

and ∂Dm
i =

⋃

j∈Nm
i

(

∆m
ij ∩ Bi

)

∪ (∂Q ∩ Bi ∩ V m
i ) ∪ Arcs (Dm

i )). This proposed partition will

also have a dual graph, the energy-limited Delaunay graph Ge
LD = (P, Ee

LD(P, E)) (resp. we

have Gm
LD). The edge set is defined as

Ee
LD(P, E) = {(pi, pj) ∈ P × P \ diag(P × P ) | De

i ∩ De
j 6= ∅ and ‖pi − pj‖ ≤ Ei + Ej} .

This allows the definition of the set of neighbors,

N e
i,LD = {pj ∈ P | (pi, pj) ∈ Ee

LD(P, E)} = {pj ∈ P | De
i ∩ De

j 6= ∅} ,

(resp. we have Nm
i,LD). In addition, the quantities M e

i and Ce
i will denote the mass and centroid

of either V e
i or De

i . For example,

M e
i =

∫

De
i

φ(q)dq , Ce
i =

1

M e
i

∫

De
i

qφ(q)dq .

It should be clear from the context whether M e
i and Ce

i refer to the mass and centroid of

V e
i or De

i . (Resp. Mm
i and Cm

i refer to the mass and centroid of either V m
i or Dm

i , i.e.:

Mm
i =

∫

Dm
i

φ(q)dq and Cm
i = 1

Mm
i

∫

Dm
i

qφ(q)dq). In addition, we also define the moment of

inertia of V m
i or Dm

i as,

Im
i =

∫

Dm
i

‖q − pi‖
2φ(q)dq .

As defined, it is not immediately clear that the collections De and Dm are partitions of R.

This is proved in the next theorem.

Theorem 2. Let De = {De
1, . . . , D

e
n} be a collection of sets with De

i = Bi ∩ V e
i ∩ Q.

Let DM = {Dm
1 , . . . , Dm

n } with De
i = Bi ∩ V e

i ∩ Q. Then, De and DM are partitions of

R = Q ∩
⋃n

i=1 Bi.

Proof: We prove the result for De, being the proof for Dm is analogous. Since the PWVD is

a partition of R
N , we have that Int (V e

i )∩ Int
(

V e
j

)

= ∅, for all i 6= j. Since De
i = Bi ∩ V e

i ∩Q,

Copyright c© 2002 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2002; 00:1–6

Prepared using rncauth.cls



DEPLOYMENT ALGORITHMS FOR A POWER-CONSTRAINED MOBILE SENSOR NETWORK 15

then

Int (De
i ) = Int (Bi ∩ V e

i ) = Int (Bi) ∩ Int (V e
i ) ∩ Int (Q) .

This implies that

Int (De
i ) ∩ Int

(

De
j

)

= Int (Bi) ∩ Int (V e
i ) ∩ Int (Bj) ∩ Int

(

V e
j

)

∩ Q = ∅ .

Thus we have proved the first defining condition of a partition.

Now we must show
⋃n

i=1 De
i = Q ∩

⋃n
i=1 Bi. Expanding the left-hand side,

n
⋃

i=1

De
i =

n
⋃

i=1

(V e
i ∩ Bi ∩ Q) = Q ∩

n
⋃

i=1

Bi .

Thus it is sufficient to show
⋃n

i=1(V
e
i ∩ Bi) =

⋃n
i=1 Bi. Note also that

Bi = Bi ∩
(

V e
i ∪ (V e

i )C
)

= (Bi ∩ V e
i ) ∪

(

Bi ∩ (V e
i )C

)

.

Taking the union over all i,

n
⋃

i=1

Bi =

(

n
⋃

i=1

(Bi ∩ V e
i )

)

∪

(

n
⋃

i=1

(

Bi ∩ (V e
i )C

)

)

.

If we show that
(

Bi ∩ (V e
i )C

)

⊂
⋃

j 6=i De
j , then we will have proved the requirement. Let

Ai = Bi∩(V e
i )C , and note that Ai may not be connected, however ∂Ai =

⋃

j∈N e
i
(Si∩(V e

i )C)∪

(Bi ∩ ∆e
ij).

Consider a point q ∈ Ai. Because Ve is a partition, there exists a jq 6= i such that,

‖q − pj‖
2 − E2

j ≥ ‖q − pjq
‖2 − E2

jq
, ∀j 6= jq .

On the other hand q ∈ Ai implies ‖q − pi‖2 ≤ E2
i . Taking the first equation for j = i and

applying latest condition, we get

‖q − pjq
‖2 ≤ ‖q − pi‖

2 − E2
i + E2

jq
≤ E2

jq
.

This implies that q ∈ De
jq

. Since this argument is valid for any q ∈ Ai, we have that

Ai ⊆
⋃

j 6=i De
j . �
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16 A. KWOK, S. MARTINEZ

The two partitions of R yield similar results as can be seen in Figure 4. Generally speaking,

the power-weighted partition De is a good approximation to the multiplicatively-weighted

partition DM if the agents are spaced far enough apart, or if the energy contents of neighbors

are similar.

1(1)

2(1.5)

3(2)

4(2.5)

5(3)

1(1)

2(1.5)

3(2)

4(2.5)

5(3)

Figure 4. Comparison of the limited range power-weighted (left) and multiplicatively-weighted (right)

partitions, for the same set of points from Figure 3. Energy contents are shown in parentheses.

4. Objective function gradient characterization

In this section we derive the gradient direction for each of the objective functions that we have

introduced previously. These gradients define the proper direction of flow in order to optimize

coverage. Before we begin, we restate the objective functions from Section 2 in a form that

facilitates analysis.

The metric that generates the PWVD is the given metric (3). Similarly, the MWVD is

determined from the metric (4). To better distinguish between the objective functions that

use the PWVD metric and the MWVD metric, we will use H for the former and J for the latter.
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We present the new forms of (5), (10), (11) (upon which the remaining objective functions (12)

and (13) are based) using the PWVD here:

Hea(P, E) =

∫

Q

max
i∈{1,...,n}

{−de
Ei

(q, pi)}φ(q)dq =

n
∑

i=1

∫

V e
i

−
(

‖q − pi‖
2 − E2

i

)

φ(q)dq , (17)

Ha(P, E) =

∫

R

φ(q)dq =

n
∑

i=1

∫

De
i

φ(q)dq , (18)

Hc(P, E) =

∫

R

max
i∈{1,...,n}

{−de
Ei

(q, pi)}φ(q)dq =

n
∑

i=1

∫

De
i

−
(

‖q − pi‖
2 − E2

i

)

φ(q)dq , (19)

Through the use of the MWVD, we can rewrite the respective objective functions as:

Jea(P, E) =

∫

Q

max
i∈{1,...,n}

{−dm
Ei

(q, pi)}φ(q)dq =
n
∑

i=1

∫

V m
i

−
1

E2
i

‖q − pi‖
2φ(q)dq , (20)

Ja(P, E) =

∫

R

φ(q)dq =
n
∑

i=1

∫

Dm
i

φ(q)dq , (21)

Jc(P, E) =

∫

R

max
i∈{1,...,n}

{−dm
Ei

(q, pi)}φ(q)dq =
n
∑

i=1

∫

Dm
i

−
1

E2
i

‖q − pi‖
2φ(q)dq . (22)

Before computing the gradients we would like to note the following result.

Lemma 3. The objective functions (17)–(22) are continuously differentiable with respect to

pi and Ei.

Proof: This is a result of Proposition 1.6 in [11]. We have shown in Section 3 that the regions

V e
i ∩ Q and De

i are convex. Furthermore, these regions are formed by intersections of half-

planes and balls, making them piecewise smooth as required in [11]. We also present φ to be

the bounded support of Q, thus it is integrable over Q. This satisfies all the requirements of

Proposition 1.6, so then the objective functions (17)–(19) are are continuously differentiable.

Even though regions of MWVD may not be star-shaped, each individual region V m
i ∩Q and

Dm
i can be composed of a finite union of star-shaped sets, which makes such regions fall under

the scope of the result from [11]. �

Copyright c© 2002 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2002; 00:1–6

Prepared using rncauth.cls



18 A. KWOK, S. MARTINEZ

We now state the gradient expressions for these functions.

Proposition 4. Given the objective functions Hea, Ha, Hc, Hm, and Hbr based on (17), (18),

and (19), and a general vector field X = (X1, . . . , Xn) where Xi = (Xpi
, XEi

) : Q × R →

R
N × R for all i ∈ {1, . . . , n}, the Lie derivatives of Hea, Ha, Hc, Hm, and Hbr are

LXHea =

n
∑

i=1

(

2M e
i (Ce

i − pi)
T
)

Xpi
+ 2EiM

e
i XEi

, (23)

LXHa =

n
∑

i=1

(

∫

Arcs(De
i )

φ(γi)[n
t(γi)]

T dγi

)

Xpi
+

(

∫

Arcs(De
i )

φ(γi)dγi

)

XEi
, (24)

LXHc =

n
∑

i=1

(

2M e
i (Ce

i − pi)
T
)

Xpi
+ (2EiM

e
i )XEi

, (25)

LXHm = κaLXHa + κcLXHc , (26)

LXHbr = LXHa +

n
∑

i=1

[

2ρ(qo, pi, Ei)(q0 − pi)
T
]

Xpi
+ [2Eiρ(qo, pi, Ei)] XEi

. (27)

Proof: We will present the gradient calculations for Hea, Ha, and Hc and note that the

remaining gradients follow immediately from those results. We will use the conservation of

mass law in [11] to differentiate the integral form of the objective functions,

d

dx

∫

Ω(x)

ϕ(q, x)dq =

∫

Ω(x)

dϕ(q, x)

dx
dq +

∫

∂Ω(x)

ϕ(γ, x)nt(γ)
∂γ

∂x
dx ,

where n : ∂Ω(x) → R
N , q 7→ n(q) denotes the unit outward normal to q ∈ ∂Ω(x), and

γ : D → Ω(x), D ⊆ R
N denotes a parametrization of the family {Ω(x) ⊆ R

N |x ∈ D} of

star-shaped sets.
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DEPLOYMENT ALGORITHMS FOR A POWER-CONSTRAINED MOBILE SENSOR NETWORK 19

Energy-aware, (17). Applying this law,

∂Hea

∂pi
=

∂

∂pi

n
∑

j=1

∫

V e
j

−de
Ej

(q, pj)φ(q)dq

=

n
∑

j=1

∫

V e
j

−
∂

∂pi
de

Ei
(q, pi)φ(q)dq +

n
∑

j=1

∫

∂V e
j

−de
Ej

(γj , pj)φ(γj)n
t(γj)

∂γj

∂pi
dγj

=

∫

V e
i

2(q − pi)φ(q)dq +

∫

∂V e
i

−de
Ei

(γi, pi)φ(γi)n
t(γi)

∂γi

∂pi
dγi

+
∑

j∈N e
i

∫

∂V e
j

−de
Ej

(γj , pj)φ(γj)n
t(γj)

∂γj

∂pi
dγj .

The final step comes from the fact that a small perturbation in position of one agent only affects

the Voronoi boundaries of its neighbors N e
i . Note that over the set of shared boundaries, ∆e

ij

for j ∈ N e
i , the normal vectors are equal and opposite, nt(γi) = −nt(γj). Therefore, the

integrals along shared boundaries vanish, leaving the final result,

∂Hea

∂pi
=

∫

V e
i

2(q − pi)φ(q)dq = 2M e
i (Ce

i − pi)
T .

A similar analysis can be done for the energy derivative to obtain

∂Hea

∂Ei
=

∫

V e
i

2Eiφ(q)dq = 2EiM
e
i .

Area coverage (18). We must calculate the expression for ∂Ha

∂pi
and ∂Ha

∂Ei
. Applying the

conservation of mass law once again, we have

∂Ha

∂pi,k
=

∂

∂pi,k

n
∑

j=1

∫

De
j

φ(q)dq =
n
∑

j=1

∫

Dj

∂

∂pi,k
φ(q)dq +

n
∑

j=1

∫

∂De
j

φ(γj)n
t(γj)

∂γj

∂pi,k
dγj

=

∫

∂De
i

φ(γi)n
t(γi)

∂γi

∂pi,k
dγi +

∑

j∈N e
i,LD

∫

∂De
j

φ(γj)n
t(γj)

∂γj

∂pi,k
dγj .

Each region may have boundaries composed of circular arcs or planar faces. Over the set of

shared faces ∆e
ij , for all j ∈ N e

i,LD, note that the normal vectors nt(γi) = −nt(γj). Therefore,

the integrals along shared boundaries vanish, leaving the integration over the arcs of Di,

∂Ha

∂pi,k
=

∫

Arcs(De
i )

φ(γi)n
t(γi)

∂γi

∂pi,k
dγi . (28)
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20 A. KWOK, S. MARTINEZ

From the definition of De
i , Arcs (De

i ) are a fixed distance with respect to the generating point,

pi. In R
N , let γi(Θ) be the parametrization of a particular point on the arc of De

i . Then,

‖γ(Θ) − pi‖ = Ei ⇒
∂

∂pi
‖γ(Θ) − pi‖ = 0

‖γ(Θ)− pi‖
−1/2(

∂γ

∂pi
− I) = 0 ⇔

∂γ

∂pi
= I .

From (28) and the above result,

∂Ha

∂pi
=

∫

Arcs(De
i )

φ(γi)[n
t(γi)]

T dγi . (29)

Similarly, we compute the derivative with respect to Ei:

∂Ha

∂Ei
=

∫

Arcs(De
i )

φ(γi)
∂γi

∂Ei
nt(γi)dγi .

Note that the boundary, γi, grows and shrinks proportional to the normal as Ei changes.

Therefore, ∂γi

∂Ei
= nt(γi) and

∂Ha

∂Ei
=

∫

Arcs(De
i )

φ(γi)‖n
t(γi)‖

2dγi =

∫

Arcs(Di)

φ(γi)dγi . (30)

Centroidal coverage (19). We apply the conservation of mass law in a similar way as the area

coverage case. Note, however, that (3) has dependence on pi, so we are left with

∂Hc

∂pi
= −

∫

De
i

∂

∂pi
de

Ei
(q, pi)dq −

∫

Arcs(De
i )

de
Ei

(γi, pi)n
t(γi)

∂γi

∂pi
dγi .

Using (3), the first term of the right hand side becomes
∫

De
i

2(q − pi)φ(q)dq. Again, Arcs (De
i )

are a fixed distance from pi. Thus, the second term on the right hand side is

∫

Arcs(De
i )

(E2
i − E2

i )φ(γi)n
t
k(γi)dγi = 0 .

We can combine the above results to get:

∂Hc

∂pi
= 2M e

i (Ce
i − pi)

T .
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Similarly, we compute the derivative with respect to Ei:

∂Hc

∂Ei
=

∫

De
i

2Eiφ(q)dq = 2EiM
e
i .

Putting these results together leads to (25) and (26).

Base-return (13). We have already computed the area coverage objective gradient, so all that

remains is to compute

d

dt

[

n
∑

i=0

ρ(q0, pi, Ei)

]

=

n
∑

i=0

[

∂ρ

∂pi
ṗi +

∂ρ

∂Ei
Ėi

]

.

Suppose we would like to use ρ(q0, pi, Ei) = − exp[‖q0 − pi‖2 − E2
i ]. Then the respective

derivatives would be

∂ρ

∂pi
= 2 exp[‖q0 − pi‖

2 − E2
i ](q0 − pi)

T ,

∂ρ

∂Ei
= 2Ei exp[‖q0 − pi‖

2 − E2
i ] .

�

Remark 5. The area coverage result can be seen as a generalization of a limited sensing

coverage problem in [11] for a network of heterogeneous sensors with different and constant

sensing ranges Ri. The corresponding sensing range would satisfy Ri = E2
i . However, since

this sensing range is fixed, the Lie derivative will not have a second term involving energy. We

would simply have

dHa

dt
=

n
∑

i=1

(

∫

Arcs(De
i )

φ(γi)[n
t(γi)]

T dγi

)

ṗi ,

which extends the result found in [11]. •

Now we perform the same gradient analysis for the partitions based on the MWVD.
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22 A. KWOK, S. MARTINEZ

Proposition 6. Consider the objective functions Ja, Jc, Jm, and Jbr based on (20), (21),

and (22) using the partition Dm and metric (4). Let X = (X1, . . . , Xn) be a general vector

field where Xi = (Xpi
, XEi

) : Q×R → R
N ×R for all i ∈ {1, . . . , n}. Then, the Lie derivatives

of Jea, Ja, Jc, Jm, and Jbr along the flow X are given by:

LXJea =
n
∑

i=1

2Mm
i

E2
i

(Cm
i − pi)

T Xpi
+

2Im
i

E3
i

XEi
, (31)

LXJa =

n
∑

i=1

(

∫

Arcs(Dm
i )

φ(γi)[n
t(γi)]

T dγi

)

Xpi
+

(

∫

Arcs(Dm
i )

φ(γi)dγi

)

XEi
, (32)

LXJc =

n
∑

i=1

(

2Mm
i

E2
i

(Cm
i − pi)

T −
∂Ja

∂pi

)

Xpi
+

(

2Im
i

E3
i

−
∂Ja

∂Ei

)

XEi
, (33)

LXJm = κaLXJa + κcLXJc , (34)

LXJbr = LXJa +

n
∑

i=1

[

2ρ(qo, pi, Ei)(q0 − pi)
T
]

Xpi
+ [2Eiρ(qo, pi, Ei)] XEi

. (35)

Proof: Again, we will use the conservation of mass law in [11]. We will perform analysis of

the objective functions (20), (21), and (22), and note that the gradient formulations for the

remaining functions follow from those results.

Energy-aware (20). Similarly as in the proof of Proposition 4, we have that:

∂Jea

∂pi
=

n
∑

j=1

∂

∂pi

∫

V m
j

−
1

E2
j

‖q − pj‖
2φ(q)dq

=

n
∑

j=1

∫

V m
j

−
1

E2
j

∂

∂pi

[

‖q − pj‖
2
]

φ(q)dq +

∫

∂V m
j

−
1

E2
j

‖γj − pj‖
2φ(γj)n

t(γj)
∂γj

∂pi
dγj

= 2

∫

V m
i

1

E2
i

(q − pi)
T φ(q)dq +

∑

j∈Ni

∫

∂V m
j

−
1

E2
j

E2
j φ(γj)n

t(γj)
∂γj

∂pi
dγj

= 2

∫

V m
i

1

E2
i

(q − pi)
T φ(q)dq .
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Note that the integral along the boundaries ∂V m
i vanish as in the power-weighted case. The

energy derivative is:

∂Jea

∂Ei
=

n
∑

j=1

∂

∂Ei

∫

V m
j

−
1

E2
j

‖q − pj‖
2φ(q)dq

=

n
∑

j=1

∫

V m
j

−‖q − pj‖
2φ(q)

∂

∂Ei

[

1

E2
j

]

dq +

∫

∂V m
j

−
1

E2
j

‖γj − pj‖
2φ(γj)n

t(γj)
∂γj

∂Ei
dγj

= 2

∫

V m
i

1

E3
i

‖q − pi‖
2φ(q)dq +

∑

j∈Ni

∫

∂V m
j

−
1

E2
j

E2
j φ(γj)n

t(γj)
∂γj

∂Ei
dγj .

Again, the integral along the boundaries vanish, giving the final result:

∂Jea

∂pi
=

2Mm
i

E2
i

(Cm
i − pi)

T ,
∂Jea

∂Ei
=

2Im
i

E3
i

.

Area coverage (21). The only difference between the objective functions (18) and (21) are

the partitions. Thus, the analysis of the derivative is identical to the previous proof, with the

exception of the different regions of integration, Dm
i as opposed to De

i .

Centroidal coverage (22). First take the derivative wrt pi using conservation of mass law:

∂Jc

∂pi
=

n
∑

j=1

∂

∂pi

∫

Dm
j

−
1

E2
j

‖q − pj‖
2φ(q)dq

=

n
∑

j=1

∫

Dm
j

−
1

E2
j

∂

∂pi

[

‖q − pj‖
2
]

φ(q)dq +

∫

∂Dm
j

−
1

E2
j

‖γj − pj‖
2φ(γj)n

t(γj)
∂γj

∂pi
dγj

= 2

∫

Dm
i

1

E2
i

(q − pi)
T φ(q)dq +

∑

j∈Ni

∫

∂Dm
j

−
1

E2
j

E2
j φ(γj)n

t(γj)
∂γj

∂pi
dγj

= 2

∫

Dm
i

1

E2
i

(q − pi)
T φ(q)dq −

∫

Arcs(Dm
i )

nt(γi)φ(q)dγi

=
2Mm

i

E2
i

(Cm
i − pi)

T −
∂Ja

∂pi
.
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The energy derivative follows similarly,

∂Jc

∂Ei
=

n
∑

j=1

∂

∂Ei

∫

Dm
j

−
1

E2
j

‖q − pj‖
2φ(q)dq

=
n
∑

j=1

∫

Dm
j

−‖q − pj‖
2φ(q)

∂

∂Ei

[

1

E2
j

]

dq +

∫

∂Dm
j

−
1

E2
j

‖γj − pj‖
2φ(γj)n

t(γj)
∂γj

∂Ei
dγj

= 2

∫

Dm
i

1

E3
i

‖q − pi‖
2φ(q)dq +

∑

j∈Ni

∫

∂Dm
j

−
1

E2
j

E2
j φ(γj)n

t(γj)
∂γj

∂Ei
dγj

=
2Im

i

E3
i

−

∫

Arcs(Dm
i )

‖nt(γi)‖
2φ(γi)dγi =

2Im
i

E3
i

−
∂Ja

∂Ei
.

�

Remark 7. In the area-maximizing case, Ja, the gradient points in the direction that is the

most “open”. However, for the “centroidal” case, Jc, there is a term which points in the

opposite direction. For some choices of φ, this has a detrimental effect on coverage as seen

through simulations. However, the mixed case, Jm with κa = κc negates this effect, and the

gradient direction points exactly towards the centroids, Cm
i , for all i. It seems that a more

natural extension of the energy-aware case to the limited-range MWVD is Jm instead of Jc. •

5. Gradient-ascent deployment algorithms

Once we have computed the gradient directions for each objective function, we will apply a

gradient-ascent control algorithm for each case. The resulting control algorithms are extensions

of Lloyd’s algorithm for quantization [13], and are distributed in the sense of a (limited)

Delaunay graph. Consider (1) with

ṗi = k(pi, Ei) sat

(

∂F

∂pi

)

,

Ėi = −‖ṗi‖
2 ,

(36)
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for all i ∈ {1, . . . , n}, where the saturation function is

sat(v) =



















v , ‖v‖ ≤ 1 ,

v
‖v‖ , ‖v‖ > 1 .

Here the control gain k(pi, Ei) ≥ 0 serves to modulate the velocity of each agent along its

gradient climbing path.

Let F be any one of the objective functions analyzed in the previous section, with the

exception of Jc as noted in Remark 7. Now we analyze the time evolution of the corresponding

objective function F with respect to (36). We adopt the shorthand notation ki = k(pi, Ei).

Combining the gradient direction with the time derivatives above, we get the following time

derivative:

dF

dt
=

n
∑

i=1

∂F

∂pi
ṗi +

∂F

∂Ei
Ėi =

n
∑

i=1

ki
∂F

∂pi
· sat

(

∂F

∂pi

)

− k2
i

∂F

∂Ei

∥

∥

∥

∥

sat

(

∂F

∂pi

)∥

∥

∥

∥

2

=
n
∑

i=1

ki sat

(

∂F

∂pi

)

·

(

∂F

∂pi
− ki

∂F

∂Ei
sat

(

∂F

∂pi

))

. (37)

Remark 8. Non-smooth dynamics are also possible:

ṗi = k(pi, Ei)

∂F
∂pi
∥

∥

∥

∂F
∂pi

∥

∥

∥

,

Ėi = −‖ṗi‖
2 = −k2(pi, Ei) .

Doing so would require the non-smooth analysis techniques found in [14]. We would, however,

arrive at the same convergence conclusions found in the next subsections. •

Remark 9. The properties of the gradient of F as in Propositions 4 and 6 make the associated

law (36) distributed in the sense of the corresponding Delaunay graph. For instance, with

F = Ha, the law is distributed over Ge
LD because the information that an agent needs to

implement (36) is only the position and energies of neighbors in Ge
LD. With this information,
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an agent can correctly construct its region, De
i . A sufficient condition to achieve this is if pj

can transmit to pi when ‖pi − pj‖ ≤ 2Em for all j 6= i. With this communication requirement,

the control law described in (36) is spatially distributed over the graph Ge
LD. •

5.1. Optimal gain selection

We wish that dF
dt ≥ 0 since we are maximizing the objective function. We now derive a sufficient

condition for k and also present an optimal choice for k.

Lemma 10. Given the model (1), (36), and an objective function F , the latter is maximized

if

0 ≤ k(pi, Ei) ≤
sat
(

∂F
∂pi

)

· ∂F
∂pi

∥

∥

∥
sat
(

∂F
∂pi

)∥

∥

∥

2
∂F
∂Ei

, (38)

for all i ∈ {1, . . . , n}. An optimal choice of k(pi, Ei) is then

k∗(pi, Ei) =
1

2

sat
(

∂F
∂pi

)

· ∂F
∂pi

∥

∥

∥
sat
(

∂F
∂pi

)
∥

∥

∥

2
∂F
∂Ei

. (39)

Proof: In order for dF
dt ≥ 0 we require that each summand of (37) be positive. Since

k(pi, Ei) ≥ 0, we must have

∂F

∂pi
· sat

(

∂F

∂pi

)

− ki
∂F

∂Ei

∥

∥

∥

∥

sat

(

∂F

∂pi

)∥

∥

∥

∥

2

≥ 0 .

Since ∂F
∂Ei

≥ 0 in Propositions 4 and 6 (except for (33)), the formula in (38) follows.

We are free to choose k subject to (38). In particular, we would like to maximize each

summand of (37) for each i. Taking the derivative with respect to k, we have

∂F

∂pi
· sat

(

∂F

∂pi

)

− 2k∗
i

∂F

∂Ei

∥

∥

∥

∥

sat

(

∂F

∂pi

)
∥

∥

∥

∥

2

= 0 ,

and the critical point condition for ki follows. �
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Remark 11. Different energy dynamics can be considered. That is, the consideration of gi(x)

different from x2 is possible as long as gi(0) = 0 and the gi are sufficiently smooth.

Although using (39) provides the quickest rate of convergence, it may not be the best.

Consider the situation shown in Figure 5, for the case where the objective function is (10).

Agent 4 has a small arc component compared to its entire boundary. However with the area

coverage gradient (24), the optimal gain (39) remains constant since ∂Ha

∂pi
, ∂Ha

∂Ei
→ 0 at the same

rate. For this reason, we would like ki to be chosen by the following constrained optimization

way: maximize each summand of (37) subject to ki ≤
∂F
∂Ei

. Notice that this quantity is of the

form f(ki) = ki(c1 − kic2), a concave parabola. With this constraint, the optimum k∗
i is then

k∗
i = min











1

2

sat
(

∂F
∂pi

)

· ∂F
∂pi

∥

∥

∥
sat
(

∂F
∂pi

)∥

∥

∥

2
∂F
∂Ei

,
∂F

∂Ei











. (40)

A simulation in Section 6 further discusses this choice.

For the PWVD energy-aware case, we can construct a similar constraint on k∗
i ,

k∗
i = min











1

2

sat
(

∂F
∂pi

)

· ∂F
∂pi

∥

∥

∥
sat
(

∂F
∂pi

)
∥

∥

∥

2
∂F
∂Ei

,
Ei

Em











. (41)

This choice of Ei

Em
is motivated from [12]. With k∗

i ≤ Ei

Em
, it can be shown that an individual

agent will not run out of energy in finite time. For the MWVD case, this factor appears

naturally in the optimal gain (39).

Similarly, we can impose a similar constraint for the base return flow such that if ‖pi−q0‖ ≤

Ei, then the vehicle at pi will always be able to return to q0. We can choose

k∗
i = min











1

2

sat
(

∂F
∂pi

)

· ∂F
∂pi

∥

∥

∥
sat
(

∂F
∂pi

)
∥

∥

∥

2
∂F
∂Ei

, 1











. (42)

This is because when k∗
i = 1, ‖ṗi‖ ≤ 1, which insures that a vehicle can reach any point in its

travel range given in Section 2.
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1

2

3
4

(a) (b)

Figure 5. Agent number 4 in (a), has a small arc component compared to its total boundary mass.

The shaded area in (b) does not belong in the region of any agent. The energy radii, Ei, are shown

as dotted lines.

5.2. Convergence analysis

We now replace the general objective, H, with the functions developed in Section 4. The proof

of the following theorem relies on the LaSalle invariance principle (see [15]).

Theorem 12 (Critical configurations and convergence, energy-aware PWVD) The crit-

ical points of a gradient ascent flow characterized by (36) and appropriate choice of k using

an objective function Hea are configurations where each agent is either:

(i) located at the centroid, pi = Ce
i ,

(ii) has an empty region, V e
i ∩ Q = ∅,

(iii) has no energy, Ei = 0.

Agents approach these critical configurations as t → ∞.

Proof: From Lemma 10, dF
dt ≥ 0 using F = Hea. Thus we need to characterize the critical

points where dHea

dt = 0. From (37), this is the case if for all i ∈ {1, . . . , n}, either:
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(i)

ki = min











1

2

sat
(

∂Hea

∂pi

)

· ∂Hea

∂pi

∥

∥

∥
sat
(

∂Hea

∂pi

)∥

∥

∥

2
∂Hea

∂Ei

,
Ei

Em











= 0 , (43)

(ii)

sat

(

∂Hea

∂pi

)

= sat
(

2M e
i (Ce

i − pi)
T
)

= 0 , (44)

(iii) or

∂Hea

∂pi
− ki

∂Hea

∂Ei
sat

(

∂Hea

∂pi

)

= 0 . (45)

Case (43) implies either ∂Hea

∂pi
= 0 or Ei = 0. Case (44) also implies that ∂Hea

∂pi
= 0, which

occurs if either M e
i = 0 or pi = Ce

i . The case where M e
i = 0 implies that the region V e

i ∩Q = ∅.

To analyze case (45), we consider a situation when
∥

∥

∥

∂Hea

∂pi

∥

∥

∥
≤ 1 and when

∥

∥

∥

∂Hea

∂pi

∥

∥

∥
> 1. For

the former case,

∂Hea

∂pi

[

1 − min

{

1

2∂Hea

∂Ei

,
Ei

Em

}

∂Hea

∂Ei

]

= 0 ,

∂Hea

∂pi

[

1 − min

{

1

2
,

Ei

Em

∂Hea

∂Ei

}]

= 0 .

This implies that ∂Hea

∂pi
= 0, a case addressed in (44) (the quantity 1 − min

{

1
2 , Ei

Em

∂Hea

∂Ei

}

cannot be zero). The latter case, when
∥

∥

∥

∂Hea

∂pi

∥

∥

∥
> 1 leads to:

∂Hea

∂pi



1 − min







∥

∥

∥

∂Hea

∂pi

∥

∥

∥

2∂Hea

∂Ei

,
Ei

Em







∂Hea

∂Ei
∥

∥

∥

∂Hea

∂pi

∥

∥

∥



 = 0 ,

∂Hea

∂pi



1 − min







1

2
,

Ei

Em

∂Hea

∂Ei
∥

∥

∥

∂Hea

∂pi

∥

∥

∥









 = 0 .

This again implies that ∂Hea

∂pi
= 0, addressed earlier (the quantity in the brackets cannot be

zero).

We now characterize the invariant configurations, when ṗi = 0 for all i ∈ {1, . . . , n}.

This corresponds to the cases (43) and (44). The largest invariant set contained in S =
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{(p1, . . . , pn) | Ḣea = 0} is S itself. By the LaSalle invariance principle, system configurations

will asymptotically approach S. �

Theorem 13 (Critical configurations and convergence, energy-limited PWVD) The

critical points of a gradient ascent flow characterized by (36) and appropriate choice of k

using an objective function H ∈ {Ha,Hc,Hm,Hbr} are configurations where each agent either

satisfies ∂H
∂pi

= 0, or its region De
i = ∅. The statement ∂H

∂pi
= 0 has the following meanings:

(i) the vehicle cannot further locally increase its coverage area when using Ha,

(ii) vehicle i is located at the centroid of De
i when using Hc,

(iii) the vehicle has reached a balance between maximizing area covered and remaining close to the

centroid of De
i when using Hm, and

(iv) the vehicle has reached a balance between maximizing area covered and remaining close to the

point q0 when using Hbr.

Agents approach these critical configurations as t → ∞.

Proof: The results for each deployment objective function will follow from the LaSalle

invariance principle; see [15]. We will present the proof for the Area coverage objective

function (18) and note that the proofs for the remaining cases are similar.

The region Q is positively invariant since agents cannot leave it. Also, using k∗
i from (40)

into (37) results in Ḣa ≥ 0 in Q. We now compute the critical points where Ḣa = 0. From (37),

this occurs when either k∗
i = 0, or sat

(

∂Ha

∂pi

)

= 0, or when

(

∂Ha

∂pi
− k∗

i

∂Ha

∂Ei
sat

(

∂Ha

∂pi

))

= 0 , (46)

for all i ∈ {1, . . . , n}.
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If k∗
i = 0, we divide the problem into the case where

∥

∥

∥

∂Ha

∂pi

∥

∥

∥
≤ 1 or where

∥

∥

∥

∂Ha

∂pi

∥

∥

∥
> 1. If the

former is true, then

k∗
i = min

{

1

2∂Ha

∂Ei

,
∂Ha

∂Ei

}

= 0 .

since ∂Ha

∂Ei
is bounded, then ∂Ha

∂Ei
= 0. If

∥

∥

∥

∂Ha

∂pi

∥

∥

∥
> 1,

k∗
i = min







∥

∥

∥

∂Ha

∂pi

∥

∥

∥

2∂Ha

∂Ei

,
∂Ha

∂Ei







= 0 ,

and either ∂Ha

∂pi
= 0 or ∂Ha

∂Ei
= 0. This implies that either

∫

Arcs(De
i )

φ(γi)[n
t(γi)]

T dγi = 0 or

∫

Arcs(De
i )

φ(γi)dγi = 0 .

Assuming that φ 6= 0 in Q, the first equation implies that either Arcs (De
i ) = ∅ or that the

integral over the boundary is balanced in all directions. The latter equation also implies that

Arcs (De
i ) = ∅. This occurs if either Ei = 0, or De

i is composed entirely of Voronoi edges (the

boundary of Q counts as a Voronoi edge), or De
i = ∅.

Now suppose that (46) is true. When sat
(

∂Ha

∂pi

)

= 0, this implies that ∂Ha

∂pi
= 0, and we

have addressed this situation. When (46) is true, we substitute (40) into (46) and consider the

case where
∥

∥

∥

∂Ha

∂pi

∥

∥

∥
≤ 1 or where

∥

∥

∥

∂Ha

∂pi

∥

∥

∥
> 1. When the former is true,

∂Ha

∂pi
− min

{

1

2∂Ha

∂Ei

,
∂Ha

∂Ei

}

∂Ha

∂Ei

(

∂Ha

∂pi

)

= 0

=⇒
∂Ha

∂pi

[

1 − min

{

1

2
,

(

∂Ha

∂Ei

)2
}]

= 0 ,

which implies ∂Ha

∂pi
= 0 or 1 = min

{

1
2 ,
(

∂Ha

∂Ei

)2
}

, a contradiction. Similarly
∥

∥

∥

∂Ha

∂pi

∥

∥

∥
> 1,

implies ∂Ha

∂pi
= 0. For both cases we conclude that ∂Ha

∂pi
= 0, a situation that we have addressed

earlier.

We now characterize the set of invariant configurations. The system is positively invariant

if ṗi = 0 for all i ∈ {1, . . . , n}. From (36), this occurs when k∗
i = 0 or sat

(

∂Ha

∂pi

)

= 0 for all
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i ∈ {1, . . . , n}. Therefore, the invariant configurations are exactly where Ḣa = 0, which have

been described. By LaSalle’s invariance principle [15], the agents will asymptotically approach

this set of configurations. �

Next we present the analogous result for coverage control using partitions based on the

MWVD. However, we omit the results of using Jc (22) for reasons stated in Remark 7.

Theorem 14 (Critical configurations and convergence, energy-aware MWVD) The

critical points of a gradient ascent flow characterized by (36) and appropriate choice of k using

an objective function Jea are configurations where each agent is either:

(i) located at the centroid, pi = Ce
i ,

(ii) has no energy, Ei = 0.

Agents approach these critical configurations as t → ∞.

Proof: The proof is similar to that of Theorem 12. �

Theorem 15 (Critical configurations and convergence, energy-limited MWVD) The

critical points of a gradient ascent flow characterized by (36) and appropriate choice of k using

an objective function J ∈ {Ja,Jm,Jbr} are configurations where each agent either satisfies

∂J
∂pi

= 0, or has no energy, Ei = 0. The statement ∂J
∂pi

= 0 has the following meanings:

(i) the vehicle cannot further locally increase its coverage area when using Ja,

(ii) the vehicle has reached the centroid of Dm
i when using Jm, and

(iii) the vehicle has reached a balance between maximizing area covered and remaining close to the

point q0 when using Jbr.

Agents approach these critical configurations as t → ∞.
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Proof: The proof is similar to that of Theorem 13. �

6. Simulations

In this section, we present simulation results for the three coverage objectives. First, however,

we will address the motivation for choosing k∗
i from (40) over (39). In this simulation, n = 8

agents were initialized at random initial positions with Ei = 10 for i ∈ {1, . . . , 8}. The agents

were confined to Q = [0, 15]× [0, 15] ⊂ R
2 with φ(x, y) = 1+10 exp[− 1

9 ((x−10)2 +(y−10)2)].

The agents maximized the area coverage objective function (10).

The use of k∗
i from (40) demonstrates some advantages over (39) in the simulation of Figure 6.

In Figure 6(a), agent 4 finishes with almost no energy, while the same agent has significantly

more energy in Figure 6(b). In addition, all 8 agents were deployed in Figure 6(a) while only

5 agents left the starting location in Figure 6(b).

We now compare the performance between deployment algorithms based on the PWVD

versus the MWVD. Specifically, we will look at the performance of energy-aware deployment

Hea and Jea, area maximizing deployment Ha and Ja, mixed coverage deployment Hm and

Jm, and base-return coverage Hbr and Jbr .

6.1. Energy-aware coverage case

Here, n = 12 agents are confined to Q = [0, 10] × [0, 10] ⊂ R
2 with a density function φ

composed of 4 Gaussian distributions (see Figure 7). The density function used was

φ(q) = 1 + 10

[

e−
‖q−r1‖2

9 + e−
‖q−r2‖2

2 + e−
‖q−r3‖2

2 + e−‖q−r4‖
2

]

,

where r1 = (8, 8), r2 = (8, 2), r3 = (8, 4) and r4 = (3, 7). Agents started at random positions in

the lower-left corner, with Ei = 5 for i ∈ {1, . . . , 12}. The agents followed the gradient ascent
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Figure 6. Comparison between the performance of k∗i from (39), (a); and from (40), (b). Agent paths

and final configurations are shown at left, and the energy level of agent 4 is plotted at right. Shaded

regions indicate a high value of φ.

control law in (36), and used (40).

Remark 16. Because it is possible for an agent i to be outside of its region of dominance V e
i ,

i.e.: pi /∈ V e
i , it is oftentimes the case where V e

i ∩Q = ∅ when pi is close to the boundary of Q,

and Ei < Ej for j ∈ N e
i This phenomena can be observed in the simulation of Figure 7 (left).

From an energy perspective, the use of these sensors is wasted, since they are pushed away

and don’t play any role in the coverage task. This raises the question of how to characterize

the number of sensors needed to cover a given region under the PWVD-based algorithms.
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Figure 7. Energy-aware coverage simulation results. Shaded regions indicate a high value of φ. The path

lines and final configurations are shown for energy-aware PWVD coverage (17), left, and energy-aware

MWVD coverage (20), right.

The undesirable behavior of the PWVD energy-aware algorithm is avoided when using the

MWVD based algorithm, since it is a property of the MWVD that pi ∈ V m
i . In this regard,

the MWVD forces the participation of all sensors in the coverage task. The use of the PWVD

would require an assessment of how many sensors are enough to solve the coverage task.

6.2. Area coverage case

We now examine the area coverage case, (18) and (21). The system of agents was initialized

identically to the energy-aware simulations, and we compare the performance between the

PWVD-based deployment and the MWVD-based deployment.

Here we do not see the undesirable effect in the PWVD case (Figure 8, left) of agents

lying along the boundary of Q without a region of dominance. This is because the gradient,

∂Ha

∂pi
tends to zero as Arcs (De

i ) disappear, preventing agents from getting squeezed into the

boundary. Both algorithms perform similarly, deploying to cover almost all of Q in both cases.
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Figure 8. Area coverage simulation results. The path lines and final configurations are shown for

limited-range PWVD area coverage (18), left, and limited-range MWVD area-coverage (21), right.

6.3. Mixed coverage case

The third simulation presents the mixed-coverage cases, Hm and Jm with identical initial

conditions as before. The area and centroidal components carried equal weight, κa = κc = 1

from (12).

1
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Figure 9. Mixed coverage simulation results. The path lines and final configurations are shown for

limited-range PWVD mixed coverage Hm, left, and limited-range MWVD mixed coverage Jm, right.

We again notice the return of the same undesirable phenomena mentioned in the energy-

aware simulations for the energy-limited PWVD simulation in Figure 10, left. Despite this,

the mixed coverage algorithm resulted in agent positions that are more collocated with dense

regions of φ for both the PWVD and MWVD cases, as compared to Figure 8.
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6.4. Base return coverage case

In this third simulation we examine the performance of Hbr and Jbr with ρ(q0, pi, Ei) =

− exp[‖q0 − pi‖2 − E2
i ] and q0 = (0, 0). Agents remain in Q = [−5, 5] × [−5, 5] ⊂ R

2 and

φ(x, y) = 1. We initialized n = 8 agents randomly around the origin with Ei = 3 for all

i ∈ {1, . . . , 8}, and agents used k∗
i from (42).

1
2

3
4

5 6

7
8

1
2

3
4

5 6

7
8

Figure 10. Base-return coverage simulation results. The path lines and final configurations are shown

for limited-range PWVD case Hbr, left, and limited-range MWVD case Jbr, right.

The simulations have almost identical results, with the exception of different partitioning

schemes. The agents manage to stay close enough to the origin when fully deployed.

7. Conclusions

We have presented a novel set of spatially distributed coverage control algorithms. We designed

three objective functions to demonstrate the flexibility of this method. In addition each of these

algorithms place an emphasis on individual energy levels through use of a generalized Voronoi

partition. We have shown through simulation that the three cases that we developed perform

as intended.

Current work includes incorporating nonholonomic vehicle dynamics into the convergence
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analysis in order to provide a more practical coverage scenario for implementation in a physical

testbed. Since the convergence of the algorithms is only guaranteed to local optima, we are

also working on extensions that help us find more optimal coverage configurations.
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