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Abstract—We propose a class of dynamic average consensuserror the average of bounded inputs with bounded derivative
algorithms that allow a group of agents to track the average On the other hand, they showed that proportional-integral
of their measured signals. The algorithms are implemented dynamic average consensus algorithm could track the av-

in discrete time and require a synchronous communication f tant i ts with sufficient] Il steadvest
schedule. The convergence results rely on the input-to-output erage of constant inputs with sufficiently small steadyesta

stability properties of consensus algorithms and require that €rror. The authors in [17] proposed a dynamic consensus
the union of communication graphs over a bounded period of algorithm and applied it to the design of consensus filters.

time be strongly connected. The only requirement on the set The algorithm in [17] can track with some bounded steady-
of signals is that the difference of then'"-order derivatives of state error the average of a common input with a bounded
any two signals be bounded for some: = 0 derivative. The problem studied in [23] is similar to that in

I. INTRODUCTION [17], and consensus of agents is over a common time-varying

We consider the problem in which a set of autonomoukeference signal. However, the algorithm in [23] assumes
agents aims to track the average of individually measurdfat agents know the nonlinear model which generates the
time-varying signals by local communication with neightaor time-varying reference function. The problem studied ie th
This problem is referred to as dynamic average consensusRFESent paper is close to those in [8] and [25] and includes
opposition to the more studied static consensus. The dynan#fiose in [17] and [23] as special cases.
average consensus problem arises in different contexts, su Statement of contributionsin this paper, we propose
as formation control [7], sensor fusion [17], [18], [25]2 class of discrete-time dynamic average consensus algo-
distributed estimation [12] and distributed tracking [4@[L].  fithms and analyze their convergence properties. Thisrpape
These tasks require that all agents agree on the averageceftributes to the problem of dynamic average consensus
time-varying signals and thus the consensus on a statie avél the following aspects: The continuous-time communi-
age value, e.g., the initial states of the agents, is ingeffiic  cation assumption for dynamic average consensus in [8]

Literature review: The distributed static consensus proband [25] is relaxed, and we consider more realistic diserete
lem was introduced in the literature of parallel processoféme synchronous communication models. This allows us
in [27] and has attracted significant attention in the conf© obtain a direct relation between the frequency of inter-
trols community. A necessarily incomplete list of referesc @gent communication and the difference of input signals.
includes [6], [16] for continuous-time consensus, [2],,[9]Our dynamic average consensus algorithms are able to
[15], [24] for discrete-time consensus, [1], [13] discusdrack the average of a larger class of time-varying inputs
asynchronous consensus, and [10], [3], [26] treat quantizéhan [8] and [25] with zero or sufficiently small steady-stat
consensus, randomized consensus and consensus over PAfr- This includes polynomials, logarithmic-type fuoas,
dom graphs, respectively. The convergence rate of consendigriodic functions and other functions whosé-order dif-
algorithms is e.g., discussed in [22], [28], consensus _prof)erences are bounded, far> 0. We can also handle the case
agation is considered in [14], and conditions on consens¥4'ere the difference of the common part, that appears in all
algorithms to achieve different consensus values is diszlis the individual inputs, explodes. Our analysis for the dyitam
in [4]. Consensus algorithms find application in a variety ofverage consensus algorithms relies upon the input-foabut
areas such as load balancing [5], [30], formation contrpl [6Stability property of discrete-time static consensus @ilyms
[7], and, as we have mentioned, sensor fusion [12], [17]P the presence of external disturbances. This result is the
[18], [25], distributed tracking [20], [31] and consensus-counterpart of continuous-time static consensus algosth
based belief propagation in Bayesian networks [19]. in [11] but more general in that we allow for unbounded

The dynamic average consensus problem in continuoudisturbances.
time is studied in [8], [17], [23], [25]. By using standard Organization of the papeie now outline the reminder
frequency-domain techniques, the authors in [25] showe®f the paper. In Section II, we introduce general notation
that their algorithm was able to track the average of ram@nd the statement of the problem we study. In Section IlI,
inputs with zero steady-state error. In the context of iput We focus on a first-order algorithm for dynamic average
state stability, [8] showed that proportional dynamic ager C€onsensus. Section IV generalizes this to a clasé’oforder

consensus algorithm could track with bounded steady-staégorithms for dynamic average consensus and analyze their
convergence properties. In Section V, we present some re-
This work was supported in part by NSF Career Award CMS-08836 mgarks on the extension of the results in Section Il and IV. In
and NSF 11S-0712746. The authors are with Department of M@chhand . . . . .
Aerospace Engineering, University of California, San Die§500 Gilman Section VI, an example and its simulation results are given.
Dr, La Jolla CA, 92093{ni zhu, soni and}@icsd. edu Finally, Section VIl includes some concluding remarks.



[I. PRELIMINARIES AND PROBLEM STATEMENT By induction, the n''-order difference of u;(t) is

. . . . (n) gy — A=D1, 1) — A=D1y (t —
In this section, we introduce the notation to be employe@ ul(i)(l) B “’A(t) AW “.il(t h) hfor n 2 2
along the paper and state the problem of dynamic avera%gf)re wi(t) = “i(t)('n) e wi use(y}) e notations
consensus. Nimax(t) = max;ey A, (t) and A, (1) =

.. . . . . in. ("),
The positive real number € (0, 1] is the time discretiza- ml\I/l\;gvaakeu[jéte) I)?rtﬁezfcfliowin assumbtion that Was bro-
tion unit and the update time instarts R (or s, 7) will be 9 P P

of the formt = kh (or s = kh, 7 = kh) for k € Z. posed in [9] and also used in [2][22].

: . Assumption 3.1 (Periodical strong connectivity):
) We will consider a netyvork oN nodes or agents, Igbe'led There is some positve integerT such that,
yieV ={l,...,N} interacting over a communication ¢, oy time  instant ¢ > 0, the directed graph
network. The topology of the network at timewill be (V,E() UE(t+h) U--UE(t + (T — 1)h)) is strongly
represented by a directed graght) = (V, E(t)) with ’
. [ connected.

an edge setb(t) < Vo x V we cop3|der that(l’j), < Assumption 3.2 (Bounded first-order differences):
E(t) if and or)Iy if node ¢ cqmmu_mcates to nodg at For any0 < h < 1, there exists a time invariant constant
time ¢t. The neighbors of nodeé at time ¢ are denoted by 9 > 0 such that
N;(t) ={j € V: (j,i) € E(t)andj # i}. The matrix —~ —
A(t) = [aij(t)] € RV*N represents the adjacency matrix AU(t) = Aumax(t) — Aumin(t) < b8, (2)
of the graphG(t) wherea;;(t) # 0 if edge (j,7) € E(t). nholds for allt > 0.
Finally, 1 € RY will the vector which entries are all ones.  Remark 3.1: Inequality (2) becomesmax;cy t;(t) —

At each time instant, every node synchronously will yin,.\ a;(¢) < 6 as h — 0. Hence, Assumption 3.2

measure the local continuous physical processR>o —  can be viewed as the discretized version of the property

R, communicates with its neighbors and updates the state @fx; ., u;(¢) — min;ey @;(t) < 6 for some fixedd > 0

its consensus algorithm. We ignore any delays induced by th@d all time instant > 0. o

communication and computation process. In the reminder of We proposefirst — order dynamic average consensus

this paper, the sample;(t) is referred to as theN(externaI) algorithm below to reach dynamic average consensus:

input of nodei at timet¢. Denote byu(t) = & > .0, u;(t

the average of the inputs of the n(ezworliv gtjztirlne\své @i(t+h) :xi(t)JrZa’?j(t)(xj(t)*xi(t))+A“i(t)’ ®)

denotexg”} (t) as the last component of the consensus state . ]#. _ _

2i(t) = col(xgl] (t), - ,xE”] (t)) € R" of nodei where the where the mputu('t) satisfies Assumptlon 3.2.

ordern will depend on the input(¢) and its differences. Remark 3.2 F|rst-_order dynamic average consensus al-
Our objective is to design am‘"-order dynamic av- gorithm can be rewritten as:

erage consensus algorithm that the nodes can utilize to [x;(¢t + h) —xi(t)]/hzézaij(t)(xj(t) —x;(t))

asymptotically achieve the average of the input) = j#i

col(uy (t),--- ,un(t)) € RY, in the following sense. For + [ui(t) — us(t — h)]/h, 4)

all i € {1,..., N}, there must hold that: )
where the parametessand h satisfy hd = 1. Observe that

lim |x£”] (t) —a(t — h)| = 0. (1) (4) is close to the discretized version of the continuomreeti
fmoo dynamic consensus algorithm in [25] but is not exactly the
The quantity of lim,_.. max;cy |_r£n] (t) — a(t — h)| is Same. Ifh — 0, thend = % — oo, and thus the right-hand

referred to as the steady-state error of the dynamic agide of (4) is not well-defined. N K
erage consensus algorithm. This can be interpreted as ae Will further suppose that the coefficients; (¢) in
measurement of how far the components of the consensii§t-order dynamic average consensus algorithm satisfy th
statex!"(¢) = col(z!")(t), - 22 (t)) are from achieving following two assumptions. _ _
the dynamic average consensus. Our algorithms will accom-ASSumption 3.3 (Non-degeneracy).There exists a posi-
plish (1) with either zero steady-state error or rendermg t UV€ constantx such thatu;; (1) = 1 -3, a;;(1) = «, and
steady-state error smaller than (or equal to) any given dourf*iJ (t) (i # 3.) satisfiesay; (t) € {0} U [, .” f_or all £ > 0.
Assumption 3.4 (Balanced communication):There
IIl. FIRST-ORDER DYNAMIC AVERAGE CONSENSUS holds thatl” A(t) = A(t)1 = 1, for all ¢ > 0.
ALGORITHM Lemma 3.1: Consider first-order dynamic average con-
) ) , ) _sensus algorithm and suppose that Assumption 3.3 is satis-

In th|_s section, we present first-order algonthms to a_lcdmevﬁed_ Then the following inequalities hold for afl> 0 and

dynamic average consensus. Our presentation mainly fcgl-> 0:

lows [1], [2], and [22]. We define:

t+s—h
M(t) = maxai(t), m(t) = min;(t), m(t + ) = m(s) + Z_: Atmin(T)
D(t) = M(t) —m(t),  Aui(t) = us(t) — wi(t — ), ths—h

Amax(t) = max Au;(t), Aumin(t) = 1221‘1/1 Au;(t). M(t+s) < M(s) + Z Attax(T) -

eV



It follows from the construction of the sets 6Dy, --- , D}
Proof: Due to the space limit, we omit the proof.m that there exists some tim& € [(Th, ({T + T — 1)h]
Let us fixk € V for everyt > s and defineDy = {k}. such thata;;(t') # 0 for somej € Dy U --- U D, and
By Assumption 3.1, there is a non-empty $&t C V' \ {k} i € D,.1. By the induction hypothesis, we have that for
of nodes such that for afl € D;, nodek communicates to all ¢t € [¢Th, (LT +T — 1)h], there exists somg, > 0 such
node: at least once during the time frame s + (7' — 1)h].  that
By induction, a setD;yq1 C V' \ (Dy U --- U Dy) can be t—h
defined by considering those nodgghat communicate to T ZAumm ) = ne(x(0) — m(0)).
somei € Dy U ---U Dy at least once during the time frame
[s+{Th, s+ (((+1)T —1)h]. By Assumption 3.1D;; # Consequently, as in (7), we have
() as long asV \ (Dy U ---UDy) # 0. Thus, there exists
L<N-—1suchthatbDyU---UuD, =V.
Lemma 3.2: Consider first-order dynamic average con- zi(t +h) = ZA“mm
sensus algorithm and suppose that Assumptions 3.1 and 3.3
hold. Lets > 0 and £k € V be fixed and consider the , /
associatedDy, ..., D.. Then for everyt € [s + (Th, s + 2 aij(#)(x;(t') = m(0) - TZO Attmin (7))
LT +T —1)h] andi € Dy, with £ € {1,...,L}, there
((axists a cons)ta]rvt;g (independent of) su{ch that f}or every = ane(wk(0) —m(0)).
te[s+{Th, s+ (LT+T—1)h], andi € D,, we have that  Following along the same lines as in (7), we have that

t—h

)+ ZAumm +ne(z(s) —m(s)), (B) @i(t+h) - ZAumm = 1e+1(2x(0) = m(0)),

t—h
holds for allt € [(¢+1)Th, (LT +T —1)h], whereny, =
s) + Z Atmax(7) = 1e(M(s) = 21(s)). (6) aW=0Ty, This establishes (5) fare D, . By induction,
we have shown that (5) holds. The proof for (6) is analogous.

Proof: Without loss of generality, we only consider the n
case wheres = 0, being the proof for a generalidentical.  The following theorem shows the convergence properties
Since) ;_, ay;(t) =1 at everyt > 0, we have that of first-order dynamic average consensus algorithm.

Theorem 3.1: Let §; be a positive constant anb; =
z(t + h) Z Atpin (7 20(NT—1)af1%N<N+1)T+1 . Under Assumptions 3.1, 3.3, 3.4
N and 3.2 with# # 0, the implementation of first-order
- Zakj(t)(wj (t) — m(0) — Z Atpmin (7)) dynamic average consensus algorithm with< h; and
= initial conditionsx;(0) = u;(—h), i € {1,..., N}, achieves
+ Aug(t) — Atmin (1) dynamic average consensus with nonzero steady-state error
upper bounded by, . INVADT g f
Proof: Letn = a2 —*, thenn < n, for any
= axk (£) (21() = B X%Aumi“ tef{l,... N — 17}. By replacings andt ir:7(5) 7\Zvith t and
! t1 =t+ (LT +T —1)h respectively, we have that for every
> oz (t) — m(0 Z Attpin (7 (7) 1t =0, there holds that
m(t1) = min  min z;(tq)

where we are using the property thaj(t) — m(0) £e{0, L} i€De

327 Atiin(7) 2 m(t) = m(0) — 3777 Attanin(7) > 0 A
from Lemma 3.1. Applying repeatedly (7) we have that, for )+ Z Unmin (7

all t €0, (LT +T —1)h],

t—h
2i(t) = m(0) = ) Atmin(7)
7=0

Ifl(ggk(h) — m(O) — Aumin(o))

)+ mln n;(zk(t) m(t))

tlh

+ Z Aumm + T](xk( ) m(t))

Similarly, we have

>« ti—h
> a (21,(0) — m(0)) > 10 (2%(0) — m(0)), M(ty) < M(t) + ) Atmax(7) = n(M(t) — 2k (t)).

wheren, = o¥7~1 and we are using that;, (0) —m(0) > 0.
This proves inequality (5) for the nodes M, = {k} and Combining the above two inequalities gives that
foranyt € [0, (LT + T — 1)h). ti—h

Now we proceed by induction ofi Suppose that (5) holds D(ty) < )+ Z AU(T (8)
for some0 < /¢ < £; then we should show (5) fare Dy ;.



Let us denotel}, = k(LT + T — 1)k for an integerk > 1.
It follows from (8) that Correspondingly, we propose the followisgcond — order

D(T,) < max{2(1 — n)"D(0), 2(n)} dynamic average consensus algorithm

where [2] (t+h)= 1 2 )+ Z a;;(t [2] x?] (1))
T h - J#i
Qn)=(1—n)" P AUF)+--+ > AU(7). +ail(t+h),
7=0 T=TpH_1 [1] (t + h — x 1 + Z a” [1] Jlgl] (t))
Since AU(t) = Aumax(t) — Aumin(t) < kO, D(t) is J#i
input-to-output stable with ultimate bour = 20(co) < + A@y,(t). (12)
2h20(LT + T — 1)1 <2h20(NT — 1)a s NNFDTH g, _ _
there exist" > 0 and \ < 0 such that Second-order dynamic average consensus algorithm can be
written in the following vector form
D(t) <max{T\",Z}, Vt>0. 9)
on nitial states:(0) (=B for all § 2Bt 4+ ) = A()2P(t) + 20 (¢t + ),
oose as initial stater; = u(— or all i €
{1,...,N}. By Assumption 3.4, the following conservation al! (t+h) = A(t)x[l] (t) + A(Q)u(t)’ (12)
property of first-order dynamic average consensus algorith  Theorem 4.1: Let 6, be a positive constant and
is satisfied for all: > 0: hy = & 802(NT71)2(L*N(N+1>T+2' Under the Assump-
N N tions 3.1, 3.3, 3.4 and 4.1 with, +# 0, the implementation of
Z zi(t+h) = Z @i(t) + Z Aui(t) second-order dynamic average consensus algorithm/with
N = = hs, and initial states:!™ (0) = Au;(—h), 217 (0) = wi(—h),
_ Z )+ ZZA“ i € {1,...,N}, achieves dynamic average consensus with
P —~ = ! nonzero steady-state error upper boundeddy
N N Proof: Note that the dynamic average consensus:for
— Z )+ Z wi(t) — ui(— Z“Z (10) in (12) has the same form as first-order dynamic average
P Py consensus algorithm, and can be obtained from this by

replacing Aw;(t) with A®)y,(t). Since Assumption 4.1
ﬁolds it follows from Theorem 3.1 that by choosing the
L3N ) < initial state a5x£ (0) = Au;(—h) we can findl'; > 0 and

N &i=1 7 = 0 < A\; < 1 such that for allt > 0 and alli € {1,...,N},
there holds that

where we have used the induction in Line 2 of the abov,
expressions.

It follows from (10) thatm(t + h) <
M(t + h) and thus

—_

_ —h)< 2.

tll)rgo‘xz ;ul t )| hm D( ) [1] ZAul | < D ( ) < maX{FlAﬁ,E1},
Hence, for any givens; > 0, choosingh < h; gives o ]

an steady-state e < ;. In other words, choosing a where DUl(t) = maxicy @, (t) — minjey ;' (t) and=; <

step of sizeh induces at least an error of ordetd(NT —  2h%0o(NT — 1)a~ 2 NINFDTHL

o e NN+DTHL ] Hence, there exists a finite > 0 such thatl'; \! < =4
Corollary 3.1: Under the Assumptions 3.1, 3.3, 3.4for all ¢ > ¢. In this way, z?] (t) in second-order dynamic
and 3.2 withd = 0, the implementation of first-order average consensus algorithm can be written in the following

dynamic average consensus algorithm with @any 0 and way fort > ¢

initial statex;(0) = u;(—h), i € {1,..., N}, achieves the 5 o] 9

dynamic average consensus at a geometnc rate with ze%[J}(t*h [] +Z% B E](t)) +di(t),
steady-state error. I (13)

IV. HIGHER-ORDER ALGORITHMS FOR DYNAMIC _ _ .
AVERAGE CONSENSUS with an inputd; (t) = + ;2 Aug(t) +9;(t) and [9;(t)] <

In this section, we present'-order algorithms for dy- =1 Note that for allt >, there holds that

namic average consensus where> 2. First of all, let us max;ey d;(t) — mingey d;(t) - 2=,
consider the case of = 2. We will that the inputs satisfy h = B
the following condition weaker than Assumption 3.2. < 4hBy(NT — 1)a—§N(N+1)T+1

Assumption 4.1 (Bounded second-order differences): _ _
For any0 < h < 1, there exists a time invariant constantHence, (13) has the same form as first-order dynamic av-
65 > 0 such that erage consensus algorithm, and can be obtained from it
by replacing Au,(t) with d;(t) where § = 4h0;(NT —
AP o (1) = AP up (1) < hbsy, Vt>0. 1)a~ 3 NW+DT+1 jn Assumption 3.2.



Furthermore, consider as initial stateg] (0) = u;(—h) dynamic average consensus with a nonzero steady-state erro
foralli € {1,...,N}. Similarly to (10) withAu;(t) instead upper bounded by,,.
of u;(t), we can obtain the following conservation property Proof: The proof can be completed by applying Theo-
of second-order dynamic average consensus algorithm fagm 4.1 inductively. ]
everyt >0 Corollary 4.2: Under the Assumptions 3.1, 3.3, 3.4

N N N N and 4.2 withd,, = 0, the implementation ofa!"-order

22 m =S At 22041 n =S w(r). dynamic average consensus algorithm with &ny 0 and
; 0+ ; ), ; o (R ; ) initial statesz!(0) = A=y, (—h) (¢ = 1,-- ,n — 1),

i

By using similar arguments to those employed in Theot" (0) = u;(—h) for all i € {1,.. -, N}, achieves dynamic
rem 31’ we have that there exigi > O ando < )\2 < 1 aVerage consensus at a geometl’IC I’ate W|th Zero Steaéy'stat
such that for alt > ¢ and alli € V, there holds error.

V. DISCUSSION

This section includes some remarks about the possible

N
1 -
122 () — = S wilt — h)| < D () < max{T2AS, 2},
=1 extension of the presented results. First, it can be shown

where DPI(t) = maxcy x?] (1) — mingey x?] (t) and that for anyn'"-order polynomialf(t) = .7, a;t, there
S, = 2W20(NT — 1)a s NWHDT+L — gp3p,(NT —  holds thatA™ f(t) = a,nlh. Hence, any set ofi'"-order
1)20;N(N+1)T+2_ For any givens, > 0, choosingh < h,  Polynomials satisfies Assumption 4.2 for some bounéied
leads to=, < 4. m [f the leading coefficients of these polynomials are ideaitic

Corollary 4.1: Under Assumptions 3.1, 3.3, 3.4 and 4.1then Assumption 4.2 is fulfilled fof,, = 0.
with 6, = 0, the implementation of second-order dynamic If the inputsu;(t) take the form ofu;(t) = r(t) + @;(t),
average consensus algorithm with ahy> 0 and initial ¢ € V, and the functioni;(t) is a linear combination of

states 21/ (0) = Auw;(=h), 22(0) = w;(—h) for all polynomials, the logarithmic function, periodic function
i € {1,...,N} achieves dynamic average consensus at&nd other functions whosen'"-order differences are
geometric rate with zero steady-state error. bounded, then Assumption 4.2 also holds for any common
Now, let us consider the following!" — order dynamic  7(t) even whenn'"-order difference of-(¢) explodes, e.g.,
average consensus algorithm. like the exponential function. It is worth mentioning that i
. . 5 5 is unnecessary for Assumption 4.2 to hold thst) u, ()
zi (t+h) =z, () + Zaij ()(z; (1) — ;" (1)) be bounded for alf, ¢ > 0 and anyh  (0,1].
J#i
+al 7+ ), In the case that the communication is symmetric; i.e.,
1 1 1 when(i, j) € E(t) ifand only if (j,7) € E(t), then Assump-
2t 4+ 1) =20 + 3 ay (O @) -2 (0) (6.4) € E(0) yit(5:) € B0 P

tion 3.1 (periodical strong connectivity) in Corollary 4can
() be weakened into:

+ A (1), tef{2,...,n}. (14) Assumption 5.1 (Eventual strong connectivity): The
The previous algorithm is the cascade roffirst-order dy- directed graph(V,U>;E(s)) is strongly connected for all
namic average consensus algorithms and can be compadtfpe instantt > 0.

rewritten in the following vector form Furthermore! Assumption 3.1 iq Corollary 4.2 can qlso
@ @ 1] be replaced with the assumption in [15] that for any time

s (t+h) = A@)x(t) + 2" (E+ h), instant ¢ > 0, there is a leader in the directed graph

2t +n) = A)2M(t) + AP u(t), (V,Us>E(s)). It is interesting to further think about the

here? th_order d i weaker assumption in [15] that there exists an intéger 1
wherel € {2,...,n}. n""-order dynamic average CONSENSUych that for any time instant > 0, there is a leader in

algorithm is able to track the average of inputs which syitisfthe directed arapbV. E(DUE(t+h)U- - -UE(t+(T—1)h
the following condition under which Theorem 4.2 holds. graplV, E(t)UE(t+h) (4 Jh))-

Assumption 4.2 (Boundedn!"-order differences): For

any0 < h < 1, there exists a time invariant constaht > 0 VI. EXAMPLE
such that The section illustrates Theorem 4.1 with a simulation.
Ay (1) — Ay (1) < O V>0 Let us consider a network consisting of four nodes, labeled
max min — n py M

1 through 4. Suppose that grapl(t) satisfies Assump-

tion 3.1 withT = 4. Assume the inputs;(t) are:
Theorem 4.2: Let §,, be a positive constant antd, =

o w1, Under th
(22"71977 NT—1 "an(—%N(N+1)T+1))7L+1. Under the Assump-

tions 3.1, 3.3, 3.4 and 4.2 with, # 0, the implementation of ug(t) = 5sin0.5¢ + 0.14%,  uy(t) = sin2t.

n'"-order dynamic average consensus algorithm with 2, |t can be verified that Assumption 4.1 is fulfilled with
and initial states’!(0) = AC=Ou;(—h) (¢ =1,--- ,n—1), g, = 21. For the givend, = 2, we choosen = 0.495 and
x[.”](o) = wu;(—h) for all « € {1,...,N}, achieves the can calculatér < 0.0017 for second-order dynamic average

K2

up(t) = 12sint +0.2t%,  wuy(t) = 8cost — 0.3t%,




consensus algorithm. Figure 1 shows the ste&?é(t) for
i €{1,2,3,4} and the average of the inpuigt — h).

[17]

We have proposed a class of dynamic average consensti

VIl. CONCLUSIONS

algorithms on synchronous communication networks and an-
alyze their convergence properties. Due to slow converenc
rates of the algorithms, tracking is shown at the expense B!
frequent communication and higher throughput. Future work

will

explore the algorithms application for sensor fusion.
[20]
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