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Abstract— We propose a class of dynamic average consensus
algorithms that allow a group of agents to track the average
of their measured signals. The algorithms are implemented
in discrete time and require a synchronous communication
schedule. The convergence results rely on the input-to-output
stability properties of consensus algorithms and require that
the union of communication graphs over a bounded period of
time be strongly connected. The only requirement on the set
of signals is that the difference of thenth-order derivatives of
any two signals be bounded for somen ≥ 0.

I. I NTRODUCTION

We consider the problem in which a set of autonomous
agents aims to track the average of individually measured
time-varying signals by local communication with neighbors.
This problem is referred to as dynamic average consensus in
opposition to the more studied static consensus. The dynamic
average consensus problem arises in different contexts, such
as formation control [7], sensor fusion [17], [18], [25]
distributed estimation [12] and distributed tracking [20], [31].
These tasks require that all agents agree on the average of
time-varying signals and thus the consensus on a static aver-
age value, e.g., the initial states of the agents, is insufficient.

Literature review:The distributed static consensus prob-
lem was introduced in the literature of parallel processors
in [27] and has attracted significant attention in the con-
trols community. A necessarily incomplete list of references
includes [6], [16] for continuous-time consensus, [2], [9],
[15], [24] for discrete-time consensus, [1], [13] discuss
asynchronous consensus, and [10], [3], [26] treat quantized
consensus, randomized consensus and consensus over ran-
dom graphs, respectively. The convergence rate of consensus
algorithms is e.g., discussed in [22], [28], consensus prop-
agation is considered in [14], and conditions on consensus
algorithms to achieve different consensus values is discussed
in [4]. Consensus algorithms find application in a variety of
areas such as load balancing [5], [30], formation control [6],
[7], and, as we have mentioned, sensor fusion [12], [17],
[18], [25], distributed tracking [20], [31] and consensus-
based belief propagation in Bayesian networks [19].

The dynamic average consensus problem in continuous-
time is studied in [8], [17], [23], [25]. By using standard
frequency-domain techniques, the authors in [25] showed
that their algorithm was able to track the average of ramp
inputs with zero steady-state error. In the context of input-to-
state stability, [8] showed that proportional dynamic average
consensus algorithm could track with bounded steady-state
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error the average of bounded inputs with bounded derivatives.
On the other hand, they showed that proportional-integral
dynamic average consensus algorithm could track the av-
erage of constant inputs with sufficiently small steady-state
error. The authors in [17] proposed a dynamic consensus
algorithm and applied it to the design of consensus filters.
The algorithm in [17] can track with some bounded steady-
state error the average of a common input with a bounded
derivative. The problem studied in [23] is similar to that in
[17], and consensus of agents is over a common time-varying
reference signal. However, the algorithm in [23] assumes
that agents know the nonlinear model which generates the
time-varying reference function. The problem studied in the
present paper is close to those in [8] and [25] and includes
those in [17] and [23] as special cases.

Statement of contributions.In this paper, we propose
a class of discrete-time dynamic average consensus algo-
rithms and analyze their convergence properties. This paper
contributes to the problem of dynamic average consensus
in the following aspects: The continuous-time communi-
cation assumption for dynamic average consensus in [8]
and [25] is relaxed, and we consider more realistic discrete-
time synchronous communication models. This allows us
to obtain a direct relation between the frequency of inter-
agent communication and the difference of input signals.
Our dynamic average consensus algorithms are able to
track the average of a larger class of time-varying inputs
than [8] and [25] with zero or sufficiently small steady-state
error. This includes polynomials, logarithmic-type functions,
periodic functions and other functions whosenth-order dif-
ferences are bounded, forn ≥ 0. We can also handle the case
where the difference of the common part, that appears in all
the individual inputs, explodes. Our analysis for the dynamic
average consensus algorithms relies upon the input-to-output
stability property of discrete-time static consensus algorithms
in the presence of external disturbances. This result is the
counterpart of continuous-time static consensus algorithms
in [11] but more general in that we allow for unbounded
disturbances.

Organization of the paper.We now outline the reminder
of the paper. In Section II, we introduce general notation
and the statement of the problem we study. In Section III,
we focus on a first-order algorithm for dynamic average
consensus. Section IV generalizes this to a class ofnth- order
algorithms for dynamic average consensus and analyze their
convergence properties. In Section V, we present some re-
marks on the extension of the results in Section III and IV. In
Section VI, an example and its simulation results are given.
Finally, Section VII includes some concluding remarks.



II. PRELIMINARIES AND PROBLEM STATEMENT

In this section, we introduce the notation to be employed
along the paper and state the problem of dynamic average
consensus.

The positive real numberh ∈ (0, 1] is the time discretiza-
tion unit and the update time instantst ∈ R (or s, τ ) will be
of the form t = κh (or s = κh, τ = κh) for κ ∈ Z.

We will consider a network ofN nodes or agents, labeled
by i ∈ V = {1, . . . , N}, interacting over a communication
network. The topology of the network at timet will be
represented by a directed graphG(t) = (V, E(t)) with
an edge setE(t) ⊂ V × V . We consider that(i, j) ∈
E(t) if and only if node i communicates to nodej at
time t. The neighbors of nodei at time t are denoted by
Ni(t) = {j ∈ V : (j, i) ∈ E(t) and j 6= i}. The matrix
A(t) = [aij(t)] ∈ R

N×N represents the adjacency matrix
of the graphG(t) whereaij(t) 6= 0 if edge (j, i) ∈ E(t).
Finally, 1 ∈ R

N will the vector which entries are all ones.
At each time instantt, every node synchronously will

measure the local continuous physical processui : R≥0 →
R, communicates with its neighbors and updates the state of
its consensus algorithm. We ignore any delays induced by the
communication and computation process. In the reminder of
this paper, the sampleui(t) is referred to as the (external)
input of nodei at time t. Denote byū(t) = 1

N

∑N
i=1 ui(t)

the average of the inputs of the network at timet. We
denotex

[n]
i (t) as the last component of the consensus state

xi(t) = col(x[1]
i (t), · · · , x

[n]
i (t)) ∈ R

n of node i where the
ordern will depend on the inputu(t) and its differences.

Our objective is to design annth-order dynamic av-
erage consensus algorithm that the nodes can utilize to
asymptotically achieve the average of the inputu(t) =
col(u1(t), · · · , uN (t)) ∈ R

N , in the following sense. For
all i ∈ {1, . . . , N}, there must hold that:

lim
t→∞

|x
[n]
i (t) − ū(t − h)| = 0. (1)

The quantity of limt→∞ maxi∈V |x
[n]
i (t) − ū(t − h)| is

referred to as the steady-state error of the dynamic av-
erage consensus algorithm. This can be interpreted as a
measurement of how far the components of the consensus
statex[n](t) = col(x[n]

1 (t), · · · , x
[n]
N (t)) are from achieving

the dynamic average consensus. Our algorithms will accom-
plish (1) with either zero steady-state error or rendering the
steady-state error smaller than (or equal to) any given bound.

III. F IRST-ORDER DYNAMIC AVERAGE CONSENSUS

ALGORITHM

In this section, we present first-order algorithms to achieve
dynamic average consensus. Our presentation mainly fol-
lows [1], [2], and [22]. We define:

M(t) = max
i∈V

xi(t), m(t) = min
i∈V

xi(t),

D(t) = M(t) − m(t), ∆ui(t) = ui(t) − ui(t − h),

∆umax(t) = max
i∈V

∆ui(t), ∆umin(t) = min
i∈V

∆ui(t).

By induction, the nth-order difference of ui(t) is
∆(n)ui(t) = ∆(n−1)ui(t) − ∆(n−1)ui(t − h) for n ≥ 2
where ∆(1)ui(t) = ∆ui(t). We will use the notations
∆(n)umax(t) = maxi∈V ∆(n)ui(t) and ∆(n)umin(t) =
mini∈V ∆(n)ui(t) for n ≥ 2.

We make use of the following assumption that was pro-
posed in [9] and also used in [2][22].

Assumption 3.1 (Periodical strong connectivity):
There is some positive integerT such that,
for all time instant t ≥ 0, the directed graph
(V,E(t) ∪ E(t + h) ∪ · · · ∪ E(t + (T − 1)h)) is strongly
connected.

Assumption 3.2 (Bounded first-order differences):
For any0 < h ≤ 1, there exists a time invariant constant
θ ≥ 0 such that

∆U(t) = ∆umax(t) − ∆umin(t) ≤ hθ, (2)

holds for all t ≥ 0.
Remark 3.1: Inequality (2) becomesmaxi∈V u̇i(t) −

mini∈V u̇i(t) ≤ θ as h → 0. Hence, Assumption 3.2
can be viewed as the discretized version of the property
maxi∈V u̇i(t) − mini∈V u̇i(t) ≤ θ for some fixedθ ≥ 0
and all time instantt ≥ 0. •

We proposefirst−order dynamic average consensus
algorithm below to reach dynamic average consensus:

xi(t+h) = xi(t)+
∑

j 6=i

aij(t)(xj(t)−xi(t))+∆ui(t), (3)

where the inputu(t) satisfies Assumption 3.2.
Remark 3.2: First-order dynamic average consensus al-

gorithm can be rewritten as:

[xi(t + h) − xi(t)]/h = δ
∑

j 6=i

aij(t)(xj(t) − xi(t))

+ [ui(t) − ui(t − h)]/h , (4)

where the parametersδ andh satisfyhδ = 1. Observe that
(4) is close to the discretized version of the continuous-time
dynamic consensus algorithm in [25] but is not exactly the
same. Ifh → 0, thenδ = 1

h
→ ∞, and thus the right-hand

side of (4) is not well-defined. •
We will further suppose that the coefficientsaij(t) in

first-order dynamic average consensus algorithm satisfy the
following two assumptions.

Assumption 3.3 (Non-degeneracy):There exists a posi-
tive constantα such thataii(t) = 1−

∑

j 6=i aij(t) ≥ α, and
aij(t) (i 6= j) satisfiesaij(t) ∈ {0} ∪ [α, 1] for all t ≥ 0.

Assumption 3.4 (Balanced communication):There
holds that1T A(t) = A(t)1 = 1, for all t ≥ 0.

Lemma 3.1: Consider first-order dynamic average con-
sensus algorithm and suppose that Assumption 3.3 is satis-
fied. Then the following inequalities hold for alls ≥ 0 and
t > 0:

m(t + s) ≥ m(s) +

t+s−h
∑

τ=s

∆umin(τ) ,

M(t + s) ≤ M(s) +
t+s−h
∑

τ=s

∆umax(τ) .



Proof: Due to the space limit, we omit the proof.
Let us fix k ∈ V for every t ≥ s and defineD0 = {k}.

By Assumption 3.1, there is a non-empty setD1 ⊂ V \ {k}
of nodes such that for alli ∈ D1, nodek communicates to
nodei at least once during the time frame[s, s + (T − 1)h].
By induction, a setDℓ+1 ⊂ V \ (D0 ∪ · · · ∪ Dℓ) can be
defined by considering those nodesj that communicate to
somei ∈ D0 ∪ · · · ∪ Dℓ at least once during the time frame
[s+ ℓTh, s+((ℓ+1)T − 1)h]. By Assumption 3.1,Dℓ+1 6=
∅ as long asV \ (D0 ∪ · · · ∪ Dℓ) 6= ∅. Thus, there exists
L ≤ N − 1 such thatD0 ∪ · · · ∪ DL = V .

Lemma 3.2: Consider first-order dynamic average con-
sensus algorithm and suppose that Assumptions 3.1 and 3.3
hold. Let s ≥ 0 and k ∈ V be fixed and consider the
associatedD0, . . . ,DL. Then for everyt ∈ [s + ℓTh, s +
(LT + T − 1)h] and i ∈ Dℓ, with ℓ ∈ {1, . . . ,L}, there
exists a constantηℓ (independent ofs) such that for every
t ∈ [s+ ℓTh, s+(LT +T − 1)h], andi ∈ Dℓ, we have that

xi(t) ≥ m(s) +

t−h
∑

τ=s

∆umin(τ) + ηℓ(xk(s) − m(s)), (5)

xi(t) ≤ M(s) +
t−h
∑

τ=s

∆umax(τ) − ηℓ(M(s) − xk(s)). (6)

Proof: Without loss of generality, we only consider the
case wheres = 0, being the proof for a generals identical.
Since

∑N
j=1 akj(t) = 1 at everyt ≥ 0, we have that

xk(t + h) − m(0) −
t

∑

τ=0

∆umin(τ)

=

N
∑

j=1

akj(t)(xj(t) − m(0) −
t−h
∑

τ=0

∆umin(τ))

+ ∆uk(t) − ∆umin(t)

≥ akk(t)(xk(t) − m(0) −
t−h
∑

τ=0

∆umin(τ))

≥ α(xk(t) − m(0) −
t−h
∑

τ=0

∆umin(τ)), (7)

where we are using the property thatxk(t) − m(0) −
∑t−h

τ=0 ∆umin(τ) ≥ m(t) − m(0) −
∑t−h

τ=0 ∆umin(τ) ≥ 0
from Lemma 3.1. Applying repeatedly (7) we have that, for
all t ∈ [0, (LT + T − 1)h],

xk(t) − m(0) −
t−h
∑

τ=0

∆umin(τ)

≥ α
t

h
−1(xk(h) − m(0) − ∆umin(0))

≥ α
t

h (xk(0) − m(0)) ≥ η0(xk(0) − m(0)) ,

whereη0 = αNT−1 and we are using thatxk(0)−m(0) ≥ 0.
This proves inequality (5) for the nodes inD0 = {k} and
for any t ∈ [0, (LT + T − 1)h].

Now we proceed by induction onℓ. Suppose that (5) holds
for some0 ≤ ℓ < L; then we should show (5) fori ∈ Dℓ+1.

It follows from the construction of the sets of{D0, · · · ,DL}
that there exists some timet′ ∈ [ℓTh, (ℓT + T − 1)h]
such thataij(t

′) 6= 0 for some j ∈ D0 ∪ · · · ∪ Dℓ and
i ∈ Dℓ+1. By the induction hypothesis, we have that for
all t ∈ [ℓTh, (LT +T −1)h], there exists someηℓ > 0 such
that

xj(t) − m(0) −
t−h
∑

τ=0

∆umin(τ) ≥ ηℓ(xk(0) − m(0)).

Consequently, as in (7), we have

xi(t
′ + h) − m(0) −

t′
∑

τ=0

∆umin(τ)

≥ aij(t
′)(xj(t

′) − m(0) −
t′−h
∑

τ=0

∆umin(τ))

≥ αηℓ(xk(0) − m(0)).

Following along the same lines as in (7), we have that

xi(t + h) − m(0) −
t

∑

τ=0

∆umin(τ) = ηℓ+1(xk(0) − m(0)) ,

holds for allt ∈ [(ℓ+1)Th, (LT +T −1)h], whereηℓ+1 =
α(N−ℓ)T ηℓ. This establishes (5) fori ∈ Dℓ+1. By induction,
we have shown that (5) holds. The proof for (6) is analogous.

The following theorem shows the convergence properties
of first-order dynamic average consensus algorithm.

Theorem 3.1: Let δ1 be a positive constant andh1 =
√

δ1

2θ(NT−1)α−
1
2

N(N+1)T+1
. Under Assumptions 3.1, 3.3, 3.4

and 3.2 with θ 6= 0, the implementation of first-order
dynamic average consensus algorithm withh ≤ h1 and
initial conditionsxi(0) = ui(−h), i ∈ {1, . . . , N}, achieves
dynamic average consensus with nonzero steady-state error
upper bounded byδ1.

Proof: Let η = α
1
2 N(N+1)T−1, then η ≤ ηℓ for any

ℓ ∈ {1, . . . , N − 1}. By replacings and t in (5) with t and
t1 = t+(LT +T − 1)h respectively, we have that for every
t ≥ 0, there holds that

m(t1) = min
ℓ∈{0,··· ,L}

min
i∈Dℓ

xi(t1)

≥ m(t) +

t1−h
∑

τ=t

∆umin(τ) + min
ℓ

ηℓ(xk(t) − m(t))

≥ m(t) +

t1−h
∑

τ=t

∆umin(τ) + η(xk(t) − m(t)).

Similarly, we have

M(t1) ≤ M(t) +

t1−h
∑

τ=t

∆umax(τ) − η(M(t) − xk(t)).

Combining the above two inequalities gives that

D(t1) ≤ (1 − η)D(t) +

t1−h
∑

τ=t

∆U(τ). (8)



Let us denoteTk = k(LT + T − 1)h for an integerk ≥ 1.
It follows from (8) that

D(Tn) ≤ max{2(1 − η)nD(0), 2Ω(n)} ,

where

Ω(n) = (1 − η)n−1
T1−h
∑

τ=0

∆U(τ) + · · · +
Tn−h
∑

τ=Tn−1

∆U(τ).

Since ∆U(t) = ∆umax(t) − ∆umin(t) ≤ hθ, D(t) is
input-to-output stable with ultimate boundΞ = 2Ω(∞) ≤
2h2θ(LT + T − 1) 1

η
≤ 2h2θ(NT − 1)α− 1

2 N(N+1)T+1, i.e.,
there existΓ > 0 andλ > 0 such that

D(t) ≤ max{Γλt,Ξ} , ∀ t ≥ 0. (9)

Choose as initial statexi(0) = ui(−h) for all i ∈
{1, . . . , N}. By Assumption 3.4, the following conservation
property of first-order dynamic average consensus algorithm
is satisfied for allt ≥ 0:

N
∑

i=1

xi(t + h) =
N

∑

i=1

xi(t) +
N

∑

i=1

∆ui(t)

=

N
∑

i=1

xi(0) +

N
∑

i=1

t
∑

τ=0

∆ui(τ)

=

N
∑

i=1

xi(0) +

N
∑

i=1

(ui(t) − ui(−h)) =

N
∑

i=1

ui(t), (10)

where we have used the induction in Line 2 of the above
expressions.

It follows from (10) thatm(t + h) ≤ 1
N

∑N
i=1 ui(t) ≤

M(t + h) and thus

lim
t→∞

|xi(t) −
1

N

N
∑

i=1

ui(t − h)| ≤ lim
t→∞

D(t) ≤ Ξ.

Hence, for any givenδ1 > 0, choosingh ≤ h1 gives
an steady-state errorΞ ≤ δ1. In other words, choosing a
step of sizeh induces at least an error of orderh2θ(NT −
1)α− 1

2 N(N+1)T+1.
Corollary 3.1: Under the Assumptions 3.1, 3.3, 3.4

and 3.2 with θ = 0, the implementation of first-order
dynamic average consensus algorithm with anyh > 0 and
initial statexi(0) = ui(−h), i ∈ {1, . . . , N}, achieves the
dynamic average consensus at a geometric rate with zero
steady-state error.

IV. H IGHER-ORDER ALGORITHMS FOR DYNAMIC

AVERAGE CONSENSUS

In this section, we presentnth-order algorithms for dy-
namic average consensus wheren ≥ 2. First of all, let us
consider the case ofn = 2. We will that the inputs satisfy
the following condition weaker than Assumption 3.2.

Assumption 4.1 (Bounded second-order differences):
For any0 < h ≤ 1, there exists a time invariant constant
θ2 ≥ 0 such that

∆(2)umax(t) − ∆(2)umin(t) ≤ hθ2 , ∀ t ≥ 0 .

Correspondingly, we propose the followingsecond− order
dynamic average consensus algorithm

x
[2]
i (t + h) = x

[2]
i (t) +

∑

j 6=i

aij(t)(x
[2]
j (t) − x

[2]
i (t))

+ x
[1]
i (t + h),

x
[1]
i (t + h) = x

[1]
i (t) +

∑

j 6=i

aij(t)(x
[1]
j (t) − x

[1]
i (t))

+ ∆(2)ui(t). (11)

Second-order dynamic average consensus algorithm can be
written in the following vector form

x[2](t + h) = A(t)x[2](t) + x[1](t + h),

x[1](t + h) = A(t)x[1](t) + ∆(2)u(t). (12)

Theorem 4.1: Let δ2 be a positive constant and
h2 = 3

√

δ2

8θ2(NT−1)2α−N(N+1)T+2 . Under the Assump-
tions 3.1, 3.3, 3.4 and 4.1 withθ2 6= 0, the implementation of
second-order dynamic average consensus algorithm withh ≤
h2, and initial statesx[1]

i (0) = ∆ui(−h), x
[2]
i (0) = ui(−h),

i ∈ {1, . . . , N}, achieves dynamic average consensus with
nonzero steady-state error upper bounded byδ2.

Proof: Note that the dynamic average consensus forx[1]

in (12) has the same form as first-order dynamic average
consensus algorithm, and can be obtained from this by
replacing ∆ui(t) with ∆(2)ui(t). Since Assumption 4.1
holds, it follows from Theorem 3.1 that by choosing the
initial state asx[1]

i (0) = ∆ui(−h) we can findΓ1 > 0 and
0 < λ1 < 1 such that for allt ≥ 0 and all i ∈ {1, . . . , N},
there holds that

|x
[1]
i (t) −

1

N

N
∑

i=1

∆ui(t − h)| ≤ D[1](t) ≤ max{Γ1λ
t
1,Ξ1} ,

whereD[1](t) = maxi∈V x
[1]
i (t)−mini∈V x

[1]
i (t) andΞ1 ≤

2h2θ2(NT − 1)α− 1
2 N(N+1)T+1.

Hence, there exists a finitēt ≥ 0 such thatΓ1λ
t
1 ≤ Ξ1

for all t ≥ t̄. In this way,x[2]
i (t) in second-order dynamic

average consensus algorithm can be written in the following
way for t ≥ t̄

x
[2]
i (t + h) = x

[2]
i (t) +

∑

j 6=i

aij(t)(x
[2]
j (t) − x

[2]
i (t)) + di(t),

(13)

with an inputdi(t) = 1
N

∑N
i=1 ∆ui(t) + ϑi(t) and |ϑi(t)| ≤

Ξ1. Note that for allt ≥ t̄, there holds that

maxi∈V di(t) − mini∈V di(t)

h
≤

2Ξ1

h

≤ 4hθ2(NT − 1)α− 1
2 N(N+1)T+1.

Hence, (13) has the same form as first-order dynamic av-
erage consensus algorithm, and can be obtained from it
by replacing∆ui(t) with di(t) where θ = 4hθ2(NT −
1)α− 1

2 N(N+1)T+1 in Assumption 3.2.



Furthermore, consider as initial statesx
[2]
i (0) = ui(−h)

for all i ∈ {1, . . . , N}. Similarly to (10) with∆ui(t) instead
of ui(t), we can obtain the following conservation property
of second-order dynamic average consensus algorithm for
every t ≥ 0

N
∑

i=1

x
[1]
i (t + h) =

N
∑

i=1

∆ui(t),
N

∑

i=1

x
[2]
i (t + h) =

N
∑

i=1

ui(t).

By using similar arguments to those employed in Theo-
rem 3.1, we have that there existΓ2 > 0 and 0 < λ2 < 1
such that for allt ≥ t̄ and all i ∈ V , there holds

|x
[2]
i (t) −

1

N

N
∑

i=1

ui(t − h)| ≤ D[2](t) ≤ max{Γ2λ
t
2,Ξ2} ,

where D[2](t) = maxi∈V x
[2]
i (t) − mini∈V x

[2]
i (t) and

Ξ2 = 2h2θ(NT − 1)α− 1
2 N(N+1)T+1 = 8h3θ2(NT −

1)2α−N(N+1)T+2. For any givenδ2 > 0, choosingh ≤ h2

leads toΞ2 ≤ δ.
Corollary 4.1: Under Assumptions 3.1, 3.3, 3.4 and 4.1

with θ2 = 0, the implementation of second-order dynamic
average consensus algorithm with anyh > 0 and initial
states x

[1]
i (0) = ∆ui(−h), x

[2]
i (0) = ui(−h) for all

i ∈ {1, . . . , N} achieves dynamic average consensus at a
geometric rate with zero steady-state error.

Now, let us consider the followingnth − order dynamic
average consensus algorithm.

x
[ℓ]
i (t + h) = x

[ℓ]
i (t) +

∑

j 6=i

aij(t)(x
[ℓ]
j (t) − x

[ℓ]
i (t))

+ x
[ℓ−1]
i (t + h) ,

x
[1]
i (t + h) = x

[1]
i (t) +

∑

j 6=i

aij(t)(x
[1]
j (t) − x

[1]
i (t))

+ ∆(n)ui(t), ℓ ∈ {2, . . . , n} . (14)

The previous algorithm is the cascade ofn first-order dy-
namic average consensus algorithms and can be compactly
rewritten in the following vector form

x[ℓ](t + h) = A(t)x[ℓ](t) + x[ℓ−1](t + h) ,

x[1](t + h) = A(t)x[1](t) + ∆(n)u(t) ,

whereℓ ∈ {2, . . . , n}. nth-order dynamic average consensus
algorithm is able to track the average of inputs which satisfy
the following condition under which Theorem 4.2 holds.

Assumption 4.2 (Boundednth-order differences): For
any0 < h ≤ 1, there exists a time invariant constantθn ≥ 0
such that

∆(n)umax(t) − ∆(n)umin(t) ≤ hθn , ∀ t ≥ 0.

Theorem 4.2: Let δn be a positive constant andhn =
( δn

22n−1θn(NT−1)nα
n(− 1

2
N(N+1)T+1)

)
1

n+1 . Under the Assump-

tions 3.1, 3.3, 3.4 and 4.2 withθn 6= 0, the implementation of
nth-order dynamic average consensus algorithm withh ≤ hn

and initial statesx[ℓ]
i (0) = ∆(n−ℓ)ui(−h) (ℓ = 1, · · · , n−1),

x
[n]
i (0) = ui(−h) for all i ∈ {1, . . . , N}, achieves the

dynamic average consensus with a nonzero steady-state error
upper bounded byδn.

Proof: The proof can be completed by applying Theo-
rem 4.1 inductively.

Corollary 4.2: Under the Assumptions 3.1, 3.3, 3.4
and 4.2 with θn = 0, the implementation ofnth-order
dynamic average consensus algorithm with anyh > 0 and
initial statesx

[ℓ]
i (0) = ∆(n−ℓ)ui(−h) (ℓ = 1, · · · , n − 1),

x
[n]
i (0) = ui(−h) for all i ∈ {1, . . . , N}, achieves dynamic

average consensus at a geometric rate with zero steady-state
error.

V. D ISCUSSION

This section includes some remarks about the possible
extension of the presented results. First, it can be shown
that for anynth-order polynomialf(t) =

∑n
i=0 ait

i, there
holds that∆(n)f(t) = ann!h. Hence, any set ofnth-order
polynomials satisfies Assumption 4.2 for some boundedθn.
If the leading coefficients of these polynomials are identical,
then Assumption 4.2 is fulfilled forθn = 0.

If the inputsui(t) take the form ofui(t) = r(t) + ũi(t),
i ∈ V , and the functionũi(t) is a linear combination of
polynomials, the logarithmic function, periodic functions
and other functions whosenth-order differences are
bounded, then Assumption 4.2 also holds for any common
r(t) even whennth-order difference ofr(t) explodes, e.g.,
like the exponential function. It is worth mentioning that it
is unnecessary for Assumption 4.2 to hold that∆(n)ui(t)
be bounded for alli, t ≥ 0 and anyh ∈ (0, 1].

In the case that the communication is symmetric; i.e.,
when(i, j) ∈ E(t) if and only if (j, i) ∈ E(t), then Assump-
tion 3.1 (periodical strong connectivity) in Corollary 4.2can
be weakened into:

Assumption 5.1 (Eventual strong connectivity):The
directed graph(V,∪s≥tE(s)) is strongly connected for all
time instantt ≥ 0.

Furthermore, Assumption 3.1 in Corollary 4.2 can also
be replaced with the assumption in [15] that for any time
instant t ≥ 0, there is a leader in the directed graph
(V,∪s≥tE(s)). It is interesting to further think about the
weaker assumption in [15] that there exists an integerT ≥ 1
such that for any time instantt ≥ 0, there is a leader in
the directed graph(V,E(t)∪E(t+h)∪· · ·∪E(t+(T−1)h)).

VI. EXAMPLE

The section illustrates Theorem 4.1 with a simulation.
Let us consider a network consisting of four nodes, labeled

1 through 4. Suppose that graphG(t) satisfies Assump-
tion 3.1 with T = 4. Assume the inputsui(t) are:

u1(t) = 12 sin t + 0.2t2, u2(t) = 8 cos t − 0.3t2,

u3(t) = 5 sin 0.5t + 0.1t2, u4(t) = sin 2t.

It can be verified that Assumption 4.1 is fulfilled with
θ2 = 21. For the givenδ2 = 2, we chooseα = 0.495 and
can calculateh < 0.0017 for second-order dynamic average



consensus algorithm. Figure 1 shows the statex
[2]
i (t) for

i ∈ {1, 2, 3, 4} and the average of the inputs̄u(t − h).

VII. C ONCLUSIONS

We have proposed a class of dynamic average consensus
algorithms on synchronous communication networks and an-
alyze their convergence properties. Due to slow convergence
rates of the algorithms, tracking is shown at the expense of
frequent communication and higher throughput. Future work
will explore the algorithms application for sensor fusion.
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Fig. 1. Evolution of the states of the second order dynamic consensus
algorithm in comparison with the average of the inputs


