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Abstract

We present a class of modified circumcenter algorithms that allow a group of agents to achieve “practical” rendezvous when they
are only able to take noisy measurements of neighbors. Assuming a uniform detection probability in a disk about each neighbor
true position, we show how initially connected agents converge to a practical stability ball. More precisely, a deterministic
analysis allows to guarantee convergence to such a ball under r-disk graph connectivity in 1D and with a connectivity-to-noise
ratio of r/σ > 7. A stochastic analysis leads to a similar convergence result in probability, but for any r/σ > 1, and under a
sequence of switching graphs connecting agents in 2D every T steps. We include several simulations to discuss the performance
of the proposed algorithms.
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1 Introduction

The topic of distributed algorithms for robotic net-
works is attracting an intense research activity in
the last years, see e.g. [1]. As a consequence of this,
a wealth of algorithms is being proposed together
with novel analysis tools to evaluate their perfor-
mance. Clearly, an important aspect to consider is
that of robustness. If possible, a characterization of
what typical degraded behaviors are and how those
are affected by the network size should be provided.
When not satisfactory, the performed analysis may
help find an alternative solution.

Motivated by this, we discuss how the nonlinear Cir-
cumcenter Algorithm, see [2], can be made robust
with respect to measurement noise. This comple-
ments the work in [2], which observed good perfor-
mance of the algorithm in simulation, and the work
in [3–5], which respectively considered asynchronous
versions of the algorithm, and proven convergence
under sequences of switching graphs. Other related
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papers include [6–8], which study how consensus
algorithms are robust to communication, measure-
ment noise and quantization errors. However, the
type of algorithms considered in these works are lin-
ear, while the Circumcenter Algorithm is nonlinear
and agents’ motion is constrained.

The contributions of this paper can be summarized
as follows. First, we propose an alternative to the
standard Circumcenter Algorithm that allows agents
to maintain connectivity and rendezvous without ex-
plicitly accounting for motion constraints. Assuming
that agents are able to measure neighbors within ra-
dius σ about their true positions, we present two pos-
sible modifications of the algorithms. The first one
restricts further each agent’s motion constraint set
to guarantee connectivity of the network. In the sec-
ond version, agents filter measurements of neighbors
to make sure that they are still within the connec-
tivity radius r.

We prove that the implementation of the algorithms
in 1D using the r-disk graph for connectivity achieves
rendezvous to a ball of diamater 2σ. This is a type
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of deterministic Input-to-state Stability result that,
for the standard Circumcenter Algorithm, requires
r > 7σ. As shown in simulations, the same type of
bounded behavior does not hold for other graphs.
In those cases, a stochastic analysis can be used to
show a decreasing trend of the network diameter with
probability one until agents are fully connected un-
der the r-disk graph. We extend the result for any
sequence of graphs over agents moving in 2D, sat-
isfying certain connectivity assumption, and with a
connectivity-to-noise ratio of r/σ > 1. Simulations
also show that agents reach a practical stability ball
with diameter much smaller than 2σ for the modi-
fied circumcenter algorithms when using the r-disk
graph. With respect to [9], here we present the al-
ternative to the Circumcenter Algorithm and extend
the stochastic analysis of the algorithms to 2D.

The paper is organized as follows. Section 2 intro-
duces premilinary notions, circumcenter algorithms
and modifications. Section 3 includes a determinis-
tic analysis of the modified circumcenter algorithms
when implemented in 1D and over the r-disk graph.
Section 4 includes a stochastic analysis of the algo-
rithms in 2D. Finally, Section 5 illustrates the pefor-
mance of the algorithms in simulations and Section 6
presents some concluding remarks.

2 Preliminaries

Here, we review some notation for standard geo-
metric objects; for additional information we refer
the reader to [10]. We then recall the circumcen-
ter and parallel circumcenter algorithms as discussed
in [2,11,12]. The section concludes introducing the
new class of modified circumcenter algorithms.

2.1 Basic geometric notions and notation

In what follows, R
d will refer to either R or R

2. For
a bounded set S ⊂ R

d, we let co(S) denote the con-
vex hull of S. For p, q ∈ R

d, we let (p, q) = {λp +
(1 − λ)q | λ ∈ (0, 1)} and [p, q] = co({p, q}) denote
the open and closed segment with extreme points p
and q, respectively. For a bounded set S ⊂ R

d, we let
CC(S) and CR(S) denote the circumcenter and cir-
cumradius of S, respectively, that is, the center and
radius of the smallest-radius d-sphere enclosing S.
The computation of the circumcenter and circumra-
dius of a bounded set is a strictly convex problem
and in particular a quadratically constrained linear
program. For p ∈ R

d, B(p, r) and D(p, r) denote the
open and closed disk of center p and radius r ∈ R>0,

respectively. Similarly, S(p, r) will denote the sphere
of center p and radius r ∈ R>0. An arc on S(p, r)
transversed counterclockwise from q1 to q2 will be de-
noted by arcS(r,p)(q1, q2). Here, R>0 and R≥0 will de-
note the positive and the nonnegative real numbers,
respectively. Given points q1, q2, q3 ∈ R

2, we denote
the angle at q2 with positive orientation and formed
by the vectors q2 − q1 and q3 − q2 as ∠(q1, q2, q3).

Let F(Rd) be the collection of finite point sets
in R

d; we shall denote an element of F(Rd) by
P = {p1, . . . , pn} ⊂ R

d, where p1, . . . , pn are distinct
points in R

d. Let G(Rd) be the set of undirected
graphs whose vertex set is an element of F(Rd).
A proximity graph function G : F(Rd) → G(Rd)
associates to a point set P an undirected graph
with vertex set P and edge set EG(P), where
EG : F(Rd) → F(Rd × R

d) has the property that
EG(P) ⊆ P × P \ diag(P × P) for any P. Here,
diag(P × P) = {(p, p) ∈ P × P | p ∈ P}. In other
words, the edge set of a proximity graph depends
on the location of its vertices. General properties of
proximity graphs, basics on graph theory and exam-
ples can be found in [10,13,14]. In particular, we will
make use of the r-disk proximity graph Gdisk(r), for
r ∈ R>0, and over a set of vertices P. In this graph,
two agents pi, pj ∈ P are neighbors iff ‖pi − pj‖ ≤ r.
We denote the set of neighbors of agent pi ∈ P in a
proximity graph by:

Ni(G) = {j ∈ {1, . . . , n} | (pi, pj) ∈ EG(P)},

and the cardinality of Ni(G) will be denoted as ni =
|Ni(G)|. A sequence of finite point sets {P(t) | t ∈
N∪{0}}, induces a sequence of graphs that we denote
as G(t), when it is clear from the context that G(t) ≡
G(P(t)), t ∈ N ∪ {0}.

For q0 and q1 in R
d, and for a convex closed set

Q ⊂ R
d with q0 ∈ Q, let λ(q0, q1, Q) denote the

solution of the strictly convex problem:

maximize λ

subject to λ ≤ 1, (1 − λ)q0 + λq1 ∈ Q. (1)

Note that this convex optimization problem has the
following interpretation: move along the segment
from q0 to q1 the maximum possible distance while
remaining in Q. Under the stated assumptions the
solution exists and is unique.
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2.2 Circumcenter algorithms

The following is an informal description of the Cir-
cumcenter Algorithm defined for a proximity graph
G ⊆ Gdisk(r), with r ∈ R>0.

(Standard) Circumcenter Algorithm [2,4,5]. Each
agent performs: (i) it detects its neighbors accord-
ing to G; (ii) it computes the circumcenter of the
point set comprised of its neighbors and of itself;
(iii) it moves toward this circumcenter while main-
taining connectivity with its neighbors.

The asynchronous behavior of the algorithm for was
studied in [3,4]. In [12], it was proven that, when
implemented over a 1D space, it is not necessary to
enforce the connectivity constraint. In other words,
step (iii) can be rephased as “(iii) agent moves to the
circumcenter of neighbors”. Assuming that agents
have knowledge of a frame with common orientation,
the 1D algorithm can be extended to arbitrary di-
mensions as follows.

Parallel Circumcenter Algorithm [12]. Each agent
performs: (i) it detects its neighbors according to
G; (ii) it projects the detected positions to each
axis of its frame; (iii) it computes the circumcen-
ters of each of the projected sets of positions on
each axis; (iii) it moves to the point whose coordi-
nates are given by each of those circumcenters.

For formal descriptions of these algorithms written
in pseudocode we refer the reader to [5,12]. Yet there
is another way to define an alternative circumcenter
algorithm that does not require the explicit use of
constraint sets. It is based on the following lemma.

Lemma 1 Let S ⊂ R
2 be the convex hull of

a set of points p1, . . . , pn. Let s > 0 and de-
fine the disks D(pi, s), i ∈ {1, . . . , n}. If the
intersection

⋂n

i=1 D(pi, s) is non empty, then
CC(S) ∈ ⋂n

i=1 D(pi, s).

Proof. Let p ∈ ⋂n

i=1 D(pi, s). By definition, we have

‖p − pi‖ ≤ s, ∀ i ∈ {1, . . . , n} .

By the minimality property of CR(S), this implies
CR(S) ≤ s. But then,

‖CC(S) − pi‖ ≤ CR(S) ≤ s, ∀ i ∈ {1, . . . , n},

which implies CC(S) ∈ ⋂n

i=1 D(pi, s). �

Now the (standard) Circumcenter Algorithm can be
replaced by the following algorithm.

1/2 Circumcenter Algorithm. Each agent per-
forms: (i) it detects its neighbors according to G;
(ii) it computes the circumcenter of points com-
prised of itself and the midpoints between each
neighbor and itself; (iii) it moves to the point
whose coordinates are given by this circumcenter.

In other words, the new circumcenter by agent i be-
comes CC({pi,

pi+pj

2 | j ∈ Ni(G)}). Since ‖pi−pj‖ ≤
r, then ‖pi − pi+pj

2 ‖ ≤ r
2 , for all j ∈ Ni(G) ∪ {i}.

Therefore pi ∈ D(pi,
r
2 )∩⋂j∈Ni(G) D(

pi+pj

2 , r
2 ) 6= ∅,

and by Lemma 1 we have that CC({pi,
pi+pj

2 | j ∈
Ni(G)}) ∈ D(pi,

r
2 ) ∩ ⋂j∈Ni(G) D(

pi+pj

2 , r
2 ). That

is, moving to this new circumcenter, we guarantee
that agents will not lose connectivity with neighbors.
At the same time, CC({pi,

pi+pj

2 | j ∈ Ni(G)}) ∈
co({pi, pj | j ∈ Ni(G)}) \ {pi, pj | j ∈ Ni(G)}; then,
similarly to [5], the diameter can be seen to decrease
strictly at each time step.

A significant difference between the 1/2 Circumcen-
ter Algorithm and the (standard) Circumcenter Al-
gorithm is that, even under complete agent connec-
tivity, convergence does not occur in a single step.
This is because CC({pi,

pi+pj

2 | j ∈ Ni(G)}) does not
coincide in general for neighbors.

2.2.1 Modified circumcenter algorithms

Assume now that each agent i is only able to detect
a perturbed position, pi

j ∈ D(pj , σ), of neighbor j.
In other words, pj is the true position of agent j
that agent i measures as pi

j such that ‖pj − pi
j‖ ≤

σ, for 0 ≤ σ < r. In what follows, we assume a
centered detection probability over the disk D(pj , σ);
that is, E[pi

j ] = pj , ∀ j ∈ Ni(G). In particular, this
is satisfied by the uniform probability distribution
over D(pj , σ) that we consider here.

Due to errors in measurement, an agent that imple-
ments a circumcenter algorithm may still lose con-
nectivity with neighbors. If agents have access to a
common upper bound of their committed errors, σ,
there are two possible corrections they can imple-
ment. The first consist of restricting the constraint
set where they are allowed to move (variant 1). The
second one consists of filtering neighbors’ positions
(variant 2). For the sake of briefness, we present only
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the formal description of the Modified 1/2 Circum-
center Algorithm, variants 1 and 2, being the other
cases analogous. The algorithms allow each agent to
compute ui(t), t ∈ N, so that pi(t+1) = pi(t)+ui(t),
i ∈ {1, . . . , n}.

Name: Modified 1/2 Circumcenter
Algorithm, variant 1

Goal: All agents practically rendezvous

Assumes: (i) r ∈ R>0 is the sensing radius
(ii) σ < r is an upper bound of the
sensing errors
(iii) Agents are initially connected
by G ⊆ Gdisk(r)

For i ∈ {1, . . . , n}, agent i executes at t ∈ N∪{0}:
1: acquire {pi

j1
, . . . , pi

jni
},

such that pi
j ∈ D(pj , σ), j ∈ Ni(G)

2: compute

Mi :=

{

pi + pi
j1

2
, . . . ,

pi + pi
jni

2

}

∪ {pi}

3: compute Qi :=
⋂

q∈Mi
D(q, r−σ

2 )

4: if Qi = ∅ then
5: set ui := 0; i.e., stay at pi

6: else
7: set ui := CC(Mi) − pi, i.e., move from pi

to CC(Mi).
8: end if

The Modified (standard) Circumcenter Algo-
rithm, variant 1, is similar to the above one
with the following substitutions. Step 2 becomes

Mi =
{

pi
j1

, . . . , pi
jni

}

∪ {pi}, with jℓ ∈ Ni(G),

Step 3 becomes Qi =
⋂

q∈Mi
D( q+pi

2 , r−σ
2 ), and

Step 7 is substituted by (i) the computation
of λ∗

i = λ(pi,CC(Mi), Qi); see (1), and (ii)
ui = λ∗

i (CC(Mi) − pi). Observe that, although the
set Mi is different for this algorithm, the motion
constraint set Qi is the same.

An alternative to this algorithm is a Modified 1/2
Circumcenter Algorithm, variant 2, that filters the
values pi

j as described in the next table. Observe
that with variant 2 of the algorithm it is always
true that pi ∈ Qi 6= ∅. Again, the Modified (stan-
dard) Circumcenter Algorithm, variant 2, is simi-
lar to the one in the table with the following sub-

stitutions. Step 5 becomes Mi =
{

pi
j1

, . . . , pi
jni

}

∪

{pi}, with jℓ ∈ Ni(G), and Step 6 is substituted

by (i) compute Qi = ∩
q∈Mi

D
(

q+pi

2 , r
2

)

, (ii) com-

pute λ∗
i = λ(pi,CC(Mi), Qi); see (1), and (iii) apply

ui = λ∗
i (CC(Mi) − pi). Observe that pi ∈ Qi 6= ∅

always in this case.

Both variants of the circumcenter algorithm, guaran-
tee agent connectivity as shown in the next lemma.

Name: Modified 1/2 Circumcenter
Algorithm, variant 2

Goal: All agents practically rendezvous

Assumes: (i) r ∈ R>0 is the sensing radius
(ii) σ < r is an upper bound of the
sensing errors
(iii) Agents are initially connected
by G ⊆ Gdisk(r)

For i ∈ {1, . . . , n}, agent i executes at t ∈ N∪{0}:
1: acquire {pi

j1
, . . . , pi

jni
},

such that pi
j ∈ D(pj , σ), j ∈ Ni(G)

2: for ‖pi − pi
j‖ > r, j ∈ Ni(G) do

3: pi
j := [pi, p

i
j ] ∩ D(pi, r)

4: end for
5: compute

Mi :=

{

pi + pi
j1

2
, . . . ,

pi + pi
jni

2

}

∪ {pi}

6: set ui := CC(Mi) − pi, i.e., move from pi to
CC(Mi).

Lemma 2 (Connectivity Maintenance) Let
p1(t), . . . , pn(t) ∈ R

d be the positions of n agents
and suppose that ‖pi(t) − pj(t)‖ ≤ r for some
i, j ∈ {1, . . . , n}. Let σ < r be an upper bound of the
errors committed by the agents to measure neigh-
bors’ positions. Then, after one execution of any of
the circumcenter algorithms proposed above, we have
that ‖pi(t + 1) − pj(t + 1)‖ ≤ r.

Proof. We include here the proof for variant 1 of
the algorithms, since for variant 2 the proof is sim-
ilar to the standard case. We have that pi(t + 1) ∈
Qi(t)∪{pi(t)} and pj(t+1) ∈ Qj(t)∪{pj(t)}. Since

it might be possible that Qk(t) = ∅, for k ∈ {i, j},
we distinguish three cases:

(i) If pi(t + 1) = pi(t) and pj(t + 1) = pj(t), then
it is immediate that ‖pi(t + 1)− pj(t + 1)‖ ≤ r.
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(ii) If pi(t + 1) = pi(t) and pj(t + 1) 6= pj(t), then,

‖pi(t + 1) − pj(t + 1)‖

=
∥

∥

∥
pi(t + 1) − pj

i (t) + pj(t)

2
+ . . .

· · · + pj
i (t) + pj(t)

2
− pj(t + 1)

∥

∥

∥

≤
∥

∥

∥
pi(t + 1) − pj

i (t) + pj(t)

2

∥

∥

∥

+
∥

∥

∥

pj
i (t) + pj(t)

2
− pj(t + 1)

∥

∥

∥

≤
∥

∥

∥

pi(t) − pj
i (t)

2

∥

∥

∥
+
∥

∥

∥

pi(t) − pj(t)

2

∥

∥

∥
+

r − σ

2

≤ σ + r + r − σ

2
= r .

(iii) When pi(t + 1) 6= pi(t) and pj(t + 1) 6= pj(t),

∥

∥

∥
pi(t + 1) − pj(t + 1)

∥

∥

∥
=

∥

∥

∥
pi(t + 1) − pi(t) + pi

j(t)

2
+

pi(t) + pi
j(t)

2
. . .

− pj
i (t) + pj(t)

2
+

pj
i (t) + pj(t)

2
− pj(t + 1)

∥

∥

∥

≤
∥

∥

∥
pi(t + 1) − pi(t) + pi

j(t)

2
‖ . . .

+
∥

∥

∥

pi(t) + pi
j(t)

2
− pj

i (t) + pj(t)

2

∥

∥

∥

+
∥

∥

∥

pj
i (t) + pj(t)

2
− pj(t + 1)

∥

∥

∥

≤ r − σ

2
+
∥

∥

∥

pi(t) − pj
i (t)

2

∥

∥

∥
+ . . .

∥

∥

∥

pj(t) − pi
j(t)

2

∥

∥

∥
+

r − σ

2
≤ r .

�

3 Deterministic analysis of the modified cir-
cumcenter algorithms

Here we present a deterministic analysis of the
convergence of the modified circumcenter algo-
rithms in 1D when using Gdisk(r) for some r ∈ R>0.
We will employ the following shorthand nota-
tion. Given Mi = {pi, p

i
j | j ∈ Ni(Gdisk(r))}

and Mi = {pi, pj | j ∈ Ni(Gdisk(r))}, we denote

by pi
M = maxMi (resp. pi

M = maxMi), and

pi
m = minMi (resp. pi

m = minMi). In this way,
CC(Mi) = 1

2 (pi
M+pi

m), and CC(Mi) = 1
2 (pi

M+pi
m),

i ∈ {1, . . . , n}. Before stating the main result of
the section, we present some properties of the con-
straint set and Modified (standard) Circumcenter
Algorithm, variant 1, in 1D that are employed ex-
tensively in the proof of Theorem 5.

Lemma 3 The constraint set Qi for variant 1 of the
modified circumcenter algorithms satisfies:

(i) pi ∈ Qi if and only if ‖pi − pi
j‖ ≤ r − σ for all

j ∈ Ni(Gdisk(r)).
(ii) In 1D, we have that Qi is equal to

[

1

2
(pi + pi

M ) − 1

2
(r − σ),

1

2
(pi + pi

m) +
1

2
(r − σ)

]

and Qi 6= ∅ if and only if ‖pi
M −pi

m‖ ≤ 2(r−σ).

Proof. The proof is straightforward. �

Lemma 4 Consider the Modified (standard) Cir-
cumcenter Algorithm, variant 1, for n agents ini-
tially placed at p1(0), . . . , pn(0) ∈ R. Assume that
q1 < CC(Mi(t)) < q2 for agent i ∈ {1, . . . , n} and
some q1, q2 ∈ R at some t ∈ N ∪ {0}. Then, after
one step execution of the algorithm:

(i) If Qi(t) 6= ∅ and

pi
m(t) + pi(t)

2
+

r − σ

2
− q1 > 0 , (2)

then pi(t + 1) > q1.
(ii) If Qi(t) 6= ∅ and

pi
M (t) + pi(t)

2
− r − σ

2
− q2 < 0 .

then pi(t + 1) < q2.
(iii) If Qi(t) = ∅ and q1 < pi(t) < q2, then q1 <

pi(t + 1) < q2.

Proof. See that (iii) is immediate because pi(t +
1) = pi(t) in that case. Let us prove (i). To see
that pi(t + 1) > q1 we consider three subcases. Case
(i.a), pi(t) > q1: If pi(t) > q1, CC(Mi(t)) > q1

and (2) holds, then the p ∈ Qi(t) ∪ {pi(t)} closer to
CC(Mi(t)) satisfies p > q1. Case (i.b), pi(t) < q1

and 1
2 (pi

M (t)+ pi(t))− 1
2 (r−σ) < q1: In this case, if
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(2) holds, then by connectivity of the interval Qi(t)
the situation does not differ from case (i.a) regard-
less of whether CC(Mi(t)) greater or smaller than
1
2 (pi

m(t)+pi(t))+
1
2 (r−σ). Case (i.c), pi(t) < q1 and

1
2 (pi

M (t) + pi(t)) − 1
2 (r − σ) > q1: In particular this

implies 1
2 (pi

M (t)+ pi(t))− 1
2 (r−σ) > pi(t), which is

equivalent to pi
M (t) − pi(t) > r − σ. From here,

pi
M (t) + pi

m(t)

2
−
(

pi
m(t) + pi(t)

2
+

r − σ

2

)

=

pi
M (t) − pi(t) − (r − σ)

2
> 0 .

Therefore the p ∈ Qi(t)∪{pi(t)} closer to CC(Mi(t))
becomes the upper extreme of Qi(t) which trivially
satisfies p > q1. The proof for (ii) is analogous. �

Theorem 5 Let p1(0), . . . , pn(0) be the initial posi-
tions of a robotic network in R. Suppose the agents
are initially connected by Gdisk(r) for some r ∈ R>0.
Let σ ∈ R>0, σ < r, be the sensing error radius and
{P (t) = (p1(t), . . . , pn(t))}t∈N∪{0} a sequence of po-
sitions obtained by applying the Modified (standard)
Circumcenter Algorithm, variant 1, with Gdisk(r).
Then, if r > 7σ, we have P (t) → SD, as t → ∞,
where

SD = {P ∈ R
n | diam(P ) ≤ 2σ} .

Proof. We will prove that, if at time t ∈ N, the agents
are not in a ball of diameter 2σ, then diam(p1(t +
ℓ), . . . , pn(t + ℓ)) < diam(p1(t), . . . , pn(t)) for either
ℓ = 1 or ℓ = 2. Without lose of generality suppose
that p1(t) and pn(t) satisfy p1(t) ≤ pi(t) ≤ pn(t), for
all i ∈ {1, . . . , n}. Then the result holds if p1(t) <
pi(t + ℓ) < pn(t) for all i ∈ {1, . . . , n} and either
ℓ = 1 or ℓ = 2. We will prove the first inequality
holds, being the proof for other one analogous.

If diam(p1(t), . . . , pn(t)) > 2σ, we can distinguish:

(a) ∃ j ∈ N1(Gdisk(r)(t)) s. t. ‖p1(t) − pj(t)‖ > 2σ.
(b) ∀k ∈ N1(Gdisk(r)(t)) we have that ‖p1(t) −

pk(t)‖ ≤ 2σ but ∃ j ∈ N1(Gdisk(r)(t)) such that

‖pj
M (t) − pj(t)‖ ≤ r and ‖pj

M (t) − p1(t)‖ > r.

Suppose (a) is true. We will see that Lemma 4 (i)
or (iii) holds with q1 = p1(t) for all i ∈ {1, . . . , n}.
Thus, we can say pi(t + 1) > p1(t), i ∈ {1, . . . , n}.

First, CC(Mi(t)) > p1(t) for all i ∈ {1, . . . , n}:

(a.a) If i ∈ N1(Gdisk(r)(t)), then

CC(Mi(t)) − p1(t) =
pi

M (t) + pi
m(t)

2
− p1(t) . . .

· · · ≥ pj(t) − p1(t) − 2σ

2
> 0, (3)

since pi
M (t) ≥ pi

M (t)−σ ≥ p1
M (t)−σ ≥ pj(t)−σ

and pi
m(t) ≥ p1(t) − σ.

(a.b) If i /∈ N1(Gdisk(r)), then pi(t) > pj(t) and
pi

M (t) > pj(t). Thus, similarly to (a), we have

that CC(Mi(t)) > p1(t).

Second, (2) holds with q1 = p1(t), i ∈ {1, . . . , n}:

pi
m(t) + pi(t)

2
+

r − σ

2
− p1(t) ≥

p1(t) − p1(t) − σ + pi(t) − p1(t) + r − σ

2

≥ r − 2σ

2
> 0 .

Thus, for those i ∈ {1, . . . , n} such that pi(t) 6= p1(t),
Lemma 4 (i) or (ii) hold and then pi(t + 1) > p1(t).
To see that pi(t + 1) > p1(t), for those agents
with pi(t) = p1(t), we only need to guarantee that
Qi(t) 6= ∅. By Lemma 3, Qi(t) 6= ∅ if and only if
pi

M (t) − pi
m(t) ≤ 2(r − σ). Since pi

m(t) ≥ pi(t) − σ,
pi

M (t) ≤ pi
M (t) + σ, then a sufficient condition is

given by pi
M (t) − pi

m(t) ≤ pi
M (t) − pi(t) + σ ≤

r + 2σ ≤ 2(r − σ), which holds when r ≥ 4σ. In all,
we have seen that under (i), pi(t + 1) > p1(t) for all
i ∈ {1, . . . , n}.

Suppose that (b) is true. Let s ∈ {1, . . . , n} such
that ps(t + 1) ≤ pi(t + 1) for all i ∈ {1, . . . , n}. We
distinguish two cases:

(b.a) s /∈ N1(Gdisk(r)(t)),
(b.b) s ∈ N1(Gdisk(r)(t)).

Under (b.a) s /∈ N1(Gdisk(r)(t)), then p1(t) < r +
p1(t) < ps(t), CC(Ms(t)) = 1

2 (ps
m(t) + ps

M (t)) ≥
1
2 (p1(t) − σ + ps(t)) > p1(t) + 1

2 (r − σ) > p1(t)

and, similarly, 1
2 (ps

m(t) + ps(t)) + 1
2 (r − σ) > p1(t).

Thus Lemma 4 implies p1(t) < ps(t + 1) ≤ pi(t + 1),
i ∈ {1, . . . , n}, and thus the result holds for ℓ = 1.

Under (b.b), we will apply Lemma 4 for pi(t+2) and
with respect to q1 = p1(t). To do so, we need to find
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several lower bounds. First, let j ∈ N1(Gdisk(r)(t))
be such that pj(t) = p1

M (t); i.e., pj(t) is the fur-
thest away position from p1(t). By assumption (b),

pj
M (t) is such that ‖pj

M (t)−pj(t)‖ ≤ r and ‖pj
M (t)−

p1(t)‖ > r. Let us determine a lower bound for
pj(t + 1) − p1(t).

Using similar bounds as in (3), CC(Mj(t)) ≥
1
2 (pj

M (t) + p1(t))− σ. On the other hand pj(t + 1) ∈
Qj(t) ∪ {pj(t)}. We can guarantee that

pj
M (t) + pj(t)

2
− r − σ

2
≤ pj

M (t) + p1(t)

2
− σ ,

if the following inequality holds:

pj
M (t) + pj(t) + σ

2
− r − σ

2
≤ pj

M (t) + p1(t)

2
− σ ,

which simplifies to 1
2 (r−4σ) ≥ 1

2 (pj(t)−p1(t)). Since
pj(t) − p1(t) ≤ 2σ, we can guarantee the previous
inequality by taking r−4σ ≥ 2σ, or r ≥ 6σ. We also
have that Qj(t) 6= ∅ if r ≥ 6σ. In fact, by Lemma 4,

Qj(t) 6= ∅ if and only if pj
M (t) − pj

m(t) ≤ 2(r − σ).

Since pj
m(t) ≥ p1(t) − σ and pj

M (t) ≤ pj
M (t) + σ,

a sufficient condition is given by pj
M (t) − p1(t) +

2σ ≤ 2(r − σ). Further, since pj
M (t) − pj(t) ≤ r and

pj(t) − p1(t) ≤ 2σ, it is sufficient r + 4σ ≤ 2r − 2σ,
or r ≥ 6σ.

Assuming then r ≥ 6σ, we distinguish two cases:

• Suppose first that the upper extreme of Qj(t),

is such that 1
2 (pj

m(t) + pj(t)) + 1
2 (r − σ) ≤

1
2 (pj

M (t) + p1(t)) − σ. Observe that, since

pj
M (t) /∈ N1(Gdisk(r)(t)) and pj(t) − p1(t) ≤ 2σ,

it must be pj
M (t) − pj(t) > 4σ and thus

1
2 (pj

M (t) + p1(t)) − σ − pj(t) > 0. Because

CC(Mj(t)) ≥ 1
2 (pj

M (t) + p1(t)) − σ, then

pj(t+1) ∈ max{ 1
2 (pj

m(t)+pj(t))+
r−σ

2 , pj(t)} and

pj(t + 1) − p1(t) ≥
pj

m(t) + pj(t)

2
+

r − σ

2
− p1(t)

≥ p1(t) − σ − p1(t) + pj(t) − p1(t)

2
+

r − σ

2

≥ pj(t) − p1(t)

2
+

r − 2σ

2
>

r − 2σ

2
.

• When 1
2 (pj

m(t) + pj(t)) + 1
2 (r − σ) ≥ 1

2 (pj
M (t) +

p1(t)) − σ, then

pj(t + 1) − p1(t) ≥
pj

M (t) − p1(t)

2
− σ >

r − 2σ

2
.

In both cases, we have that pj(t + 1) − p1(t) > (r −
2σ)/2 when r > 6σ.

Let us now compute a lower bound for pi(t+1)−pi(t),
i ∈ {1, . . . , n}, using Lemma 4. We have that pi(t) >
p1(t) − σ/2, CC(Mi(t)) = 1

2 (pi
M (t) + pi

m(t)) ≥
1
2 (pi(t) + p1(t) − σ) > p1(t) − σ/2, and, similarly
1
2 (pi

m(t) + pi(t)) + 1
2 (r − σ) > p1(t) − σ/2. By

Lemma 4, this implies pi(t + 1) ≥ p1(t) − σ/2, for
all i ∈ {1, . . . , n}.

Now, with the help of the obtained bounds, we can
lower bound CC(Mi(t + 1)) − p1(t), i ∈ {1, . . . , n},
as follows. If i ∈ Nj(Gdisk(r)(t+1)), then pi

M (t+1) ≥
p1

M (t + 1) ≥ pj(t + 1) and

CC(Mi(t + 1)) =
pi

M (t + 1) + pi
m(t + 1)

2

≥ 1

2
(pj(t + 1) − σ + ps(t + 1) − σ) . (4)

On the other hand, for those i such that ‖pi(t+1)−
pj(t + 1)‖ > r, we have that pi(t + 1) > pj(t +
1). Otherwise, because the algorithm preserves agent
connectivity, and s ∈ Nj(Gdisk(r)), 0 < pj(t + 1) −
pi(t + 1) ≤ pj(t + 1) − ps(t + 1) ≤ r, which is a
contradiction. Then an inequality like (4) holds for
every i ∈ {1, . . . , n}. In this way,

CC(Mi(t + 1)) − p1(t)

≥ 1

2
(pj(t + 1) − p1(t)) −

σ

2
+

1

2
(ps(t + 1) − p1(t)) −

σ

2

>
1

2

(

r − 2σ

2

)

− σ − σ

4
=

r − 7σ

2
.

That is, CC(Mi(t + 1)) > p1(t) when r > 7σ. On
the other hand, for all i ∈ {1, . . . , n},

pi
m(t + 1) + pi(t + 1)

2
+

r − σ

2
− p1(t)

=
pi

m(t + 1) − p1(t) + pi(t + 1) − p1(t)

2
+

r − σ

2

≥ −σ
2 − σ − σ

2

2
+

r − σ

2
≥ r − 3σ

2
> 0 .

In order to apply Lemma 4, it remains to be proven
that for those pi(t+1) ≤ p1(t) we have Qi(t+1) 6= ∅.
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Since ps(t+1) ≥ p1(t)−σ/2, then pi
m(t+1) ≥ p1(t)−

3σ/2. In this way, pi
M (t + 1) − pi

m(t + 1) ≤ pi
M (t +

1) − p1(t) + 3σ/2 ≤ pi
M (t + 1) − pi(t + 1) + 3σ/2 ≤

r +σ +3σ/2. A sufficient condition for Qi(t+1) 6= ∅
is then given by r + 5σ/2 ≤ 2(r − σ), or r ≥ 9σ/2.

Thus, by Lemma 4, we have that pi(t + 2) > p1(t)
for all i ∈ {1, . . . , n}. The discussion on the right end
pn(t) is analogous to the one presented for p1(t).

Using (i) and (ii) we can find a subsequence of
diam(p1(t), . . . , pn(t)), t ∈ N∪{0}, that decreases as
long as diam(p1(t), . . . , pn(t)) > 2σ. Using a LaSalle
type of argument with diam(p1, . . . , pn) as a Lya-
punov function, we can conclude that P (t) → SD,
as t → +∞. �

Remark 6 This result holds independently of the
number of agents in the network, which in particular
does not affect the diameter 2σ of the practical sta-
bility ball. As we show in simulations later, the ball
does wander in space by the effect of noise. The the-
orem gives only sufficient conditions for decreasing
the diameter strictly after two time steps. Simula-
tions also show convergence for smaller ratios r/σ.•

Remark 7 Observe that the proof of convergence
makes explicit use of the fact that the connectivity
graph is Gdisk(r) in item (b). As we show in simula-
tions later, convergence to a practical stability ball
of a similar radius can be observed for other graphs
as well. The proof of Theorem 5 holds to prove sta-
bility of variant 2 of the algorithm, with the differ-
ence that we do not need to make sure that Qi 6= ∅
since this property is always true. Finally, the proof
can also be simplified for the 1/2 Circumcenter Al-
gorithm, variant 1 and 2. In this case, we do not need
to use Lemma 4, since the motion of agents is to

CC(Mi) =
pi

M+2pi+pi
m

4 whenever the constraint set

Qi is not empty. The analogous proof method leads
to a required r/σ > 19. The higher ratio is due to
the slower motion of agents to new circumcenters. •

Remark 8 The deterministic analysis of the algo-
rithm guarantees performance in 1D dimensions. Al-
though restrictive, the analysis can also be used to
guarantee performance of the Modified Parallel Cir-
cumcenter algorithms, valid in higher dimensions.
Recall that a requirement for the implementation of
this algorithm is that agents have knowledge of a
common reference frame. •

4 Stochastic analysis of the Modified Cir-
cumcenter Algorithms

In this section we present a stochastic analysis of the
proposed circumcenter algorithms. The main result
relies on the next Supermartingale Convergence the-
orem taken from [15], and some previous lemmas.

Theorem 9 (Supermartingale Convergence Th)
Suppose that Xt, t ∈ N ∪ {0}, is a nonnegative ran-
dom variable such that E[X1] < +∞. Let Ft denote
the history of process Xt up to time t ∈ N ∪ {0}. If

E[Xt+1

∣

∣Ft] ≤ Xt, w.p.1, then

Xt tends to a limit X w.p.1. and lim
t→+∞

E[Xt] = E[X].

Lemma 10 Let p1, . . . , pn be the n vertices of a con-
vex polygon ordered in a counterclockwise manner.
Then, there exists a vertex pi such that the angle of
the polygon at this vertex, αi = ∠(pi−1, pi, pi+1), is
bounded by (n − 2)π/n < π/2.

Proof. Divide the convex polygon into n − 2 non-
overlapping triangles with common vertex pi. Now
each angle αj at a vertex pj can be obtained as the
sum of the angles at pj of those triangles that have
pj as a vertex. Since the sum of the angles of a tri-
angle is exactly π and we have n − 2 triangles then
∑

i∈{1,...,n} αi = (n − 2)π. Now suppose that all the

angles are lower bounded strictly by (n − 2)π/n.
That would imply that (n− 2)π <

∑

j∈{1,...,n} αj =

(n − 2)π, which is a contradiction. �

q1

qa

q2

pj

pi
α

qa

q1

q2

x−(α)

pi

x+(α)

Fig. 1. The figure on the left shows the location of q1

and q2. The figure on the right shows the intersection of
several disks with radius r−σ

2
and centers p1+qa

2
.

Lemma 11 Let p1, . . . , pn be the n vertices of a con-
vex polygon ordered in a counterclockwise manner.
Let r > σ > 0 and k > 0. Suppose that α1 =
∠(q1, p1, q2) ≤ 2α = (n − 2)π/n, that q1, q2 are at
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a distance r − σ + k from p1, and that the sector of
D(p1, r−σ+k) limited by the angle ∠(q1, p1, q2) con-
tains all other pj, j ∈ {1, . . . , n}; see Figure 1.

(i) The following set content holds:

I0 = D

(

p1,
r − σ

2

)

∩ D

(

p1 + q1

2
,
r − σ

2

)

∩

· · · ∩ D

(

p1 + q2

2
,
r − σ

2

)

⊆
n
⋂

i=1

D

(

p1 + pj

2
,
r − σ

2

)

(ii) If k ≤ min

{

(r − σ)
1 − sinα

sinα
, (r − σ)

1 − cos α

cos α

}

,

then I0 6= ∅.

Proof. Let us prove (i) for any d = ‖qi − p1‖,
i ∈ {1, 2}, and disks of radius s with 2s < d;
which holds for 2 r−σ

2 < r − σ + k. Since pj ,
j ∈ {1, . . . , n}, are in the circular sector of D(p1, d)
limited by ∠(q1, p1, q2), we can find a finite num-
ber of points qa ∈ arcS(p1,d)(q2, q1), a ∈ A, such
that co{p1, . . . , pn} ⊆ co{p1, qa | a ∈ A}. This im-

plies
p1+pj

2 ∈ co{p1+qa

2

∣

∣a ∈ A}, j ∈ {1, . . . , n}, and

we can write
p1+pj

2 =
∑

a∈A λj
a

(

p1+qa

2

)

, for some

λj
a ≥ 0, such that

∑

a∈A λj
a = 1. Then, for every

p ∈ ⋂a∈A D(p1+qa

2 , s) we have

∥

∥

∥
p − p1 + pj

2

∥

∥

∥
=
∥

∥

∥

∑

a∈A
λj

a(p − p1 + qa

2
)
∥

∥

∥

≤
∑

a∈A
λj

a

∥

∥

∥
p − p1 + qa

2

∥

∥

∥
≤
∑

a∈A
λj

as = s .

Thus, D(p1, s)∩
⋂

a∈A D(p1+qa

2 , s) ⊆ ⋂n

j=1 D(
p1+pj

2 , s).

Now let us see that I0 ⊆ D(p1, s)∩
⋂

a∈A D(p1+qa

2 , s).

Consider the intersection of a disk D(p1+qa

2 , s) with
the bisector of the angle ∠(q1, p1, q2). Without loss
of generality we can assign coordinates p1 = (0, 0)
and qa = (d cos β, d sin β) with 0 ≤ β ≤ 2α. It is easy
to see that the intersection points x−(β) and x+(β)
have coordinates:

x+(β) =

(

d cos β

2
+

1

2

√

4s2 − d2 sin2 β, 0

)

,

x−(β) =

(

d cos β

2
− 1

2

√

4s2 − d2 sin2 β, 0

)

,

which are in R
2 when 2s > d sin β. The first compo-

nents of these vectors are increasing and decreasing
functions of β ∈ [0, π/2] when d/2 > s:

x1′

+(β) = −d sin β

2
− d2 sin β cos β

2
√

4s2 − d2 sin2 β
< 0 ,

x1′

−(β) = −d sin β

2
+

d2 sin β cos β

2
√

4s2 − d2 sin2 β
> 0 ,

In case d = r−σ+k, s = r−σ
2 and k < (r−σ)(1−sin α)

sin α
,

these inequalities are always true. In particu-
lar, x1

+(α) ≤ x1
+(β) and x1

−(α) ≥ x1
−(β) for all

0 ≤ β ≤ 2α. Since we are intersecting disks of
the same curvature, this means that the region of
D(p1+q1

2 , s) enclosed by moving counterclockwise
from x+(α) to x−(α) along [x+(α), x−(α)] and
arc

S(
p1+q1

2
,s)

(x−(α), x+(α)); see Figure 1, is con-

tained in the disks D(p1+qa

2 , s) for all a ∈ A. The

same can be said of the region of D(p1+q2

2 , s) enclosed
by moving clockwise from x+(α) to x−(α) along
[x−(α), x+(α)] and arc

S(
p1+q2

2
,s)

(x+(α), x−(α)).

Since D(p1+q1

2 , s) ∩ D(p1+q2

2 , s) is exactly the
union of these two regions, we have that I0 ⊆
D(p1, s) ∩

⋂

a∈A D(p1+qa

2 , s).

Now let us prove (ii) for d = r−σ+k and 2s = r−σ.
According to Lemma 1, I0 6= ∅ if and only if the
circumcenter CC(p1,

p1+q1

2 , p1+q2

2 ), is in I0. Thus, in
order for I0 6= ∅, it is enough to guarantee that the
circumradius CR(p1,

p1+q1

2 , p1+q2

2 ), is less or equal to

s. In that case CC(p1,
p1+q1

2 , p1+q2

2 ) is at a distance
from the vertices not greater than s, and therefore
CC(p1,

p1+q1

2 , p1+q2

2 ) ∈ I0.

Since the triangle formed by p1,
p1+q1

2 , and p1+q2

2 is
isosceles, see Figure 1, we can find a center at C =
(d
2 cos α, 0) and a radius R = max{d

2 sin α, d
2 cos α}

such that the triangle formed by p1,
p1+q1

2 , and p1+q2

2
is contained in the disk D(C,R). This implies that
CR(p1,

p1+q1

2 , p1+q2

2 ) ≤ R. Imposing R ≤ s, leads to

(r − σ + k)

2
sinα ≤ r − σ

2
,

(r − σ + k)

2
cos α ≤ r − σ

2
.

This is guaranteed if

k ≤ min

{

(r − σ)
1 − sin α

sinα
, (r − σ)

1 − cos α

cos α

}

.
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From here the proof of item (ii) follows. �

Theorem 12 Let p1(0), . . . , pn(0) be the initial po-
sitions of a robotic network in R

2. Suppose the agents
are initially connected by Gdisk(r) for some r ∈ R>0.
Let σ ∈ R>0, σ < r, be the sensing error radius,
and let {Pt = (p1(t), . . . , pn(t))}t∈N∪{0} denote a se-
quence of positions obtained by applying the Modified
1/2 Circumcenter Algorithm. Let Vt denote the ran-
dom variable Vt = diam(Pt), t ∈ N ∪ {0}. Then, for
any r > σ we have that Vt converges to a limit V
w.p.1 such that E[V ] = 0.

Proof. We will apply Theorem 9 to the nonnegative
random variable Vt. Clearly, for any fixed number of
agents n, we will have that E[V1] < +∞. To establish
an inequality as in Theorem 9, recall the following.
The local convex hull of an agent i ∈ {1, . . . , n} and
neighbors is defined as

Si = co{pi, pjs
| js ∈ {1, . . . , ni}}

= {λj0pi + λj1pj1 + · · · + λjni
pjni

,

|λjs
∈ [0, 1], s ∈ {1, . . . , ni},

ni
∑

s=0

λjs
= 1},

where ni denotes the number of neighbors of agent
i. Consider now any measurement distribution of
neighbors pi

j such that E[pi
j ] = pj . The local con-

vex hull measured by agent i is a random variable
given by Si = co{pi, p̄

i
js

| s ∈ {1, . . . , ni}}. Since
taking expected values is a linear operation, we have
that E[Si] = Si for all i ∈ {1, . . . , n}. In this way,
for any of modified circumcenter algorithms we have
E[Vt+1

∣

∣Ft] ≤ Vt for all t ≥ 0. Theorem 9 applies
and we can say that the process Vt will converge to
a stationary value V with probability one.

We prove next that, w.p.1 there exists a sequence of
times tℓ, ℓ ∈ N, such that E[Vtℓ

∣

∣Ftℓ−1] < Vtℓ−1, for
all ℓ ∈ N. Without loss of generality suppose t = 0
and let us find t > 0 satisfying the strict inequality.

In the variant 2 of the algorithm, we have that
pi(1) 6= pi(0) and pi(1) coincides with the circum-

center of Mi =
{

pi,
pi+pi

j

2 | j ∈ Ni

}

(no constraint

restricted by r − σ is enforced). This implies that
pi(1) ∈ Si(0) \ {pi(0), pi

j(0) | j ∈ Ni(0)} and there-
fore E[pi(1)] ∈ Si(0) \ {pi(0), pj(0) | j ∈ Ni(0)}.
Thus, E[V1

∣

∣F0] < V0.

For the variant 1 of the algorithm, we can not
guarantee in general that Qi 6= ∅ for all i ∈

{1, . . . , n} and thus agents may remain station-
ary. Reasoning by contradiction we will prove
that there exists at least an agent i, such that
pi(0) ∈ ∂(co{p1(0), . . . , pn(0)}), with pi(0) deter-
mining the diameter of co{p1(0), . . . , pn(0)}, and a
time t > 0 such that Qi(t) 6= ∅ with probability one.
This implies that w.p.1 there exists a time t > 0
such that E[Vt+1|Ft] < V0.

Assume that Qj(t) = ∅ for all t > 0 and j ∈
{1, . . . , n}. As a consequence, none of the agents
will be able to move. By Lemma 11, there exists i ∈
{1, . . . , n}, such that pi(0) ∈ ∂(co{p1(0), . . . , pn(0)}),
pi(0) determines the diameter of co{p1(0), . . . , pn(0)},
and the angle formed by pi(0) and the positions of
any other two agents pk(0), pj(0), is upper bounded
by ∠(pi(0), pj(0), pk(0)) ≤ (m − 2)π/m ≤ 2α =
(n − 2)π/n < π/2.

For a uniform distribution of pi
j in a disk of radius

σ and centered at pj , the probability that ‖pi(t) −
pi

j(t)‖ ≤ r − σ + k, for any k > 0, is a positive one:

P (‖pi(t) − pi
j(t)‖ ≤ r − σ + k) =

{

1, ‖pi(t) − pj(t)‖ ≤ r − 2σ ,
1

πσ2

∫

D
dp > 0, r − 2σ ≤ ‖pi(t) − pj(t)‖ ≤ r.

where D = {p ∈ D(pj , σ) | ‖pi − p‖ ≤ r − σ + k}.
To see this, observe that ‖pj(t) − pi(t)‖ ≤ r. This
implies that at least there is a point of D(pj(t), σ) at
distance r−σ of pi(t) and a subset M ⊂ D(pj(t), σ)
with nonzero measure such that ‖p−pi(t)‖ ≤ r−σ+k
for every p ∈ M . Let us use the notation P (‖pi(t)−
pj(t)‖ ≤ r − σ + k) = a > 0 and let us compute
the probability of the event A = {∃t > 0 | ‖pi(t) −
pj1

(t)‖ ≤ r − σ + k} for a fixed j1 ∈ Ni(Gdisk(r)). In
fact, we can write A as the disjoint union of events
At, t ∈ N ∪ {0}:

A = ∪∞
t=0At = ∪∞

t=0{‖pi(s) − pj1
(s)‖ > r − σ + k,

∀s ≤ t − 1, and ‖pi(t) − pj1
(t)‖ ≤ r − σ + k} .

In this way,

P (A) =
∞
∑

t=0

P (At) =
∞
∑

t=0

a(1−a)t =
a

1 − (1 − a)
= 1.

Reasoning in an inductive manner, we can find w.p.1
an infinite sequence of times tℓ, ℓ ∈ N, such that
‖pi(tℓ)−pj1(tℓ)‖ ≤ r−σ+k, for all ℓ ∈ N. Similarly,
we can find w.p.1 an infinite subsequence of times
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tℓm
, m ∈ N, such that ‖pi(tℓ)− pj1(tℓ)‖ ≤ r − σ + k

and ‖pi(tℓ)−pj2(tℓ)‖ ≤ r−σ+k for another neighbor
j2 ∈ Ni(Gdisk(r)). Since the number of neighbors of
i is finite, we can extend this argument to conclude
that w.p.1 there exists a t > 0 such that for every j ∈
Ni(Gdisk(r)) we have that ‖pi(t)−pi

j(t)‖ ≤ r−σ+k.
How large t is will depend on the number of neighbors
of i and how large k is.

Now, by choosing k as in Lemma 11 (ii) we can
guarantee that w.p.1 there exist a t > 0 such that
Qi(t) 6= ∅. This implies that w.p.1 E[Vt+1

∣

∣Ft] < V0

for some t > 0. From here the result follows. �

Corollary 13 (Extension to switching graphs)
Let p1(0), . . . , pn(0) be the initial positions of a robotic
network in R

2. Suppose the agents are connected by a
sequence of graphs G(t) ⊆ Gdisk(r), t ∈ N∪{0}, such
that for some T ∈ N, G(Tk) is strongly connected,
with k ∈ N. Let σ ∈ R>0, σ < r, be the sensing er-
ror radius, and let {Pt = (p1(t), . . . , pn(t))}t∈N∪{0}
denote a sequence of positions obtained by applying
the Modied 1/2 Circumcenter Algorithm, variant 1.
Let Vt denote the random variable Vt = diam(Pt),
t ∈ N ∪ {0}. Then for any r > σ we have that Vt

converges to a limit w.p.1 such that E[V ] = 0.

Proof. The proof of this fact is very similar to that
of the previous theorem. First, observe that the ar-
gument of the proof can be extended for any fixed
strongly connected graph G ⊆ Gdisk(r). Now con-
sider that the algorithm is implemented over a se-
quence of graphs G(t) that contains a subsequence
of strongly connected graphs {G(Tk)} ⊆ {G(t)}, for
some T > 0. To extend the proof, we just need to
see that with probability one there exists a subse-
quence of times {Tkm} ⊂ {Tk} such that Qi(t) 6= ∅
for some i ∈ {1, . . . , n} and pi(0) satisfying similar
properties as in the theorem. Take one of the agents
j ∈ Ni(Gdisk(r)), which are neighbors of i for an in-
finite number of times; i.e. j ∈ Ni(G(Tkmj

)), with
m1 ∈ N. Since the graphs G(Tk) are strongly con-
nected, there exist at least one of such agents. Now
for every instant Tkm1

, consider another neighbor
j2 ∈ Ni(G(Tkm1

)) that appears an infinite number of
times (if there is none we have finished). That deter-
mines another infinite sequence of graphs G(Tkm2

).
We repit this process until we have a fixed collection
of neighbors j1, . . . , js ∈ G(Tkms

) which are all the
neighbors that i has at infinite instants Tkms

, s ∈ N.
For this set of neighbors we can repit the argument
of the proof in the theorem to conclude that, w.p.1,
there exists a time t > 0 such that Qi(t) 6= ∅. The
time of convergence is further affected by T and the

switching of graphs. �

Remark 14 The extension of the previous proof to
the (standard) Circumcenter Algorithm, variant 1,
becomes more difficult as it requires checking that
the closest point to E[CC(Mi)] does not contain
any vertex pj(0). Despite this, all the simulations in
2D showed multiagent rendezvous to a practical sta-
bility ball. On the other hand; see [9], the stochas-
tic analysis of the algorithm in 1D becomes eas-
ier as we have that E[ 12 (pi

M + pi
m)] = 1

2 (pi
M + pi

m)
for all i ∈ {1, . . . , n}. Proving this fact in 2D has
been elusive (in several dimensions we have that
CC(Si) =

∑ni

s=1 λjs
(pj1 , . . . , pjni

)pjs
, which is a non-

linear function of the pjs
. ) These difficulties disap-

pear when considering variant 2 of the (standard)
Circumcenter Algorithm. In this case the constraint
sets are always non-empty and contain always pi(0)
(the analysis would be similar to a noiseless (stan-
dard) Circumcenter Algorithm). •

Remark 15 Let p1(0), . . . , pn(0) be the initial po-
sitions of a robotic network in R

2. Then, under the
Modified (standard) Circumcenter Algorithm, vari-
ant 1, and for G ⊆ Gdisk(r) agents reach a ball of
radius r−σ√

2
. This implies ‖pi − pj‖ ≤ r for all i, j ∈

{1, . . . , n}.

To see this suppose that E[diam(p1(t+1), . . . , pn(t+
1))|(p1(t), . . . , pn(t))] = 0. Then

0 =E[diam(p1(t + 1), . . . , pn(t + 1)) | P(t)]

= max
i,j

E[‖pi(t + 1) − pj(t + 1)‖ | P(t)]

≥ max
i,j

‖E[pi(t + 1) | P(t)] − E[pj(t + 1) | P(t)]‖ ,

and E[pi(t + 1)|P(t)] = E[pj(t + 1)|P(t)] = p for all
i, j ∈ {1, . . . , n}. This implies that

p ∈
n
⋂

j=1

(

{pj(t)} ∪ E[Qj(t) | P(t)]
)

(5)

⊆
n
⋂

j=1

({pj(t)} ∪
⋂

i∈Nj(G)

E[D

(

pj(t + 1) + pj
i (t + 1)

2
,
r − σ

2

)

])

⊆
n
⋂

j=1

({pj(t)} ∪
⋂

i∈Nj(G)

D

(

pj(t + 1) + pi(t + 1)

2
,
r − σ√

2

)

)

The last content equality can be obtained as fol-
lows. In a general dimensional space, we can

not say E[D(
pj+p

j

i

2 , r−σ
2 )] ⊆ D(

pj+pi

2 , r−σ
2 ), how-
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ever D(
pj+p

j

i

2 , r−σ
2 ) is contained in a square

A centered at
pj+p

j

i

2 with side r−σ
2 . Using a

component wise projection it is easy to see

that E[A | t] ⊆ D(
pj(t+1)+pi(t+1)

2 , r−σ√
2

) for every

j ∈ {1, . . . , n} and i ∈ Nj(G). This is valid for any of
the circumcenter algorithms, variant 1, and proves
that the set of agents reaches a ball of radius r−σ√

2
.

In the 1D case and for the (standard) Circumcenter
Algorithm, variant 1, we have that:

p ∈
n
⋂

j=1

(

{pj(t + 1)} ∪ E[Qj(t)]
)

=

n
⋂

j=1

({pj(t + 1)} ∪ [pi
M (t) − r − σ

2
, pi

m(t) +
r − σ

2
])

Let pm = min{pi | i ∈ {1, . . . , n}} and pM =
max{pi | i ∈ {1, . . . , n}}. The above intersection is
nonempty if and only if:

p = pi for some i or pM − pm ≤ r − σ . (6)

Both conditions imply that we have reached a ball
of diameter r− σ. In fact, if CC denotes the circum-
center of the set of all agents, we have that:

pi ∈ D
(

CC,
r − σ

2

)

⊆ [pM − r − σ

2
, pm +

r − σ

2
],

(7)

∀ i ∈ {1, . . . , n}. This is valid for any graph G.

Now consider the particular case of Gdisk(r). Condi-
tion (6) implies that pm and pM are connected and
we have reached the complete graph. From the set
content (7) we also see that it will not be neces-
sary to enforce the constraint in the Modified (stan-
dard) Circumcenter Algorithm, variant 1, since it
automatically holds. Therefore we have that pi(t +
1) = CC(Mi) and p = E[CC(Mi)|P] = CC, ∀ i ∈
{1, . . . , n}. Since CC(Mi) ∈ D

(

CC(Mi), σ
)

, then

it must be that pi(t + 1) ∈ D
(

CC(p1, . . . , pn), σ
)

,

∀ i ∈ {1, . . . , n}. A more careful analysis of the in-
teresection of balls in 2D would allow us to get a
better estimate of the practical stability ball. In sim-
ulations, it can be seen that indeed the ball has typ-
ically a smaller radius than (r − σ)/

√
2.

5 Simulations

Figure 2 shows a run of the Modified (standard) Cir-
cumcenter Algorithm, variant 2, for Gdisk(r) in 2D,
15 agents and 300 time steps. Here r = 6 and σ = 3.
The connectivity of the group of the 15 agents is
shown in the left box of Figure 2 while its evolution
is shown in the right box. As it can be seen here, the
algorithm behaves even better than expected from
the 1D analysis. There is a slight wandering of the
practical stability ball. This behavior is representa-
tive of what we have seen in many repeated simu-
lations with different initial conditions and relations
r/σ.

Fig. 2. Modified (standard) Circumenter Algorithm,
variant 2, for 15 agents in 2D connected by Gdisk(r), with
r = 3. The noise error is bounded by σ = 3.

2

1.5

1

0.5

20 50 80 100

Fig. 3. Diameter evolution of a network of 4 agents in
1D connected by Gdisk(r), r = 3, and evolving under the
Modified (standard) Circumcenter Algorithm, variant 1.
The noise error is bounded by σ = 1.
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10

10

6

2

30 50 70 90

Fig. 4. Diameter evolution of a network of 50 agents in
1D connected by Gdisk(r), r = 3, and evolving under the
Modified (standard) Circumcenter Algorithm, variant 1.
The noise error is bounded by σ = 1.

Simulations of the evolution of the diameter under
the Modified (standard) Circumcenter Algorithm,
variant 1, for Gdisk(r) are shown in Figures 3 and 4
for a network of 4 and 50 agents. In general we ob-
serve that the smaller the group of agents, the in-
creased wandering of the stability ball and the larger

12
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Fig. 5. Diameter evolution of a network of 30 agents
in 1D connected by G ⊆ Gdisk(r), r = 3, and evolving
under the Modified (standard) Circumcenter Algorithm,
variant 1. The noise error is bounded by σ = 1 and
the fixed graph G corresponds to the Limited Delaunay
graph of the initial positions, see [5].
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Fig. 6. Diameter evolution of a network of 15 agents in
2D connected by a sequence of graphs G(t) ⊆ Gdisk(r),
r = 2, and evolving under the Modified 1/2 Circumcen-
ter Algorithm, variant 1. The noise error is bounded by
σ = 1 and G(t) = Gdisk(r) every 20 steps.

its diameter. When the number of agents is increased
a filtering effect is produced which favors the final
outcome. Note that, for the case of 50 agents, the
diameter function remains constant for some period
of time. This is due to the constraint enforcement
that does not allow agents to move, which can hap-
pen when r−σ is small. Since the information about
the neighbors positions changes randomly in time
according to a uniform distribution, it is clear that
eventually the constraint sets will become nonempty
and agents will be able to move. This is the essence of
the proof of Theorem 12, which is actually proven for
the Modified 1/2 Circumcenter Algorithm. A trick to
diminish the wandering effect of the practical stabil-
ity ball might be to pick an homogeneous σ ≤ σ0 ≈ r
and σ0 < r in the final stages of the algorithm. A
simulation of Modified (standard) Circumcenter Al-
gorithm, variant 1, for a fixed graph G ⊆ Gdisk(r) and
30 agents is shown in Figure 5. Convergence here is
much slower due to the fact that each agent has only
two neighbors. Note also that the diameter may in-
crease at any time, so a deterministic analysis like
the for Gdisk(r) is no longer feasible.

Finally, Figure 6 shows a simulation of the Modi-
fied 1/2 Circumcenter Algorithm, variant 1, for 15
agents connected in 2D under a sequence of switch-

ing graphs. Overall, we observe a decreasing trend
until agents reach a ball of approximately r − σ as a
diameter.

6 Conclusions

In order to cope with measurement noise, to possible
modifications of a class of circumcenter algorithms
were proposed. Convergence is shown to happen de-
terministically (1D) and w.p.1 (2D) and the behav-
ior is confirmed in several simulations.
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