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Unicycle coverage control via hybrid modeling

Andrew Kwok and Sonia Mainmez

Abstract

This paper presents gradient-descent coverage algoriftimes group of nonholonomic vehicles.
Similarly to previous approaches, the deployment strateligs on Locational Optimization techniques
and algorithms are distributed in the sense of the Delauregyhg In order to deal with unicycle dynamics
and guarantee performance, we introduce several vehictlesnand integrate them in a hybrid system

We then analyze the algorithms with a recently introducedriance principle for hybrid systems.

I. INTRODUCTION

The ability to autonomously deploy across a spatial regasmwell as dynamically adjust
to single-point failures gives mobile networks an advaetager static ones. This leads to
the question of how to design effective motion coordinatgorithms for their unsupervised
control [1]. Due to the complexity that systems interacivgr networks possess, it is reasonable
to consider simple dynamical models for each vehicle in @ &pproximation. However, the
nontrivial dynamics of current unmanned systems can idagi the performance of the proposed
algorithms. This work tries to contribute to this aspect bppgmsing a motion coordination
strategy for the deployment of a nonholonomic mobile senstwork.

Although each robotic agent in a network may be controllaolé the interaction among them
can even be fixed, the consideration of non-trivial vehicy@aimics needs special treatment
to avoid destabilizing effects. This has motivated a largenber of papers on the design of
coordination algorithms for multi-agent systems with fixateraction topologies; see e.g., [2],
[3], [4], [5] on formation stabilization and synchronizati. In particular, the stability analysis

of this class of algorithms can be approached via Lyapunothoas and the classical LaSalle
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invariance principle as from [6]. On the other hand, whenither-vehicle interaction topology
is not fixed, even the consideration of first-order integrdgmamics may require hybrid-systems
or switched-systems techniques for analysis.

The use of multiple Lyapunov functions has been a predonimethod for proving stability
of a hybrid system, see [7], [8] and references therein. Wesling with multi-agent systems,
however, much of our previous work, [9], [10], relied on L#8a invariance principle instead.
The work in [11] provides a first extension of LaSalle’s inaarce principle to hybrid systems.
More recently, the work in [12], [13] revisits the notion oflirid (time) trajectories and develops
a LaSalle invariance principle based on graphical converg®f set-valued maps. In this paper
we choose the latter framework to present and analyze oterays

With respect to previous work, this paper contributes torentr research on the control
of nonholonomic vehicle networks. References include;, efstacle avoidance [14], cyclic
pursuit [15], [16], and path-planning for Dubins vehicl&3]. Here, we address a problem posed
in an earlier work [9] regarding convergence of a coveragerobproblem using unicycle type
dynamics. In [9] convergence to these configurations wasegardor omni-directional vehicles.
Wheeled vehicles were also considered, but the controfitthgo was designed so that vehicles
converged to a fixed target point as in [18], which was updatetiscrete-time intervals. We lift
this simplification allowing for target points (which defgeon neighboring vehicles’ positions)
to vary continuously with time. This paper also presents pplieation of the results in [12]
and how these can be useful in the context of multi-vehiclégionocoordination. We refer the

reader to [19] for an enlarged version of this manuscripthail the proofs claims in the paper.

[I. PROBLEM SETUP AND NOTATION

In this section, we introduce the basic notation of the pag@me background on Locational
Optimization, see [20], and a description of the unicyclaigle dynamics that we consider.

We will denote byR-, be the set of non-negative real numbers, ahavill be the set of
non-negative integers. In the following@s, v, #) € SEx (2) describes the position and orientation
of a vehicle with respect to a fixed global coordinate framihwe, y) € X C R2.

Let Q, be a convex polygon iiR? including its interior, and let - w denote the inner product
betweenv,w € R%. Although we define), to be a convex polygon, for the sake of having a

unique well-defined normal along the boundaxy, we will replace the vertices ap, with an
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arc of radiuse, wheree is arbitrarily small. LetQ) denote the approximated,. These “rounded
corners” guarantee continuity of the following functioriagilitating the analysis later on. Let
t: 0Q — R? be the unit counterclockwise oriented tangent vector atbegooundary of), and
t(x) = (t1(z),t2(x)). We define the normal vecton,: 9Q — R?, asn(z) = (—ty(x),ti(x)),
which points towards the interior d@j.

A. Locational Optimization

Let ¢ : R? — R, be a scalar field with bounded supp@lt Here, ¢ represents aa priori
measure of information o) (the higher the value of(q) the more attention the group has
to pay tog). Let P = (py,...,p,) be thelocation of n sensorsin . We will consider the

Locational Optimization [20] function:

P =3 [ = pilPolada, ®
i=1 Y Wi
whereW = (W4, ..., W,) is any partition ofy). The function (1) serves as a measure of how poor

the coverage provided by the mobile sensing networ® iis. SmallerH has the interpretation
of better coverage, thus we are interested in minimizinddyt.introducing Voronoi partitions
as in [10], the gradient of the cost function may be computea idistributed fashion in the
sense of the Delaunay graph. The ordinary Voronoi partitibd) is V = (V4,...,V,,) where
Vi={qeQlllg—pill <llg—p;l,Vi#j} i € {1,...,n}. Each Voronoi region has madsy,
and centroidC”;, where

1
My = [ otin, €=y [ avtada,

[1I. N ONHOLONOMIC VEHICLE DYNAMICS

The use of omni-directional vehicles in [9] allows the miigation of (1) via a Lloyd-like
gradient descent control law. This control law forces imdliial agents to move directly towards
the centroid of their Voronoi regions and is distributed e tsense of the Delaunay graph.
That is, an agent only requires position knowledge of Dedgumeighbors to compute its own
Voronoi region, and the corresponding centroid. We wiltaniuce next several dynamical modes
to guarantee that nonholonomic vehicles still propel talttiese centroidal configurations.

The quantities that describe the vehicle are as followseReting Figure 1, each vehicle

has configuration variable®;, 8;) € SE,(2), and a body coordinate frame with basis =
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(cosb;,sinf;) ande,, = (—sinb,, cos6;). We define the angle;;, € [—m,n| to be the angle
betweene,, and a target point, in this case the region centi@jdAs it will be clear later, in
order to decreask, we will requiree,, - (C; —p;) > 0. In what follows, we denoté; = (C; —p;)

as in Figure 1.

Fig. 1. Vehicle with wheeled mobile dynamics.

A. Variable forward velocity

Here we present the different dynamical modes under whidfickes in the network can
evolve, and the intuition behind them. This will be made miomrenal in Section V.

Because the vehicle has control over both forward speedwnahgy rate, it can perform one
of three maneuvers. A vehicle can move forward and steeatean place, or be at a full stop.

The dynamics that describe these motions are:

pll = v COS ‘9@ , plz =0 Sil’l 62 5 9@ =w, (forward) (2)
pi=0, B =0, Oi=w, (rotate) ®)
pi=0, p=0, 6;=0. (rest) “)

An additional discrete variablé,c {1, 2, 3}, will be used to describe which of the three modes
(forward, rotation, and rest) a vehicle is in. Each agenttban be described by a state variable,
z; € SEy(2) x {1,2,3}. The multiagent system state is denotediby (z4,...,2,) € R*".

B. Vehicles with fixed forward velocity

Here we assume that each vehicle has a fixed forward velocity], and a maximum turning
velocity of w,,. We also define the vehicle “virtual center” as its center athtion when the
turning input ist+w,,. The location of these centers can be to the right or left efuahicle,

and we will introduce a switching strategy for vehicles thait avoid undesired Zeno effects.
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The objective is to steer the virtual center of each vehiclea desired centroid target. Once
the virtual center has arrived at the centroid, the vehicilé ‘lvover” about the centroid by
maintaining the maximum steering inptttv,,,. We construct the dynamics of the virtual center

T .
by first assuming dynamics of the forpm = (cos 0;, sin 9i> , 0; = w; , wherew; is the only

T
input. Then the virtual center is located (in the local fr&mb(o, iwi) . We then transform

m

T
this into the global frame and ggt = piii <_ sinf;, cos 9i> . Now take the time derivative

Py =pi & L (—(cos@i)éi, —(sin el-)éi)T = (1 T Wi) (cos@l-, sin9i>T . (5)

m m

Indeed, withw; = t+w,,,, the virtual center remains fixed.

IV. HYBRID AUTOMATA REVIEW

Here we gather some useful results on the modeling and thelitytaanalysis of hybrid
automata. The exposition is taken from [13], [12] and ineldidhere for sake of completeness.

Definition 4.1 (Hybrid time domain)D C R, x N is a compact hybrid time domain if
D = U5 ([tj. tj1], 4), for some finite sequence of timés= t, < t; < ty--- < t;. It is
a hybrid time domain if for al(7,.J) € D, D n ([0,7] x {0,1,...,J}) is a compact hybrid
domain. o
Elements in hybrid time domains can be ordered: we say(that) =< (t;11, jiv1) Iff ¢, + j; <
tiv1 + Jiv1, g €{1,..., J}.

Definition 4.2 (Generalized solution)A generalized solution is a functiar(¢, j) € O defined
on a hybrid time domaidom = such that: (1) on each intervgl, ¢,,,] x{j} C dom z of positive
length (so that; < ¢,.1) we havei(t,j) € F(z(t,7)), z(t,j) € A, (2) for each(t, j) € domx
such that(t, j+1) € domz, we havex(t,j+1) € G(z(t, j)), x(t,j) € B. The set-valued maps
F:0=R"andG : O = R" are the flow map and jump map, respectively. The sets O
and B C O denote where the state may flow in continuous time, and wiherstate may make
a discontinuous jump, respectively. It is possible fon B # (), and in this case, both flowing
and jumping may occur. Together, G, A, B define a hybrid systen§ = (F, G, A, B). °

Definition 4.3 (Weakly invariance)For a hybrid systens, the setM C O is said to be:

(i) weakly forward invariantf for eachz, € M there exists at least one complete solution

x with z(t, ) € M for all (¢,5) € domx;
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(i) weakly backward invariant for eachq € M, N > 0 there exists, € M and at least one
solutionz such that for somét*, j*) € domz, t* +j* > N, z(t*, 7*) = g andx(t, j) € M
for all (¢,7) < (t*,7%),(t,j) € domz;

(iif) weakly invariantif it is both weakly forward invariant and weakly backward/amiant. e
Assumption 4.4 (Basic Conditionsk hybrid systemS = (F, G, A, B) on a state spac@ C
R™ satisfies theBasic Conditionsf: (i) O C R™ is an open set, (iiA and B are relative closed

sets inO, (iii) F'is outer semicontinuous, locally bounded @nand convex/ = € A, (iv) G is
outer semicontinuous, locally bounded 6n and satisfies?(z) C O, Vx € B. o
Theorem 4.5 (Hybrid LaSalle invariance principle, [12],d@llary 4.3)): Given a hybrid sys-
tem S = (F,G, A, B) that satisfies Assumption 4.4, suppose that:\{{i: O — R is con-
tinuous onO and locally Lipschitz on a neighborhood df, (i) &/ c O is nonempty, (iii)
ua(r) = maxysepm) LV (z) <0 for all z € A, (V) up(x) = maxgteqe {V(z") — V(z)} <0

for all x € B. Let = be precompact withigez C Y. Then, for some constant € V(U), =

approaches the largest weakly invariant sevin'(r) N/ N (u;l(o) u u;(o)).

V. VEHICLES WITH VARIABLE FORWARD VELOCITY

We refer the reader to the papers of Sanfelice et. al. [14] {ar a review of the hybrid

systems approach that follows. Also, an enlarged versighisimanuscript can be found at [19].

A. Hybrid modeling

Here we formally define the hybrid system sketched in SediieA, so that it satisfies the
Basic Conditions in [12] in order to apply the invariancenpiple found therein. We will take
the state-space of the entire system talhe- R*", so thatz € (SEy(2) x {1,2,3})" C O. We
now define the hybrid system that models the nonholonomiclehS = (F, G, A, B). In Sec-
tion 11l-A, we described three different types of dynamiekere we specify the relatively-closed

set A C O, where continuous-time evolution occurs. To begin, we aranthe configurations
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when a particular agent can flow,; = A} U A? U A?:
Aj ={z € O]u; € SEg(2) x {1}, ey, - di > ¢, ||dil| = €},
Af ={z € O]a; € SEg(2) x {2}, |ldil| Z €, €y, - di < €}
U{x € O|x; € SEn(2) x {2}, ||di|| > €, s, - n <0},
AP = f{a € O |z € SEy(2) x {3}, ldill <7},

where( < € < e < € ande is arbitrarily small. Extending this to apply for all agentee have
i=1

Since eachd¥ C A; is relatively closed inD, A is also relatively closed i, satisfying one of
the Basic Conditions see [19].

In forward motion, we propose a turning control gai§) < oo proportional to the angular
separation between the orientation of the vehicle and tlgetay;. Additionally, we will have
a control gaink,, < oo that is proportional to the distance to the target. In rotative consider

a constant turning rate df;,. We propose the following for eache {1,...,n}:

. A\T T
F,-1($)=<p}, P, 0, li> =<k;picose, ky, sin@, ke, 0) ,

2 _ T 3 _
F2(2) = (0. 0, ko sgor). 0) . Fi(z)=0.

From here, we can define the flow map: O = O. Whenz ¢ A, F(x) = (), and whenz € A,

F(z) = (Fy(2),.... Fa(@)",  Fi(2)=Ff(2) <= L=ke{1,2,3}. ()

We now define the sets of configuratiors,, i € {1,...,n}, where a transition from flowing
to jumping may occur for a particular agent. These cases are:
1) switching direction of travelB} = {z € O | z; € SEy(2) x {1}, e, - di < —¢},
2) forward motion to rotation (when the centroid is almostitgendicular to the direction of
travel or when the agent is on the boundary),
B ={x €O |z € SExq(2) x {1}, €4, -n < —€}
U{x € O|x; € SE9(2) x {1}, —e < e, - d; < €},
3) rotation to forward motionB; = {z € O | z; € SEQ(2) x {2}, e, - di > €,€,, -1 > 0},
4) forward motion or rotation to resting near a centroid,
B! ={x € 0|z € SEy(2) x {1,2}, |dill < ¢},
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5) resting to forward motionB3? = {z € O | z; € SE,(2) x {3}, ||d;|| > €},

wheree > ¢ ande is arbitrarily small. ThenB; = | J;_, BF and
B=|JB:. (8)
1=1

It is not difficult to see that eact* is relatively closed inO, and soB is also relatively
closed inO, satisfying another Basic Condition, see [19]. A jump cacupdf the state is in
any of the five regions for a given € {1,...,n}. The corresponding set of configurations,
G;(x), wherez might jump to arey; (z) = (p;, 0; + 7, 1), g(x) = (pi,6:,2), g3 (x) = (pi, 0i, 1),
gi(x) = (pi, 0;,3) and g3 (x) = (ps, 0;, 1). We combine the above functions for each vehicle and
obtain G;(z) = {(x1,...,9%(x),...,2,) |2z € BF,Vk € {1,...,5}}. The overall jump map
G:0=0IisG(z) =0, x ¢ B, otherwise

G(z) = JGilw). ©)

Remark 5.1:The jump mapG takes the state(t, j) € BF to another sety(t,j+1) € AUB.
The following are all the possibilities: (1) f = 1 thenG(x) € Al UB?U B}, 2) If k =2
thenG(z) € AU B!, (3) If k =3 thenG(z) € Al UB{, (4) If k =4 thenG(x) € A3, (5) If
k =5 thenG(z) € Al U B} U B?. The state may also be in more than one jump set, such as
r € B?U B!. When this happens, the state may jump according(e) or g!(z), making this
process non-deterministic. °

Remark 5.2:1f we only implemented direction flipping, there exists ajecdory such that
whene,, - d; = 0, the hybrid time domairi¢, j) grows unbounded i for fixed ¢. We include
€, ¢, €, and the careful definition off and B to prevent this and other similar situations. Other
choices of thed, B sets are possible. °

Proposition 5.3: The hybrid system defined in equations (6), (7), (8), (9)séas the basic
conditions of Assumption 4.4.

The proof can be found in the Appendix.

B. Asymptotic convergence

Our system satisfies the Basic Conditions, so we can apphhybed LaSalle invariance
principle in [12]. We now state our main result.
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Theorem 5.4:Let U4 = O. Given the hybrid system defined in equations (6), (7), 8), &ny
precompact trajectory(¢, j), with rge x € U, will approach the set of points
M={zcO|zecA Viec{l, .. . ,n}}. (10)

Proof: We choosé/ to be the cost function (1). It can be shown that (1) is lochipschitz
on O [9]. For all z in A, ua(z) = LFH. We now compute the derivative, see [9].
~[oH. OH. OH. "~ OH .
= —pi+ =—0; + —1;| = ) = 2My (pi — C) T pi .
‘CFH ZZ:; |:aplpz+ 092 [ + 0l2 2:| - aprZ ZZ:; VL(pl Cl) Di

When an agent is in a rotating or rest modeg A? U A? andp; = 0. Whenz; € A}, we have

OH .
——Di = 2My, (pi - Cz')T .
Opi k,, sin 0;

k.. cosb;
" = 2kPiMVi (pi - Cz) * €y -

Recall from theA! definition thate,, - (C; — p;) > ¢, then g—;f_pi < 0. Thus,us(x) <0,Vz € A.
SinceG is set-valuedyp(x) = max,+eq){H(z*) — H(x)}. The cost function (1), does not
have any dependence énor 6;. In addition, the jump map (9) does not create discontiesliti
in position. Thus;H does not change in value over jumps, anglz) =0, Vz € B.
The conditions of the hybrid LaSalle invariance principte aatisfied. Thus, the precompact

trajectoriesr will approach the largest weakly invariant set in
L=Vir)nun <u;1<0) U u;(o>) — H' ()N (uj(c)) U B) ,

for somer € H(U). Note thatH~!(r) represents some level set of the cost function (1). Now
we must identify the largest weakly invariant sgtf in L. Since our system is autonomous, the
largest weakly forward invariant set is also the largestklyemvariant set.

We now check for weakly invariant trajectories. We do thisdsguming that one vehicle is
in a switching state, and show that it must switch to a flowiteges and remain there for a
non-zero amount of time. Then we show that the only flowingestehich remains in a level
set for all time is the stationary state,c A? for all : € {1,...,n}.

Suppose there exists a trajectaryt, j) with H(z) = » for all (¢,7) € R>, x N such that
Z(to, jo) € B. This implies that there exists and k* such thati(t,, jo) € BY . Referencing
Remark 5.1, all jumps eventually terminate wittt,, j) € A, = Al U A2 U A? for somej > j.
Furthermore, this configuratioi(t,, j) remains inA4; for a non-trivial amount of time. We have
shown that all configurations € B return to flowing states. Now we examine the case where

Z(t,j) € A to arrive at the final result.
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10

Suppose there exists a trajectatfy, j) with H(z) = r for all (¢,j) € R>o xN andz(to, jo) €
A for somety + jo > 0. Sinceg—;fpi < 0 for any z € A}, this implies thatz(t, jo) € A? U A?
for all i € {1,...,n}. If this is true, thenp; = 0 for all i € {1,...,n}. Suppose there exists
ani* such thati(to, jo) € A%. Becausey; = 0, C; is constant for ali € {1,...,n}, and under
the flow F?,
a jumped is forced so that(t,, jo + 1) € AL. This implies thatu,(z) < 0, and the trajectory

«;<| decreases. Then, for somg such thatty < ¢; < oo, Z(t1,jy) € B where

z(t, 7) leaves the level set{~!(r).
Therefore, in order to remain in the level Sét'(r), trajectoriesr(t, j) must satisfyr € A?

for all i € {1,...,n}. This also satisfies € u;'(0). |

VI. VEHICLES WITH FIXED FORWARD VELOCITY
A. Virtual center switching

It is not difficult to show that the following holds fok; see [19].

Lemma 6.1:Let P = (p1,...,pi,...,pn), and letP = (py, ..., pi, ..., pn) Wherep; is closer
to the centroidC;, ||p; — Ci|| < |lp: — Ci||. Let V(P) be the Voronoi partition of) associated
with P. Then,

H(P,V) < H(P,V). (11)
AH = H(P,V) = H(P,V) = Mi(|pi — Ci||* = |5 — Ci||*) < 0. (12)
Additionally, H(P, V) — H(P,V) < AH .

Proof: At first, we have

HEW) =Y [ o= pilFotas.

Note that the above expression is the sum of the moment dfiaeesf each region about the
positioinsp; of the vehicles. Recalling the Parallel Axis Theorem, themant of inertia of an
object about any axis rotation parallel to an axis passimguijh the center of mass can be
written as

I =lcy+ MR?,

where I,, is the moment of inertia about the axis through the center asn\/ is the mass

of the object, andr is the perpendicular distance between the new axis and ikdraxgh the
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11

center of mass. Therefore, we can rewrite the cost functon a
i=1 i=1

and then,
H(P, W) =H(P,W) — M(|lp; — Cil|*> — ||5: — Ci|1?) -

Because||p; — C;i|| < ||p; — Ci||, the main result follows. m

We propose that each vehicle can switch the position of itsiali center only if the resulting
improvement given by (12) is better than some thresh@ldvhich implies that the actual
improvement in cost ig¢(P,V) — H(P,V) > {. In the next section we precisely define the

hybrid vehicle modes and switching criteria.

B. Hybrid modeling

Each vehicle can have its virtual center located to the ragheft of its direction of travel.
Additionally, each vehicle can either be in “forward” matior “hovering” motion. This results
in four possible modes of operation for each vehicle: fodseft, hover-left, forward-right, and
hover-right. We can enumerate each mode with the statg 1, 2, 3,4}, and each vehicle can be
described by the following tuple; = (p;, 6;,1;) € SEy(2) x {1,2,3,4}, wherep; is the location
of the current virtual centes; is the orientation of the virtual center, andis the mode of
operation. To simplify notation, let the opposite virtuahter bep; = p; + ﬁey,i, let d; denote

the vectorC; — p, and leta; denote the angle between,; and d;, see Figure 2.

Fig. 2. Vehicle currently with a left virtual center, and ttight virtual center configuration is also shown.

Following [12], we define state-space = R*". The flowing domainA is the subset of the

state-space where continuous-time flow can occurAlet. ., A? be the set of points i where
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12

a vehiclei can flow continuously in each of the four modes. We presentied description of
these sets followed by a precise set definition.

(1) An individual vehicle can be ini} (resp.A?) if the centroid is in front of the left (resp.
right) virtual center ap;, and if p; is not sufficiently close t@’;. Additionally, the improvement
from switching between forward-left to forward-right (pesvice-versa) given by (12) must
be better thans. However, if the opposite virtual centgr is not in @), then the vehicle may

maintain its current virtual center despite violating thgrovement threshold.
Al ={z €0 |z € SEy(2) x {1}, epi - di > €, Mi||di||> — M;||d:||* < B, ||di]| > €}
U{z €0 |z; € SE(2) x {1}, €si - di > €, i € Q°, ||di|| > €},
A} ={z€ 0| € SEy(2) x {3}, ewi - di > €, Mi||d;||* — M| d;||* < B, ||di| > €}
U{z €0 |z € SEy(2) x {3}, exi - di > €, i € Q°, ||di]| > €},

(2) A vehicle can be inA? (resp.A}) if C; is behind the left (resp. right) virtual centgy, or

if p; is on the boundaryy and heading outwards, or jf is sufficiently close ta’;.
A= {2 € 0|z €SE2) x {2}, enidi < ¢, || > e}

U{z €O |z € SE(2) x {2}, ;- n < 0}U{z € O | x; € SEy(2) x {2}, ||d;|| <€},
Aj ={z € O |x; € SEp(2) x {4}, ez~ di ¢, [|di]| = €}

U{r € O | z; € SEyg(2) x {4}, €xi-n < 0} U {z € O | z; € SEy(2) x {4}, ||di|| <e}.

The use of hysteresis variables< ¢ < ¢ < € serves to further insure that undesired Zeno effects

do not occur. Combining these sets together, the entirersysan flow ifx € A where
A=()(AjuAiuAlu A . (13)
=1

When the system is in the flowing domait, the state evolves under the set-valued nkap
Similar to the definition ofd, we will present flow maps for individual vehicles and thempmse
them to formF. Let F;(z) = <pzl, P2, 6, [Z.>T with:

Fl(z) = (cos@i, sin@;, Zouwm O)T . F(z) = <cos€i, sinf;, wp, O)T ;

™

T T
ﬂ?’(x):(c:os@i, sin §;, 2%iem O) : Fi4($)=<cosei, sinf;, —wpn, O) :
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Then, for anyx € A,
T
We now describe the subset Of where discrete jumps can occur. We will consider:
1) Switching from forward-left to forward-right,
Bl ={z € O|x; € SE(2) x {1}, es - di > &, Mi(||di||* — || dil|*) > 8, B € Q}
2) Switching from forward-right to forward-left,
B ={x €O |w € SEy(2) x {3}, i - di > & Mi([|di||* = | dil?) > B, pi € Q},
3) Switching from forward-left to hover-left,
B} ={x €0 |z € SEy(2) x {1}, epi-di < e} U{x € O | 2 € SEyg(2) x {1},
eri-n < —efU{z €0 [a; € SEg(2) x {1}, ||di|| <€},
4) Switching from hover-left to forward-left,
Bz4 = {.T c O | x; € SEQ(Q) X {2}, Cx,i* dl Z €, €ri- N Z 0, ||dz|| Z E}
5) Switching from forward-right to hover-right,
Bl ={r €0 |x; € SEy(2) x {3}, epi-di < e} U{x € O | x; € SEyg(2) x {3},
eri-n < —e}U{z €0 [a; € SEg(2) x {3}, ||di|| <€},
6) Switching from hover-right to forward-right.
Bl ={z €0 |z € SEQ(2) x {4}, ey, - d; > €, e,;,-n >0, ||d;|| > €}
The entire system can be in a jumping configuration if any cgl@ole can jump. Therefore,

n 6
B=JJB. (15)

i=1j=1
With the switching domain defined, we preser:t the jump @apet g/ (z), . . ., g’ (x) be the maps
for an individual vehicle. These maps arg; (v) = (pi— ey, 6, 3), g7 (x) = (it ey, 03, 1),
g@(z) = (pi, 0;,2), g}(x) = (pi,0;,1), g?(x) = (p;,0;,4), ¢%(x) = (ps, 0:,3). We combine the
above functions for each vehicle and obtéifz) = {(a’;l, o gF(@), .1, |2 € U?Zl Bf}
The complete set-valued jump map is then

G(z) = _U Gi(z). (16)

Proposition 6.2: The flow domain and map!, F' and the jump domain and map, G de-
scribed in (13)—(16) satisfy the basic conditions.
The proof of this proposition is similar to that of Propositi5.3.
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C. Convergence

We now apply the hybrid LaSalle principle of [12].

Theorem 6.3:Let &/ = O. Given the hybrid system described in equations (13)—(1@) w
virtual center dynamics (5), any precompact trajectofty j), with rge = € U, will approach the
set of points

M={ze€O||C;—pl <€ Vie{l,...,n}}. a7)

Proof: We choose to analyze the system using the cost funéioh, V) from (1) with P

being the locations the virtual centers. It can be shown thas locally Lipschitz onO [9].

0;
Forallz € A,uq = LpH. Itcan be seenthatp,H = >, 2My, (pi_ci)T(l T ;_m) o

sin 92
When an agent is in a hovering mod€, A}, w; = +w,, and the virtual center remains stationary,

thereforeH = 0. When an agent is in forward mode, we hale= >"" | 2My; (1 F 24) (p; —

T

cos b; . )
c)t . Additionally, (p; — C;) - (cos 0;, sin 92‘) = —d-e,; = —cosqa;. Thus,’H =
sin 92-
S —2My; (1F 22) cos o . A vehicle can only be in forward modedf; € (—Z,%), see (13).

Thereforecos a; € [0,1) and 2% € (—1,1) and’® < 0 for all = € A, and the inequality is strict
if there is at least one vehicle in forward motion.

Since G is set-valuedug(r) = max,+cq@ {H(z") — H(x)}. The cost function (1), does
not have any dependence gnor 6;. Thus,H changes only if virtual center positions change.
However, when an agent switches fradm= 1 to /; = 3 or vice-versa, lemma 6.1 insures
that the difference(P, V) — H(P,V) < —f3. Therefore, for all discrete jumps with € B,
up(r) = maxg+eqm {H(@™) — H(z)} <0.

All conditions of the hybrid LaSalle invariance principlaJe been satisfied. The precompact

trajectoriesr will approach the largest weakly invariant set in

n

MAzuah

i=1

B u-u )

i=1

L=Vr)nun <u;11(0) U u;(O)) — V()N U

for somer € H(U). Note thatH~!(r) represents some level set of the cost function (1). Thus, we
confine our search for the largest weakly invariant sek.t®e now check for weakly invariant
trajectories. We do this by assuming that one vehicle is iniécking state, and show that it

must switch to a flowing state, and remain there for a non-aemount of time. Then we show
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that the only flowing state which remains in a level set fortafle is the hovering state with
lpi — Cs|| <eforallie{l,... n}

Suppose there exists a trajectaryt, j) with H(z) = r for all (¢,5) € R>o x N such that
Z(to, jo) € B. This implies that there exist$ andk* such thati(ty, jo) € BE . We confine our
analysis to the cases wheié,, jo) € (B3U---UB?). Letz™ denote the state thatt,, j;) jumps
to. The following transitions are possible: (k) B} — it € A%, (2)7 € B} — T € Al UB},
B)zeB)— it €A}, (d) i€ B— 1t e APU B2

We note that for the jumps that could result with € B! U B? (cases 2 and 4), the system
must jump again, but this jump decreases the cost functioatier words, these jumps take the
system outside of the sét The remaining possibilities result witli™ € A;. The only possible
trajectories that remain in the sétare those that jump to flowing states, € A. Specifically,
xt e A2U A} for alli € {1,...,n}. Now we examine this case to arrive at the final result.

Suppose that there exists a trajectaty, j) with H(z) = r for all (¢,j) € R>q x N. such
that Z(to,jo) € A? U A} for all © € {1,...,n}. An agent inA? (resp. A}) can only jump
to forward motion by being inB} (resp.B?). Since all agents are rotating about their virtual
centers, the locations of the centroids,for all i € {1,...,n}, remains fixed. This implies that
d;, i € {1,...,n}, also remain fixed. If there exists one ageéhtsuch that||d;:|| > &, then a
jump eventually occurs since all vehicles rotate about thieiual centers with constant angular
velocity. The system configuration will b€, jo) € B (resp.i(t1, jo) € BY) for somet; > .
The resulting jump necessarily resultsiin € A} U A3, and the trajectoryt leaves the level set
H(z) =r.

Thus, the only weakly invariant set ih is exactly that of (17). [ |

VII. SIMULATIONS

We simulaten = 8 unicycles inQ c R?* = [0,10] x [0,10]. The density functiong, is
composed of 3 Gaussian distributiopg;) = 0.05 + 3 R +6_M +e‘”q—"3”2] , Where
r = (8,2), ro = (8,4) andrs = (3,7). The agent positions and orientations were randomly
distributed in the bottom left cornel, = 1 for all : € {1,...,n}. We chose the control gains to
be ky, = 5 andk,, = sat ||C; — p;||. Note that any positivé,, andk,, will work. Figure 3 shows
that the wheeled vehicles with variable forward velocityiddact converge to near-centroidal

configurations. We present the case where vehicles havedaftireard velocity in Figure 4.
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Mg

Fig. 3. Wheeled vehicle deployment simulation. The agetag & the lower left corner, denoted by the ‘0’. Path lings a

shown in the left figure, and final positions and orientationghe right figure.

Fig. 4. Fixed forward velocity deployment simulation. Trgeats start in the lower left corner and path lines are shawthe

left figure with final positions and orientations shown in tight figure. Virtual center locations are denoted by the, sta
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IX. APPENDIX: PROOF OFPROPOSITIONS.3

Here we show that the hybrid system defined in (6)—(9) satib® basic conditions of
Assumption 4.4.
Proof: By construction0 is an open set, so basic condition (i) is true. In additioched,
k ={1,2,3}, is closed sincé) is a closed set, and the inequalities are continuous andctlds
is then relatively closed i® since 4; is the union of three closed sets, aAds the intersection
of all A; for i € {1,...,n}. For similar reasons, the séi; for each: € {1,...,n} is closed
and this implies tha3 is relatively closed since it is a finite union &f; for i € {1,...,n}.

Thus, basic condition (ii) is true.
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We now check basic condition (iii). The flow map can map to a single point or to the
empty set, both of which are convex. In additiaf,is locally bounded becausg!, F?, F?,

i €{1,...,n} are bounded oveR*" given thatk, andk,, are bounded.

Outer semicontinuity of” part 1,z € A: It is important to note that each;, i € {1,...,n}
is the disjoint union,A} U A? U A?. Supposer € A} for all i € {1,...,n}, the other cases
wherex is in one of A?, A? are analogous. Consider now the convergent sequenges x
andy; ., — y; with y; ,,, = F*(z,,) for all 4.

(1) Suppose there exists an such thatz,, € A} for all m > M. By continuity of F}!,

F!(z,,) converges taF}!(x). By unicity of limits, we have thay; = F!(x) for all 7.

(2) Suppose that for all/ > 0 there existsn; > M such thatz,,, ¢ A}. Note that{z,,, } C
{x,,}. This implies thatr,,, € A? U A? U (O \ A4;). We can assume that,, are all in
one of these sets without loss of generality.

a) Letx,, € A? for all k. Since A? is closed, the limit ofz,,, is in A%, This implies
r € A?, a contradiction.

b) Letz,, € A? for all k. We will reach a similar contradiction.

c) Letz,,, € (O \ A) for all k. Theny,,, = F(z,,,) = 0 for all k. Since the empty
set is closedy,,, — y € (. Note that() C F(z;) and the result follows.

Outer semicontinuity of” part 2,z ¢ A: If = ¢ A, then F(z) = (). Suppose also that there
exists convergent sequences — x andy,, — y such thaty,, = F(x,,) for all m.

1) Assume that,, ¢ A for all m > M. ThenF(z,,) = 0 andy,, = 0 for all m > M. Since

0 is closed,y,, — y € 0.

2) Suppose there exists an infinite subsequdnge } C {z,,} with z,,, € A for all k. Since
A is closed,z,,, — = € A, a contradiction.

Finally, we prove basic condition (iv). The map is strictly set-valued since a particulay

can jump to multiple configurations, see (9). To prove localrdedness, consider anc B.
We have to find a neighborhood C O of = such that J,_,, G(z) is bounded. Observe that,

Uc@ = G

zeN i,TEN

— (@1 g5@), . 2a) |5 €N OB}
=1
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Eachg®(x) is clearly locally bounded, so then we can find/a C O of x such that ;.\, G(7)
is a bounded set. Thereforé;, is locally bounded. We now prove outer semicontinuityaf
Suppose there exist two convergent sequenges- + andy,, — y such thaty,, € G(z,,). We
must prove thay € G(x).

Outer semicontinuity of part 1. Suppose that for alk’ > 0 there existsn, > K such that
Ty, ¢ B. ThenG(z,,,) = 0 andy,,, € 0. Since the empty set is closed,, — y € 0, and it
is true thatl) C G(z), for anyx € O.

Outer semicontinuity of7, part 2: Suppose that for all’ > 0 there existsn; > K such that
T, € B. SinceB is closed, this implies,,, — = € B. If z,,,, € B, this implies there exist
fixed iy and k, such thatz,,, € Bfoo for an infinite number ofn,. Without loss of generality
denote{z,, } as{z,,}. Since eachB’ are closed, then,, € BZO andz,, — x € Bﬁf. Now,
Ym = (21, G (Tpm), ..., n) € G(2,). Sinceg,(z,,) is continuousg,?(z,,) — g:°(z). By

unicity of limits, y,, — y € G(x). [ |
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