
De-RANSAC: Decentralized RANSAC for Sensor Networks

E. Montijano, S. Martı́nez, and C. Sagues

Abstract— This paper studies the problem of distributed
consensus in the presence of spurious sensor information. We
propose a new method, De-RANSAC, which allows a multi-agent
system to detect outliers—erroneous measurements or incorrect
hypotheses—when the sensed information is gathered in a
distributed way. The method is an extension of the RANSAC
(RANdom SAmple Consensus) algorithm, which leads to a
consensus result on the goodness of a set of measurements
with certain probability. In order to execute the full process
in a decentralized way, we propose a distributed voting policy
valid for fixed and switching topologies. Simulations of real
applications are provided showing the reliability of the proposed
method.

Index Terms - Robust consensus, distributed algorithms,
sensor networks.

I. INTRODUCTION

Recent advances in communication, computation and con-
trol are leading to a new generation of autonomous systems
that can be capable of complex tasks while interacting over
dynamic networks. To exploit their full potential, much re-
search is being devoted to the development of new algorithms
and methods that can be executed in a decentralized way by
these networks.

Within the control and robotics communities, a canonical
problem that has received much attention is that of achieving
consensus; see e.g. [1] and references therein. Here the goal
is to devise a distributed algorithm that allows a group of
agents to agree upon some specific measurement. Several
algorithms have been proposed in order to achieve this;
however, most of them are not robust to the presence of
outliers in the network. If some of the initial measurements
are wrong; e.g., they include extreme values of sensor noise,
so will be the final consensus value. An example of this kind
of situation could be given by a team of robots exploring and
mapping the environment. Some of the measurements can
be wrong due to sensor failures or wrong data association,
leading to inaccurate final consensus values. In this situation
least squares cannot be used because it does not discard
the wrong data. This paper focuses precisely on this aspect
and aims to find a distributed algorithm that can solve this
problem.

In centralized scenarios, one of the most widely used
algorithms for robust estimation is RANSAC (RANdom

This work was supported by the projects DPI2006-07928, DPI2009-
08126, IST-1-045062-URUS-STP.

E. Montijano and C. Sagues are at DIIS - I3A, University of Zaragoza,
emonti@unizar.es, csagues@unizar.es

S. Martı́nez is at the department of Mechanical and Aerospace Engineer-
ing, Univ. of California, San Diego, soniamd@ucsd.edu

SAmple Consensus) [5]. RANSAC is a non-deterministic
algorithm designed to fit a set of data to a given mathematical
model by selecting inliers from the set. The algorithm
generates different random hypotheses that are voted for by
the whole set of samples. The most voted hypothesis is then
the selected with certain probability. As more hypotheses
are tested by the algorithm, the probability of choosing
a correct one increases. The algorithm has been used in
different applications such as computer vision [7] or robot
navigation [3]. In the last few years, new variations to the
basic algorithm have been presented in [2], [10], aiming
to reduce computational time or to improve the algorithm
effectiveness. However, none of these algorithms are imple-
mentable in a distributed way over a sensor network. The
closest approach to a distributed scenario can be found in
[17]. In this case the information to be fitted is separated
in several non-overlapping subsets and the hypotheses are
generated choosing data from them. However, the whole
process is still centralized.

Different approaches have been proposed to cope with
noisy information in distributed consensus algorithms. For
instance, [16] considers a stochastic model to deal with the
uncertainty of the measurements. Here, the authors prove
convergence to the least-mean-square deviation value using
a distributed iteration rule. In [13] stochastic link failures are
considered and convergence is defined in terms of the vari-
ance deviation. These works are focused on the optimal mix
of the measures minimizing the error but do not consider the
situations in which some of the measurements are spurious
and must be discarded in the fusion.

Other works consider the case in which one or more
nodes of the network are faulty or malicious. In [6], different
“motion probes” to detect malicious nodes are proposed.
Specifically the motion probes detect static and divergent
nodes and suggest possible techniques to recover from the
influence of these agents once they have been detected. A
more general approach is considered in [14] for a fixed graph.
In this case, the malicious agent is able to update its value
in an arbitrary manner. The paper shows that if the number
of malicious agents is less than half the connectivity of the
network, which is the maximum number of different paths
that connect any two nodes of the network, it is possible
to detect the malicious agents and compute the desired
consensus function using the right initial values [15]. In [12]
this bound is improved, increasing the number of possible
malicious agents to the connectivity of the network minus
one. The situation we consider here is somewhat different.
We assume that all the nodes in the network are cooperative,

however, some of them have spurious information and there
is no knowledge about which nodes are outliers.

Our contribution is a new robust distributed consensus
method, De-RANSAC, in which the outlier nodes are identi-
fied. The present approach is an extension of RANSAC to a
distributed setup. The agents reach an agreement about the
information they have, which can be a non-linear function
computed from the individual information that each agent
has. It is worth noticing that just sharing all the information
over the network and applying the classic RANSAC can
make each node reach different final solutions due to the
non-deterministic component of the algorithm. De-RANSAC,
explained in detail in section III, solves this problem and
can be divided in two steps. First, each node shares its local
information with its neighbors and generates a number ki

of different hypotheses to be evaluated. The total number
of hypotheses is proved to be enough to achieve the same
levels of reliability as in the centralized case. In the second
step, all the hypotheses are voted for in a distributed way,
so that each node can determine which model fits most
of the information and therefore, whether it is an inlier or
not. Several simulations, presented in section IV, show the
reliability and the applications of our proposal.

II. PRELIMINARY CONCEPTS

Here, we briefly introduce the classic RANSAC algorithm
and pose its extension to a distributed scenario. We also
introduce some notation and definitions used in the sequel.

The RANSAC algorithm was proposed in [5] to estimate
the parameters of a model that can be used to explain
sampled data. In particular, this data set can be contaminated
from a large set of outliers. An outlier is a datum that lies
outside a pattern of a distribution; this is in opposition to an
inlier, which is considered to be truthful information [9]. If
the pattern is described by a mathematical model, then an
error threshold can be used to quantify acceptable deviations
and outliers with respect to the model.

More precisely, assume that we have a set of mathematical
models H which are instantiated by specifying different
parameter values. Let S be a set of samples. Then, given
a threshold τ > 0, and an error function e : S ×H → R≥0,
we say that s ∈ S is an outlier with respect to h ∈ H if
e(s, h) > τ ; otherwise it is an inlier with respect to h ∈ H.

Suppose that at least c samples are required in order to
determine a possible model. A model is considered to be
good if it is generated by c truthful samples. Instead of trying
all the possible combinations to generate models, RANSAC
generates a subset of the models and chooses one based on
a voting system. The algorithm follows the next steps:

1) Consider a set of putative samples S with |S| = n > c.
2) Choose K > 0 and determine H` ⊂ S with |H`| = c,

for all ` = 1, . . . ,K.
3) For each H`, find a model h` ∈ H that best fits the

samples in H`. For example, one can use the least
squares procedure:

h` ∈ arg min
h∈H

∑
s`∈H`

dist(s`, h)2.

Here, dist(s`, h)2 is a positive number quantifying the
(squared) distance between the sample point s` and an
associated datum generated by h ∈ H.

4) Rank the models h`, ` = 1, . . . ,K, according to how
well they fit all of the samples in S. This is done
through a “voting process” of the s ∈ S onto the h`,
for all ` = 1, . . . ,K. In other words, given a threshold
value τ > 0, a vote is generated as:

vote(s, h`) =

{
1, e(s, h`) ≤ τ,
0, e(s, h`) > τ.

(1)

5) Choose the most voted model,

h∗ = arg max
`=1,...,K

(
∑
s∈S

vote(s, h`)) (2)

6) Given the subset of inliers for h∗; i.e., Ih∗ = {s ∈
S | e(s, h∗) ≤ τ}, determine a better fit from H. This
can be done by least squares:

h∗∗ = arg min
h∈H

∑
s∈Ih∗

dist(s, h)2. (3)

RANSAC uses a stochastic approach to decide the number
of hypothetical sample subsets, H`, (also called hypotheses)
to be evaluated. If the probability that a sample s is an
inlier to the true model is w, then the probability of one
hypothesis to be composed only by inliers is wc. Therefore,
the probability that one hypothesis contains at least one
outlier is 1 − wc. Then, the number of hypotheses, K,
required to have a probability P that one of them is made
all by inliers is:

K =
log(1− P)

log(1− wc)
. (4)

When the algorithm is run by a central unit that has access
to the all the sensor data, the hypotheses can be assumed to
have the same probability of being chosen. This is no longer
reasonable for nodes in a sensor network that try to run a
similar algorithm with access only to local samples.

In the sequel, we will consider a network with undirected
communications formed by N agents labeled by i ∈ V =
{1, . . . , N}, N > c ≥ 2. Each node i produces a sample si,
i ∈ V . Communications among agents are defined according
to a graph G = {V, E}, where E ⊂ V × V represents the
edge set. In this way, nodes i and j can communicate if
and only if (i, j) ∈ E . The neighbors of a node i are the
sets of nodes that can directly communicate with the node
i, Ni = {j ∈ V \ (i, j) ∈ E} ∪ {i}. Although node i does
not explicitly communicate with itself, we will consider that
i ∈ Ni because it has access to the information measured by
its sensor. Considering this, the maximum number of possible
edges of G is |Emax| = (N)(N−1)

2 . The density of the graph,
δ, is defined to be δ = |E|

|Emax| ≤ 1, where |E| is the actual
number of edges in the graph.

Assumption 2.1: G is connected. Therefore |E| ≥ N − 1
and δ ≥ 2

N−2 .
We will denote N in

i and N out
i as the set of neighbors with

inlier and outlier information respectively. Obviously Ni =
N in

i ∪N out
i .

III. DE-RANSAC ALGORITHM

This section describes our proposed algorithm. In a first
phase, the random hypotheses are generated in a distributed
way. The second phase deals with the problem of voting the
generated hypotheses by all the nodes in the network.

A. Generation of the hypotheses

The first issue to address is how to create the hypotheses
over the network so that the probability of having one
hypothesis made all by inliers is the same as in the cen-
tralized case. The required number of hypotheses to have
a probability of success equal to P is the same as in the
centralized case, eq. (4). However, each node has access to
the information gathered by itself and its neighbors, and then
their hypotheses are limited to combinations of that set.

Since the information available to every node is limited
to its neighbors, the topology of the network will play
a fundamental role in De-RANSAC. One sensor producing
spurious measurements and connected to others in a critical
way can make the whole set of hypotheses to have outliers
in their composition. For example, consider the family of
spanning tress in which the root of the tree has up to c− 1
sons and every other node has a number of neighbors less
than or equal to c − 2. The only nodes that are able to
generate hypotheses in this situation are the root and its
sons. Let us notice that all the hypotheses will contain the
sample provided by the root. If this sample is the spurious
element, none of the hypotheses will be free of outliers and
the algorithm will fail. On the other hand if ∃i ∈ V such that
|N in

i | ≥ c and |N out
i | = 0 then De-RANSAC will generate

one good combination with probability 1 independently of
the configuration of the rest of the nodes.

The following lemma gives a restriction on the topology
of the network so that the distributed sampling can work.

Lemma 3.1: If a graph G is able to generate a hypothesis
made all by inliers then

∃ i ∈ V 3 |N in
i | ≥ c.

Proof. Let us assume that |N in
i | < c ∀i. Let Hi ⊆ H be

the set of hypotheses that the node i can create. It is true that
∀h ∈ Hi ∃ sj ∈ Ni such that sj ∈ N out

i , and therefore, none
of the hypotheses generated by the node i will be composed
all by inliers. Since this holds for all i the method will not
be able to create any good combination.
Let us note that if one node is able to generate one
combination made by inliers then the algorithm is able to
generate one combination made by inliers. However, due
to its stochastic component, this does not mean that the
algorithm is always going to generate such combination,
as happens in the centralized version. From now on it is
assumed that lemma 3.1 holds so that the probability of
generating at least one combination made all by inliers does
not vanish.

The restriction could be lifted up by allowing the nodes to
exchange more messages in this first stage. Using a flooding
algorithm during t steps, t ∈ 1, . . . ,Diam(G), the nodes
would receive more samples acquired by farther nodes at

each time step until t = Diam(G). At that point all the agents
in the network would have access to all the samples, being
able to generate the hypotheses as in the centralized case.
However, due to the random component of the algorithm,
the hypotheses generated by each node would be different
and so would be the final result achieved by each node. Since
the nodes will also require to share the hypotheses with the
whole network in order to vote them, we have decided to
limit the number of messages in this stage in order to reduce
the communications.

Each node i must generate a set Hi, with |Hi| = ki

different hypotheses in such a way that
∑

i ki ≥ K. The
maximum number of hypotheses that one node can generate
is
(|Ni|

c

)
. It is clear that nodes with less than c neighbors

will not be able to generate any hypothesis. The following
assumption is made:

Assumption 3.1: The number of possible hypotheses that
the network can generate is greater than K, that is∑

i∈V

(|Ni|
c

)
> K.

The assumption guarantees that it is possible to generate at
least K hypotheses. However, the previous sum can be much
larger than K. We propose a better distribution of ki that still
ensures K or more hypotheses. It is assumed that agents
know the total number of nodes in the network, N, and have
some estimation of the graph density, 2

N ≤ δ̂ ≤ 1. A node
can then estimate its number of neighbors as:

Ê[N] = 1 +
2δ̂

N
|Emax| = 1 + (N − 1)δ̂, (5)

where the additional neighbor comes from the assumption
that i ∈ Ni. If all the nodes had the same number of
neighbors it would make sense that ki = K

N , ∀i. Since this is
not easily verifiable and will not hold in most situations, an
alternative number of hypotheses for each node is proposed:

ki =

⌈
K|Ni|
c Ê[N]

⌉
, if

⌈
K|Ni|
c Ê[N]

⌉
≤

(
|Ni|
c

)
,

0, otherwise,

(6)

where d · e is the closest upper integer.
Let V1 ⊂ V be the set of nodes that generate hypotheses;

that is, i ∈ V1 if and only if ki > 0 using rule (6). Then, we
have:

Proposition 3.1: A sufficient condition for having K̄ ≥
K hypotheses using (6) is that there are Ê[N] nodes in the
network with α = min(N, c c−1

√
K

Ê[N]
+ 1) neighbors each.

Proof. The total number of hypotheses generated by the
network is

K̄ =
∑
i∈V1

ki =
∑
i∈V1

⌈
K|Ni|
c Ê[N]

⌉
≥ K

cÊ[N]

∑
i∈V1

|Ni|.

Any node belonging to V1 will have at least c neighbors,
therefore

K̄ ≥ |V1|
K

Ê[N]
, (7)

which is greater than K if |V1| ≥ Ê[N].

With respect to the number of neighbors required to
generate hypotheses, taking into account again that |Ni| ≥ c
then ⌈

K|Ni|
c Ê[N]

⌉
≤ K|Ni|
c Ê[N]

+ 1 ≤ K|Ni|
c Ê[N]

+
|Ni|
c
. (8)

The combinatoric number can be lower bounded by(
|Ni|
c

)
=
|Ni|
c

c−1∏
k=1

|Ni| − k
c− k ≥

(
|Ni|
c

)c

. (9)

The bound comes from the property that (|Ni| − k)c ≥ (c−
k)|Ni|, ∀ 1 ≤ k ≤ c − 1. From (8) and (9) a sufficient
condition in the number of neighbors to belong to V1 is

|Ni| ≥ c c−1

√
K

Ê[N]
+ 1 = α. (10)

Combining the sufficient conditions in (7) and (10) we
obtain the sufficient condition for rule (6) to generate more
than K hypotheses.

Since |Ni| and |V1| are integers but α and ˆE[N] are reals
we also take the closest upper integers, which also satisfy
the bounds in (7) and (10).

An additional problem to be analyzed in the distributed
scenario with respect to the centralized one is the appearance
of repeated hypotheses in different nodes. Since the nodes
do not know the hypotheses created by other nodes, it is
possible that two nodes generate equal hypotheses. A way
to overcome this is to generate additional hypotheses to keep
the probability of having a good one similar to the probability
in the centralized case.

From now on, we will assume that every edge in the graph
can exist with equal probability; thus, every combination
can be made by any node. This kind of random graphs
were proposed by Erdos and Renyi [4]. Considering this,
the problem of computing repeated hypotheses generated by
different nodes is a problem of counting of Pólya. There
is a set of

(
N
c

)
labeled combinations and each node chooses

randomly ki combinations from the set. Although the number
of hypotheses generated is K̄, in order to keep the process
decentralized the nodes assume that the total number of
hypotheses is K. The probability of repeating one of the
K − ki combinations chosen by the rest of the nodes is
equal to

pr =
K − ki(

N
c

) ,

and therefore, the probability of creating a new different
combination is 1− pr.

It is assumed that each node is able to pick the combina-
tions in such a way that all of them are different but may
be equal to the combinations generated by other nodes. The
probability of having at least ki new combinations after node
i creates xi combinations is

C(xi, ki, pr) =

xi−ki∑
m=0

(
xi

m

)
(1− pr)xi−mpm

r . (11)

The probability desired for a node to create ki hypotheses
different to the hypotheses generated by the rest of nodes is
denoted as Pdif . Given this probability, the final number of
hypotheses created by the node must satisfy

C(xi, ki, pr) ≥ Pdif . (12)

Since it is not possible to obtain the exact analytic solution
for (12), an approximated bound is found.

Theorem 3.1: Consider ki > 1 and the probabilities pr

and Pdif , defined above. Taking

xi ≥ e−(a+1)+
√

(a+1)2+2(b−1), (13)

with
a =

ki

log pr
and b =

log(1− Pdif)

log pr
+ ki − 1, (14)

(12) is satisfied.
Proof. Using the binomial theorem for 1 = ((1−pr)+pr)xi

we can rewrite (11) as

C(xi, ki, pr) =

xi−ki∑
m=0

(
xi

m

)
(1− pr)xi−mpm

r

= 1−
xi∑

m=xi−ki+1

(
xi

m

)
(1− pr)xi−mpm

r .

Changing the indices in the sum, we obtain

C(xi, ki, pr) = 1−
ki−1∑
m=0

(
xi

m

)
(1− pr)mpxi−m

r ,

and then (12) can be stated as
ki−1∑
m=0

(
xi

m

)
(1− pr)mpxi−m

r ≤ 1− Pdif . (15)

The left-hand side of the above equation can be rewritten as:
ki−1∑
m=0

(
xi

m

)
(1− pr)mpxi−m

r =

xi!pxi−ki+1
r

(ki − 1)!

ki−1∑
m=0

(ki − 1−m)!
(xi −m)!

(
ki − 1
m

)
(1− pr)mpki−1−m

r .

The expression is upper bounded considering the maximum
of (ki − 1 −m)!, attained by m = 0, and the minimum of
(xi−m)!, by m = ki− 1. Both factors are taken out of the
sum and the binomial theorem is used again

ki−1∑
m=0

(
xi

m

)
(1− pr)mpxi−m

r < pxi−ki+1
r

xi!
(xi − ki + 1)!

.

The quotient can be upper bounded by xk
i , yielding

pxi−ki+1
r

xi!
(xi − ki + 1)!

< pxi−ki+1
r xki

i .

We can guarantee that (15) holds if the following is true:

pxi−ki+1
r xki

i ≤ 1− Pdif

Taking logarithms at both sides of the above equation lead
to:

(xi − ki + 1) log(pr) + ki log(xi) ≤ log(1− Pdif),

and, after some computations, the following inequality is
obtained

xi + a log(xi)− b ≥ 0, (16)

with a < 0 and b > 0 as in eq. (14). The change of variable
xi = ec is then applied

ec + ac− b =
∞∑

m=0

cm

m!
+ ac− b >

2∑
m=0

cm

m!
+ ac− b.

By setting the right-hand side of the above equation greater
or equal to zero, we obtain the inequality:

c2 + 2(a+ 1)c+ 2(1− b) ≥ 0.

Since the coefficient of c2 is positive, the previous inequality
is true in the interval (−∞, c1]∪ [c2.∞), with c1 and c2 the
roots of the polynomial. The smallest root of the polynomial
is negative for ki ≥ 2. Because of that, we take the positive
root of the polynomial:

c2 = −(a+ 1) +
√

(a+ 1)2 + 2(b− 1),

By taking xi ≥ ec2 we guarantee the result for all ki.
Although this is a valid bound, it can be overly conservative.
A more precise bound to determine the minimum xi can be
found by using; e.g. the Newton’s method. To do this, we will
employ (16), which is continuous and differentiable, instead
of (11), which is discrete. Let f(x) = x + a log(x) − b be
the function defined in (16). A classical result on the global
convergence on an interval I of the Newton’s method [11]
states that if{

f ′(xi) = 1 + a
xi
6= 0 for all xi ∈ I,

sign(f ′′(xi)) = sign(−a/x2
i) constant for all xi ∈ I,

(17)

then the method converges for any xi(0) ∈ I such that
f(xi(0))f ′′(xi(0)) ≥ 0. Eq. (17) are satisfied for all xi > −a
and therefore the method is convergent to the root of f(x).
New approximations of the solution are computed using

xi(n+ 1) = xi(n)− f(xi(n))

f ′(xi(n))
, (18)

where the initial term xi(0) can be the one in (13). Let us
notice that the first derivative of f is close to a constant
for large values of xi. This means that f behaves like a line
when xi is large, and therefore, convergence will be obtained
in few steps.

B. Voting the hypotheses

With all the hypotheses created, the nodes must then vote
for them in order to decide which one is the best one.
This means that the hypotheses must be transmitted over
the network so that every node receives them. We propose
a general procedure to vote the samples on a switching
topology network. The algorithm is based on a distributed
average consensus technique.

Let HG =
⋃

i∈V Hi, |HG | = K̄ be total set of hypotheses
generated by the network. Before starting to vote, the nodes
share all the hypotheses with all the other nodes [8]. With all
the hypotheses available a distributed average consensus is

used to decide the most voted one. Assumption 2.1 is relaxed
to:

Assumption 3.2: There exists a positive integer T such
that, for any instant of time t ≥ 0, the graph G(V, E(t) ∪
E(t+ 1) ∪ . . . ∪ E(t+ T)) is connected.
Instead of reaching the average of the measurements, the
agreement is performed with respect to the number of
votes of the different hypotheses. Every node creates two
state vectors vi(t) ∈ NK̄ , which counts the number of
votes that each hypothesis has, and γi(t) ∈ RK̄ , used
for the averaging. An important aspect to consider is how
the hypotheses are sorted in the vector so that for all the
nodes the lth component of vi and γi, denoted as vil and
γil respectively, corresponds to the same hypothesis for all
i ∈ V. Since the hypotheses are instantiated by a set of
different parameters, these parameters can be used to define
a global order function, o : HG → {1, . . . , K̄}, among the
set of hypotheses.

At the beginning, for every l = 1, . . . , K̄, the lth compo-
nent of γi, is initialized as

γil(0) =

{
1, e(si, h`) ≤ τ,
0, e(si, h`) > τ,

(19)

where hl = {h ∈ HG | o(h) = l} and τ > 0 a given
threshold. The voting vectors are initialized by multiplying
by N the averaging vectors, vi(0) = Nγi(0).

After that the nodes exchange messages averaging the
values of the γi. The local updating rule, executed syn-
chronously by every node, is

vi(t+ 1) = arg min
v∈NK̄

||v−Nγi(t)||2, (20)

γi(t+ 1) = γi(t) +
∑

j∈Ni

aij(t)(γj(t)− γi(t)), (21)

where A(t) = {aij(t)} are the weighted matrices, which
have the property of being doubly stochastic.

Theorem 3.2: The iteration rule in (20) converges to the
number of votes of each hypothesis in finite time, that is

∃t0 > 0 3 ∀t > t0, vi(t) = vi(t0) = v∗, ∀i ∈ V
Proof. For any l = 1, . . . , K̄, γil has initial values equal to
0 or 1; hence∑

i=1,...,N

γil(0) ∈ {0, . . . , N}, ∀l = 1, . . . , K̄. (22)

Taking into account that the A(t) are doubly stochastic
and assumption 3.2 we know that (21) will asymptotically
converge to the average of the initial values for all the nodes,

γi(t) =
1

N

∑
j∈V

γj(t) = γ̄, as t→∞ ∀i ∈ V. (23)

We refer the reader to [1] for a proof of this convergence.
The asymptotic convergence allows us to find t0 such that

∃ ε > 0 3 ∀t > t0 ‖γ̄ − γi(t)||2 < ε, ∀i ∈ V.

Considering (22) and (23), the set of possible consensus
values of each component of γ̄ is {0, 1

N ,
2
N , .., 1}, which

is finite. Let us note that N γ̄ represents the total number of

Fig. 1. Graph used for the robust average simulations.

votes that the hypotheses have. By choosing ε < 1
2N we see

that for any t > t0

||γ̄ − γi(t)||2 <
1

2N
⇒

||N γ̄ −Nγi(t)||2 <
1

2
⇒

||N γ̄ −Nγi(t)||2 < ||v−Nγi(t)||2, ∀v ∈ NK̄ \N γ̄,

and therefore N γ̄ = arg minv∈NK̄ ||v−Nγi(t)||2 = vi(t+
1),∀t > t0, and i ∈ V. In other words, the iteration rule in
(20) converges to v∗ = N γ̄,∀t > t0, and i ∈ V.
After the iteration, the largest value of the vector vi will
correspond to the hypothesis with the most number of votes.
Since the hypotheses are sorted in the vector, if there exists
a tie between two or more hypotheses every node will keep
the one with the smallest index,

l∗ = min (arg max
l=1,...,K̄

vil)

h∗ = {h ∈ HG | o(h) = l∗} (24)

The De-RANSAC algorithm is summarized in Algorithm 1.

IV. APPLICATIONS OF DE-RANSAC

The De-RANSAC method can be used in different sce-
narios. We present here some possible applications of the
algorithm.

A. Robust Average Consensus

Let us consider a network like the one in Fig. 1. The
network is composed by N = 40 nodes, each one with a
different measurement of some magnitude (whose real value
in the example is 5). All the nodes have some noise in their
measurements, some of them small (inliers) and some of
them very large (outliers). The network intends to compute
a robust average of the measurements. Several experiments,
two of which are reported, have been done with different
probabilities of having a small error; in the first case w is
set to 0.8 and in the second w = 0.3. The values of the
nodes for the first case are collected in the Table I where
we have marked in red the 8 spurious measurements. In a
similar way, measurements for the second experiment are
in Table II. The probabilities to decide the total number
of hypotheses, eqs. (4) and (12), have been both set to
P = Pdif = 0.99. The threshold for voting one hypothesis,
τ, has been set to 0.5. The results of the two simulations
are shown in Table III. The Avrg column shows the average

Algorithm 1 De-RANSAC scheme - Agent i

Require: N, c, w, P, Pdif , δ̂, τ, o, e and synchronicity
Ensure: h∗ is the most voted hypothesis and equal ∀i ∈ V

1: Compute K = log(1−P)
log(1−wc)

2: Receive the samples sj for j ∈ Ni

3: Compute Ê[N] = 1 + (N − 1)δ̂, and

ki =

⌈
K|Ni|
c Ê[N]

⌉
, if

⌈
K|Ni|
c Ê[N]

⌉
≤

(
|Ni|
c

)
,

0, otherwise,

4: Initialize xi(0) = e−(a+1)+
√

(a+1)2+2(b−1) with

a =
ki

log pr
, b =

log(1− Pdif)
log pr

+ ki − 1

and pr = K−ki

(N
c)

5: Compute a better bound of xi by

xi(n+ 1) = xi(n)− f(xi(n))
f ′(xi(n))

,

6: Share the hypotheses with the network [8]
7: Initialize vi and γi,

γil(0) =

{
1, e(si, h`) ≤ τ,
0, e(si, h`) > τ,

and vil(0) = Nγil(0),

l = 1 . . . , K̄ and hl = {h ∈ HG | o(h) = l}
8: Decentralized voting{

vi(t+ 1) = arg minv∈NK̄ ||v−Nγi(t)||2,

γi(t+ 1) = γi(t) +
∑

j∈Ni
aij(t)(γj(t)− γi(t)),

9: Select h∗ {
l∗ = min (arg maxl=1,...,K̄ vil),

h∗ = {h ∈ HG | o(h) = l∗}

of the information provided by all the nodes, which has
in both cases a large error caused by the measurements of
the outliers. Robust Avrg represents the value of the most
voted hypotheses. Let us notice that in both cases the error
is smaller than the tolerance fixed. K cent is the number
of hypotheses required for the algorithm in the centralized
case whereas K dist is the number of hypotheses generated
in the distributed scenario. In both cases the decentralized
algorithm generates enough hypotheses and all the outliers
have been identified.

B. Analysis of the number of hypotheses

It is also interesting to analyze how the generation of
the hypotheses works in the distributed scenario. Choosing

ˆE[N] = 34 it holds that there are 34 agents with α =
5 ≤ |Ni|, and therefore, the number of hypotheses will be
bigger than K. Table IV shows some results in this regard.
Max ki shows the maximum ki among the nodes, Sum ki

represents the total number of hypotheses generated using

TABLE I
VALUES OF THE NODES CASE 1 (w = 0.8. OUTLIERS IN RED)

Values
8.75 9.01 4.95 4.96 5.10 5.12 5.11 4.91
4.91 9.00 9.90 5.06 5.11 8.60 5.09 5.02
5.09 4.87 4.88 4.87 9.43 4.96 5.04 4.89
5.05 8.98 5.06 5.07 4.95 4.98 5.10 6.25
4.89 4.93 5.12 5.06 4.92 4.99 5.11 4.92

TABLE II
VALUES OF THE NODES CASE 2 (w = 0.3. OUTLIERS IN RED)

Values
5.11 6.17 5.58 9.98 7.47 5.16 9.40 6.15
4.92 6.50 9.30 8.39 8.28 9.36 5.12 8.11
7.72 9.50 4.98 6.85 9.63 8.36 8.47 5.50
7.51 9.72 8.75 6.93 5.00 6.68 8.16 8.98
4.90 5.00 4.97 5.11 4.92 7.50 8.95 7.00

eq. (6) and k̄ is the average number of hypotheses. Max xi

is the maximum number of additional hypotheses created,
Sum xi is the total number of additional hypotheses to avoid
repeated combinations and x̄ is the average. The maximum
number of hypotheses that the graph can generate is 1205,
which is greater than the number of hypotheses generated
with our formula (6). In the first case, since the number of
inliers is high only one hypotheses is required in each node
without additional combinations. The second case requires
many extra hypotheses. Most of the nodes generate all their
possible combinations because the probability of repeating
combinations is higher and δ is small.

C. Formation of robots

Another application of De-RANSAC can be the formation
of teams of robots. Each robot has access to its own position
and the positions of the robots inside its communication
or perception range. The robots must deploy in a specific
configuration; e.g., a circumference. The least squares so-
lution to the problem requires all the robots to know all
the positions of all others. Moreover, depending on these
positions the least squares solution can lead to an impossible
configuration. Each robot generates different hypotheses of
formations using only the information it can measure. After
sharing the models with the rest of the robots in the network
the distributed averaging procedure starts. At each step the
robots move towards the current most voted hypothesis.

TABLE III
RESULTS OF DE-RANSAC

w Avrg Robust Avrg Votes K cent K dist
Case 1 0.8 5.75 4.99 32 5 40
Case 2 0.3 7.15 5.25 13 49 558

TABLE IV
ANALYSIS OF THE GENERATION OF THE HYPOTHESES

Max ki Sum ki k̄ Max xi Sum xi x̄
Case 1 1 40 1 0 0 0
Case 2 8 173 6.92 16 385 15.4

Fig. 2 (a) shows an example of this problem. Ten robots
with limited communications must be uniformly distributed
on a circle. The least squares solution to the initial positions
(black dotted circle) would make the robots collide with
each other. The red-dashed circumference is the most voted
hypothesis by the robots, the green circles represent the
robots that vote the hypothesis whereas the black circles
are the ones that do not vote. A proportional controller has
been implemented that makes each robot moving towards a
position in its current most voted hypothesis. The controller
considers the position of the robot and also the positions of
its neighbors in order to distribute the team uniformly in the
circumference. The final positions of the robots are shown
in Fig. 2 (b). The continuous lines show the trajectories
followed by each robot. Instead of waiting until the whole
voting process is complete, at each step, the robots move
towards the current most voted hypothesis. This motion
generates changes in the topology. Fig. 2 (c) shows the
evolution of the number of votes (bottom) and of γ (top) for
the most voted hypothesis. The number of votes converges
in finite time whereas γ does it asymptotically. Let us notice
that the final value is equal to 7, the same number of robots
that supports the hypothesis.

V. CONCLUSIONS

We have presented a decentralized method, De-RANSAC,
for consensus problems when the initial set of information
contains some outliers. The proposed method is based on
a new distributed approach of the RANSAC algorithm.
Both the hypotheses generation and the voting process are
completely distributed. The method ensures convergence to
the most voted hypothesis in finite time. The number of
generated hypotheses has been proved to be at least the
same as in the centralized case and the additional problem
of repeated combinations has also been taken into account.
With respect to the voting process we have presented a
distributed method based on averaging, valid for switching
topologies and that is proved to reach the final solution
in finite time. The simulations show the reliability of the
method in different distributed applications.

REFERENCES

[1] F. Bullo, J. Cortés, and S. Martı́nez. Distributed Control of Robotic
Networks. June 2008. Manuscript preprint. Electronically available at
http://coordinationbook.info.

[2] O. Chum and J. Matas. Optimal randomized ransac. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 30(8):1–11, 2008.

[3] J. Civera, O. G. Grasa, A. J. Davison, and J. M. M. Montiel. 1-
point RANSAC for EKF-based structure from motion. In International
Conference on Intelligent Robots and Systems, pages 3498–3504, St.
Louis, 2009.

[4] P. Erdos and A. Renyi. On the evolution of random graphs. Publication
of the Mathematical Institute of the Hungarian Academy of Sciences,
pages 17–61, 1960.

[5] M. A. Fischler and R. C. Bolles. Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography. Communications of the ACM, pages 381–395,
1981.

[6] M. Franceschelli, M Egersdedt, and A. Giua. Motion probes for fault
detection and recovery in networked control systems. In American
Control Conference, pages 4358–4363, June 2008.

−10 −5 0 5 10

−10

−5

0

5

10

X(m)

Y
(m

)

Initial positions of the robots

−10 −5 0 5 10

−10

−5

0

5

10

X(m)
Y

(m
)

Motion of the robots

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

Steps

 γ

Evolution of the consensus for γ

0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

Steps

V
ot

es

Evolution of the consensus for the votes

(a) (b) (c)
Fig. 2. De-RANSAC applied to robust formations. A set of 10 robots must move to form a circle. The initial positions of the robots are shown in (a). The
final positions and the motion of the robots are depicted in (b). The red dashed circle is the one with most votes. The small circle is the solution using
least squares with all the positions, which is an impossible configuration to fit the 10 robots. Green circles represent the robots that initially supported
the hypothesis whereas black ones are the ones that did not support it. The evolution of v and γ for the most voted hypothesis is in (c). The values of v
converge in finite time whereas the convergence of γ is asymptotic. Note that the final value of v is 7, the number of robots that voted the hypothesis.

[7] X. Li, Y. Liu, Y. Wang, and D. Yan. Computing homography with
ransac. In Proceedings of the SPIE, pages 109–112, 2005.

[8] N. Lynch. Distributed Algorithms. Morgan Kaufmann publishers,
1997.

[9] D. S. Moore and G. P. McCabe. Introduction to the Practice of
Statistics. New York: W. H. Freeman, 3 edition, 1999.

[10] D. Nister. Preemtive ransac for live structure and motion estimation.
Machine Vision and Application, 16(5):321–329, 2005.

[11] J. M. Ortega and W. C. Rheinboldt. Iterative Solution of Nonlinear
Equations in Several Variables. Classics in Applied Mathematics.
2000. ISBN 0-89871-461-3.

[12] F. Pasqualetti, A. Bicchi, and F. Bullo. On the security of linear
distributed iterations. In 48th IEEE Conference on Decision and
Control, pages 4894–4901, 2009.

[13] S. Patterson, B. Bamieh, and A. El Abbadi. Distributed average

consensus with stochastic communication failures. In 46th IEEE
Conference on Decision and Control, pages 4215–4220, 2007.

[14] S. Sundaram and C. N. Hadjicostis. Distributed function calculation
via linear iterations in the presence of malicious agents - part i:
Attacking the network. In American Control Conference, pages 1350–
1356, June 2008.

[15] S. Sundaram and C. N. Hadjicostis. Distributed function calculation
via linear iterations in the presence of malicious agents - part ii:
Overcoming malicious behavior. In American Control Conference,
pages 1357–1362, June 2008.

[16] L. Xiao, S. Boyd, and S. J. Kim. Distributed average consensus
with least-mean-square deviation. Journal of Parallel and Distributed
Computing, pages 33–46, 2007.

[17] M. Xu and M. Petrou. Distributed RANSAC for 3D Reconstruction.
In Proceedings of the SPIE, pages 1–9, 2008.

