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Abstract— We present conditions under which a general class oscillator from [12]; which is briefly analyzed using the
of multiagent systems subject to noise can reach agreement in tools described. In Section Ill, we present the class of
expected value with probability one. The noise can be induced multiagent systems subject to noise on which we focus
by the fact that each agent takes erroneous measurements . o . .
of neighbors’ positions. The class of systems considered may and introduce a modified version of the K_uramoto 0§C|Ilator
be nonlinear and requires that the diameter of the agents be System as an example. Section IV contains the main results
bounded for all possible error measurements. The convergence of the paper which are then used to analyze the modified

result is related to previous work on the robustness of the Kuramoto system. Section V presents simulations resutts an

rendezvous algorithm and the stability of multiagent systems Section VI includes some concluding remarks.
with periodic connectivity. We illustrate the results in terms of

a modified discrete-time Kuramoto system, which is amended II. NOTATION AND PRELIMINARY DEFINITIONS

to guarantee the system requirements. L . .
g y a A. Preliminaries on geometric notions and graphs

. INTRODUCTION In this subsection, we introduce some notation and pre-

The last years are witnessing an intense research activiigninary concepts employed throughout the paper, see [13]
in the area of cooperative control of multiagent systems arfdr a more information on these.
its applications to multi-vehicle sensor networks; see[d]g In the sequel X will either represent a (convex) subset of
A main driving theme is the characterization of the systeriR¢, for somed > 0. Consider a set of points,,...,p, €
stability and robustness properties under different m®tri X, its convex hull is defined asco(pi,...,pn) =

For example, recent work has been devoted to the analysi&p; + - -- + A,p,| A >0, Y0 A =1} We will use
of multiagent systems under switching graphs [2], [3], [4]tuplesP = (p1,...,p,) € X" to refer to the positions of the
[5], [6], asynchrony and delays [7], [8]. Robustness to @pis multiagent system in space. The algorithms we will consider
and how multiagent behavior is affected by the network sizare synchronous, implemented in discrete time over a time
is also the subject of recent work; e.g. see [9], [10], [4]schedulen = 0,1,2,3, ..., and give rise to point sequences
[11] on the input-to-state stability properties of consens {P,, = (p1,m,---»Pnm) € X" }m>o.
algorithms, and the degradation of formation control gyste A (directed) graphover a finite set of noded” is a
subject to noise. pair G = (V. E), with E = {(i,j)| i,j €V, i#j} C

Motivated by this, we look for general conditions thatV’ xV\diag(V x V). The graph isindirectedwhen(i, j) € E
guarantee a class of discrete-time multiagent systems cdfiand only if (7,7) € E. A proximity graph functionG(P)
verge to an agreement state in expected value with probassociates to a point séfp = {pi1,...,pn} C X an
bility one. For example, the systems can be subject to noisedirected graph with vertex séf and edge sefg(Vp) C
due to agents taking erroneous measurements of neighbovs x Vp \ diag(Ve x Vp). In other words, the edge set
positions. We assume that the possible disturbances belonfga proximity graph may depend on the location of its
to a compact space, and that the expected value of thertices. We will also consider proximity graphs subject
measurements correspond to true position values. The classlink failures, G+(P). These are graphs oR with an
of systems considered here may be non-linear and extesdge set that may also be dependent on the location of the
the class of multiagent systems considered previously. Yertices. However, give(p;, p;) in Gz(P), the reversed edge
restriction that we impose to ensure a technical requiréme(p;, p;) may not be inGz(P). In other wordsG(P) is a
is that the diameter of agents be upper bounded for amjirected graph. We will use these graphs to capture sensing
possible error measurement. We illustrate the resultsimse or communication failures. When elements in the Betre
of a discrete-time Kuramoto system introduced in [12]. Thisndexed by: € {1,...,n} = V, the graphGx(P) can be
system is further modified in order to satisfy the assumgtiorassociated with a grap&f over V' in a natural way. With
of the main result of the paper. Simulations show that cenvea slight abuse of notation, we will sometimes identify these
gence occurs as predicted independently of this restnictio two objects. We denote the set of neighbors of agerih

The paper is organized as follows. In Section Il weGr(P) by:
present some notation, preliminary concepts on graphs, and .
on multiagent systems modeled through set-valued maps. In Ni(Gr) ={j € {L,....n}| (pi,p)) € Eg-(P)},
particular, we revisit a discrete-time version of a Kuramotand the cardinality of\V;(Gr) will be denoted asn; =

; . Given a sequence of gra , we will
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a slight abuse of notation, the sg-(P) will represent the V(p)}. Then there exists a € R such that all evolutions
set of directed graphs over vertices. with initial conditions inWW approach the set/ NV ~1(c).

We recall some concepts from Functional Analysis next. Example 2 (Discrete-time Kuramoto oscillators):
LetF={f:Y — Z} be afamily of functions defined over The Kuramoto system was proposed in [15] to model
metric spacesY,dy ) and(Z,dz). Let || - ||y (resp.||-||z) synchronization in a population of oscillators. Different
denote the associated norm dh(resp. onZ). A sequence conditions for the stability of the system under switching
{fn}n>0 C F converges uniformly tof € F if for all e > graphs have recently been provided [16], [17], [2], [18]. A
0 there is an. > 0 (independently ofy € Y) such that motivation for the study of the Kuramoto oscillators has
Vn > n. we have thatl|f,(y) — f(y)||z < e. The family been the coordination of multiple underwater vehicles [19]
F is uniformly bounded inY if there is a constanf’ > 0 [12]. Since the communication among vehicles occurs
such thatsup, ¢y || f(y)llz < K for all f € F. The family naturally at discrete instants of tim&AT, the following
F is equicontinuous if for ally € Y ande > 0, there exists discrete-time version of the algorithm was proposed in.[12]
ady, > 0 such that||f(yo) — f(y)||z < e for all f € 7 Consider an initial condition6,,...,0,0. For every
andy € Y with ||yo — y||ly < ¢. The theorem of Ascoli- k€ {1,...,n} andm > 0,

Arzela is the Bolzano-Weierstrass analogue for sequerfces o

functions: every equicontinuous famify, },»>o thatis also 6, ,,,,1 = ek,m+K7AT Z sin(6; ;m—0,.,) mod 27,
uniformly bounded, has a uniformly convergent subsequence Niem| +1 i€Nk.m
{Fon} C {Fin)- o W

) ) ) where a particular identification &fas subset oR is chosen;
B. Multiagent dynamics and Kuramoto oscillators i.e. S = [0.,0, + 27), for some origind,, and the sum is

Here we present models of multiagent systems using setrderstood modul@r. Observe that, if the initial conditions
valued maps and an associated convergence result. As an &x-the oscillators satisfy-7 < 6; o — 6,0 < 7 for all 4, j €
ample, we describe a discrete-time Kuramoto multiosaitlat {1, ...,n}, thensin(6; 0 — 6;,0) = Xi;(0)(8i0 — 0;,0), With
taken from [12]. We also point out how to partially prove a0 < A;;(0) < 1. Thus, for any choice of origid.., we have
conjecture from [14] regarding the system convergence. that the system (1) satisfies:

Given P, € X a proximity graphg, and a mapf :

. . . KAT
X" — X", we define a multiagent system evolution as:  0x1 =00+ ————— > Air(0)(0i0 — Ok0)
|Nk70| +1

iGNk,‘o
Pm = f(melyg(mel)) =
(F1(Prnt; N(G(Pr))s -+ Fn (Pt N (G(Prm)) - o [1- WKA|T1 > Aal0)
3 1 :
Observe that local multiagent interactions are introduzgd "o i€Nk.0
the fact thatf;(P,G) = f;(pi,pj..---.pj,.) Wherep;,, | € LK AT S A0,
{1,...,n;} are the neighbors of agenin the graphG(P). Mol +1 R0

. . . . . . 1€NL 0
To capture the possible failures in communication or sepsin

we can employ a set-valued mdp : X™ = X" such that The above linear combination is a convex combination if

T
PmeTf(Pm—l):{f(Pm—lvGHaGgg(Pm—l)}' 0< |.N{(A|+1)\ik:(0) <1, VZ'EN]{’O
k,0
A set-valued mag’y is closed if for any sequenceds;, Q) KAT
such thatQy, € Ty(P,) and Q) — Q, P, — P, we have 0<1- Weo +1 Z Aik(0) < 1.
that@ € T;(P). Itis easy to see that, provided th&tP, G) ’ €Nk 0

is continuous inP for every fixed, the set-valued map This is true provided thaf’AT € [0,2]. In other words
T is closed. A LaSalle invariance principle is available for,. L€ co010sr000) C [0 — 1,0 —;—77) mnd thus. o < ,
multiagent systems as follows; see [13] for more infornmatio 91'71 — 0, S . In this v_vay, the oscillator states remain in

Lemma 1 ([13]):Let T" : X" = X" be a setvalued e gefly, — 7.0, + ) for all ¢, the system (1) is well
map defining a discrete-time multiagent dynamical systeMefined as a system iR and it is not necessary to consider

Assume tha_t: _ N the modulo operation. Observe that if different agents shoo
(i) there is a setiV’ C X" that is strongly positively different coordinates (determined by a different origip,

invariant underT’, in order to implement equation (1), then it holds that, =

(ii) there exists a function” : X" — R that is non- ¢, 4, + ¢, for all m > 0. That is, the evolutions are
increasing along’ on WW. the same except for the origin translation. Without lose of

(iii) all evolutions of the dynamical system with initial generality, we will assume that agents make use of a common
conditions in/ are bounded; and origin in S to implement (1).

(iv) T'is nonempty and closed & and V' is continuous  This system was analyzed in [12] and, under the assump-
onWw. tion of all-to-all communication, it is seen that all agénts

Let M denote the largest weakly positively invariant sestates get aligned fok AT € [0,2] under bounded delays
contained in{p € W|3p’ € T(p) suchthatV(p/) = for almost all initial conditions. The following result she



an application of Lemma 1 and proves a partial conjecturexample, we introduce a modified version of the discrete-
stated in [12]. time Kuramoto system.

Proposition 3: Consider the discrete-time Kuramoto sys- Consider a group of agents, with states denoted By=
tem (1), with KAT € [0,2]. Let 61,....0,0 be an (p1,...,p,) € X", i€ {1,...,n}. Let (Q, F,P) be a com-
initial condition such thatr < 6,0 — 6;0 < = for all pact probability space witkk C R¢ for some integee, and
i,7 € {1,...,n}. Let {G,, }m>0, be the sequence of prox- denote byR = {R:Q — X"| R is a Random Variable
imity graphs with failures used to obtain the evolution ofthe set of random variables ovér. We will denote the
{0im}m>0, i € {1,...,n}. If there existsM > 0 such components ofR € R as R = (Ry,...,R,). A se-
that Gas is strongly connected for every > 1, then quence of random variables will be denoted PR, =

hmm—>oo ak,m, =0~ (Rl,ma ) Rn,m)}sz-

Proof: A sketch of the proof is given next. The system Let us identify an initial multiagent configuratio®, =
can be described with the help of a set-valued M@apa =  (p10,-..,pn0) € X", with the constant random variable
(Ty,...,T,) : X" = X™ as: Ry(w) = Py, w € . Now, given a mapF : X" x
0. —Ty(6 B ) Grr — R, we can define a discrete-time Markov process

st ! oy as Rms1 = F(Rm(wm),Gm(Rm(wm))), m > 1, taking
= {Oim KAT > sin(0im —05m) |G € Gee}  Ro as initial condition. In this way, a sequence of random
|N (@) +1 iENH(G) outcomes{wy, }m>0, graphs{G,, }»>o, and an initial con-

In particular, the evolution of the oscillators under a par- d|t|on Py, give rise 1o a particular sequence of multiagent

ticular choice of {G,,}..>0 is contained into the set of states{ Ry (wm) = Pm = (Prms-- s Pnm)tm>0. TO fix

evolutions that is possible under the set-valued map. tfleas the outcomejm. € Q will ’corre.s.ponthrc]) ?tbltrary
-1 < U m — 0, < 7, then it can be seen théf ,, 1 € er_:lo:js n eo.lg. mtiasurlng agents _t_posmons.d tr?pi’s’"“ d
01y Onm)s AN —1 < Gyt — Oyt < will depend on the previous positions,, and the sense

(see the above discussion forn = 0). Thus the set position of neig_hborr]s ajm = fsi(pjzm,w)% wherta 5
W = co(61(0),...,6,(0))" is (strongly positively) invari- x 8 — X'is the sensing function of agent For

(- . i (i
ant under the set-valued mafx... Because we have that example, s;(pjm,w) = pjm + wj, wherew = (wj) € €.

In this way, depending on the error outcome we will

co(01,m+1s - Onmy1) € co(B1.m;--.,0,m), ONE CaN see : o=
that the function diam: X" — R, diam(6,...0,) — 9€t different new positions?,,,,1(w). For every agent, we
max; ;(0; — 0;) is decreasing alon@v;ura on W’. Notg also denote the set of neighbors’ sensed positions at timas
that diam is continuous of’. Finally, since for every fixed i " orégg’to congég;7:rntzlztla]ryepjr\gxﬁrtlbtuymg?aé)ﬁé mvx)/ih fall
graph the functiord; + % > ienn () Sin(6i — 0;) is )
continuous inéy,...,0,, hen Tkura IS “closed onV. By urei, vr\]/e _W'” make use of a set-valued mp : X" = R
Theorem 1, we have convergence to the largest invariant S4ch that:
M such that: Rint1 € Tr(Rm(wm)) = {F(Rn(wn)),G)| G € Gpe} .
M C {0 €W |30 € Tkua(0) s.t. dianid’) = diam()}. @)
It can be proved by contradiction thaf C diag([—w,7]?). 1he mapl : X" x Gee — R and a fixed graphG:
Otherwise, take (61,....0,) € M such that 9ive rise to another magig : X" x Q — X" such
diam(éy,...,6,) > 0 and consider it as initial condition for that Fa(P,w) = F(P,G)(w). We will use the notation
Tkura- It must be that thed; determining the diameter of Fa(Pw) = (FGJ(R"”)""’FG#?(P’ w)). _ )
co(fy, ... ,6,) remains stationary undéir.. Otherwise the The type of m.ult|agent atgorlthms that we consider will
diameter ofco(és, .. ., 6,) will decrease strictly since when Satisfy the tollowlng properties: ,
the §; move, they strictly move to the interior of the convex ASsumption 1. () Fg i(P,w), i € {1,...,n}, is con-
hull of neighbors. By hypothesis for aMk > 0, G is tinuous in(P,w), for everyG, _
strongly connected. It can be argued that this implies thafi) Fa (P w) is invariant modulo points in the diagonal
one of the agents determining dié, . .., 0,), sayi, will of X. That is, F(P + (g, .- z‘J)"")n: Fg(P,w) +
have a neighbor unde®,,;,, for somek > 0, say j, with ~(g,-.-,q) forall (g;...,q) € diag X™).
O; a7 05001 SINCE|0;. 1 — 0;.0n| < 7 for all m > 0, then (i) th.e sequertce{R_m}mZO, obtained throughi’ and a
sin(0; arr — 0j.0%) # 0 and necessarily; ary, will strictly given Py will satisfy || Riim (w) = Rjm(w)| < Cp, for
move to the interior ofo(6;, .. .,0,.0). Thus the diameter ~ SOME positive constartt’p ,
of the set will be strictly decreased, which is a contradicti (V) for every m > 0, we have thap;,m1 € _CO(Sivm U
with the fact that it is constant oft/. Thus, it must be that {pi.m}). More precisely, when there i € N,
M C diag([—m,]"). Also, since|—m,7]" is a compact such thatp;.,, # pim, and a certain constraint
set, it must be thafé;, .} converge to a point in/.  m set Ci(pim,Sim) # 0, thenp;;mi1 € co(Sim U
[1l. A CLASS OF RANDOM MULTIAGENT SYSTEMS ISince we are dealing with random variables, we can undetstia@
vality Ry 1 = F(Rm(wm); Gm (Rm(wm))) in the almost sure sense.

In this section, we present the class of multiagent systenif,; iS, Ry 11(0) = F'(Run (o )s Gon (Bom (c0m))) (@) for all & except
subject to noise that we consider in this paper. As afar possibly for a set of probability (or measure) zero.



{Pim}) \ Si;m U{pim}. WhenC;(p;m,Sim) = 0, for some constant® < b;;.,, < 1 (see reasoning before

thenp; i1 = pim. _ Proposition 3). It can be seen that whene@’éﬁl # Ok.m,
Given a mapF : X" x Gpr — R, we consider an thendy .1 € co(Sk, Okm) \ Sk U {0k, }. Because of the
associated map’ : X™ x Gpr — R such that definition of C k0., i) taken and the algorithm definition,
F(P,G(P)) = F(P,G(P)) condition (iv) holds.
— (m (F(P,G(P))),...,m(F(P,G(P)))), IV. CONVERGENCE RESULTS

This section contains the main convergence results for
a multiagent system satisfying Assumption 1 (i)—(iv). The
proofs of the following theorems and results are contained
in an extended version of this paper; see [20], where we

wherer; : X™ — X is the natural projection. An alternative
way of describing the algorithm defined through maphat
satisfies Assumption 1 (ii) is the following:

Rpi1 € TR (wim)), m >0, (3) also analyze related circumcenter algorithms subject igyno
- N o measurements.
whereT'r : X™ = R is given by Proposition 5: Consider a multiagent system defined
Tw(P)={F(P,G)|G CG(P)}, through a set-valued map as in (2) and (3), satisfying

_ _ -~ Assumption 1. Let{R,,}n>0 be the sequence obtained
To see this, suppose thath = P, and the specific sequencesiyrough it from the initial condition?, € X™. Then, the
of graphs{G.. } >0, and eventdwi, },n>o chosen to obtain family of functions {&,, }m=o is uniformly bounded in®
{R,,} and{R,,} are the same. Then we have tha&}, = gndis equicontinuous.

Ry — (m1(Ron), -, m(R)), for all m > 1. We will Given a discrete-time Markov process, we define an
make use of this relationship to prove our convergencgmega-limit set for it as follows.

results in the next section. Alternatively, using the riott  pefinition 1: Consider a discrete-time Markov process

of Fg(Pw) = F(P,G)(w), we have thatl,,11(w) = (R, (w)}, we define itsomega-limitset as
Fa, (Rm(wm),w), m > 1.
Example 4 (Modified discrete-time Kuramoto system): Q(Rm) = {R:Q— X" random variabl¢
Suppose that every agehte {1,...,n} can only take noisy I{Rm,} € {R,} such thatk,,, — R
measurements of neighboisaccording tof? = 6; + w?, uniformly in Q). (4)

with w¥ e.g. uniformly distributed ovef—o, o], for some Observe that since a sequend®,, } satisfying Assump-

o> 0. tion 1 (iii) is uniformly bounded and equicontinuous, by

As a consequence of the noise, the direct implementatiQRe ascoli-Arzela theorem, there is always a subsequence
of the discrete-time Kuramoto update law (1), could mak?Rmk} that is uniformly convergen{R,,,} — R. In this
agents’ get out of the invariant regionr < 0, — 0, < . way, R € ®(R,,) # 0

1 M .

Suppose thatr < 0;0 — 0,0 < foralli,j € {1,...,n}. Suppose thafR,, }.>o is determined from the set-valued
Then, the update law in (1) can be modified to guarantg@an7 the initial condition?, and a sequence of outcomes
—m < Oim — 03 < mfor all m = 0. In what follows we v " “\We say that(R,,) is (weakly) invariant with
use the notatiom®,,, (w) = (¢1,m(w), ..., dn.m(w)) to refer respect tol' if for every R € Q(R,,) there existw € €,

to the random variables obtained through the algorithm, ang,q p/ < T(R(w)) such thatR' € ®(R,,). The following

Om = (01,m,--.,0nm) to refer to the specific multiagent (oq it holds.

states the system evolves through. In this way,, (w,.) = Theorem 6:Let T be a set-valued map as in (3) associ-

Oijm. Then, @y i1(w) = (1m1(w),- s bnmt1(w)) 1S ated with a map as in 2 satisfying Assumption 1. The omega-

obtained as: limit set of the discrete-time Markov process (3) defined
D s1(w) = Fr(®py (wm), G (w) = in (4) is invariant with respect t@'z. N

KAT . Theorem 7:Let pio,...,pno € X be the ini-
Or.m + AN Z sin(0; ., — Ok.m) tial positions of a multiagent system. LetR,,(w) =
kirm i€ENK(Gm) (Rim(w), ..., Rym(w))}m>o0 denote the discrete-time

i ) ) Markov process obtained by applying a set-valued map
where, , = 0; ,,+wFif -7 < 0¥ —0,,, <m, otherwise - : : - (i

i iym — Vi;m TW; T<Yim=Vkm < T, algorithm as in (3), associated with a mdp satisfying

0; m = 01,m. Observe that this condition on the definition ofAssumption 1. Theq{ R,,,} converges to the largest (weakly

i,m

?im defines a constraint sef, (0., Sx), for each agent. Positively) invariant setM, contained in

In other words C (Ok m, Sk) = 0 if [0; 1 +wF —Op | > 7 .

for all i € Ny ., otherwiseCy,(6; . Sk) = X. {R random variablg3 T(E(w)) ) .
It is easy to see that all conditions of Assumption 1 (i)  for somew € @ and diam(E[R']) = diam(E[R])}.

through (ii) are satisfied. To see that condition (\v) holdsa ~ Apaiysis of the modified discrete-time Kuramoto system

we can rewrite the system as: . .
i From Theorem 7, we would like to conclude that in

G 1(@) = bk mOkm + D bikm s fact lim,, .., diam(E[R,,]) = ¢ = 0, so that we have
{ENT(Gm) multiagent agreement in expected values. Due to the fact tha



Ci(pi.m,Si.m) may be empty for ali € {1,...,n}, agents In this way,

may remain stationary andm,,, ., diam(E[R,,]) > 0. As - -

long as one can prove thé& (p; ., Si.m) # 0 and the multi- _ V= _oym o a -1

agent system is connected infinitely often then agreement {?1( ) mZ:OP(Am) Z a(l - a) 1-(1—-a) 1

expected value will follow. In the next subsection, we prove . ) )

this holds for the modified Kuramoto system. For simplicity! "erefore, there exists a time > 0 such that agentmakes

we use sequences of undirected graphs. The result can bdneasurement of agent € N, and (0;, — 6], <

extended to the case of directed graphs as in Proposition’3 1NUS: we have that;(6; ,Sin) # 0 and 0,41 €

and also for graphs that are jointly connected over a fixelP (Oim: 017 € Njm) \{0im} U {0517 € Njm}. This

time window. implies thatd; ,,, strictly moves inside the convex hull of the
Theorem 8:Consider the modified discrete-time Ku- % With probability one. _

ramoto system proposed in Example 4 and the associated" @l We have proven that w.p.Hiam(E[®y]) <

Markov proces§®,,, },,>o obtained from an initial condition diam(E[®]) for somem > 0. Since diam(E[®,,]) =

Qo = (f1g,...,0n0) such that|f;o — 0,0 <  for all diam(E[®D]) _for al m >0 by the invarie_m(_:e property of
i,j € {1,....n}. Let {Gy }m=o be the sequence of graphsthe omega limit set, we obtain a contradicti@n.
used to obtain{®,,}.,,>o and suppose that there id > 0
such thatGy,s is connected for alln > 0. Then we have
thatlim,, . F[®,,] = 0 with probability one. Figure 2 shows a run of the diameter of a multi-oscillator
Proof. By Theorem 7 we have thdim,, .., E[®,,] = system that evolves under the modified Kuramoto dynamics.
¢ and that ®,, converges almost surely taM N The proximity graph considered is th&jsk(r) proximity
(diam oE)~!(c). Using a contradiction argument we see nexgraph, forr = 1, which is subject to random failures every
that if R € M thendiam(E[R]) = 0 with probability one. 4 time steps. The number of oscillators is = 15, and
Let ® € M and consider the initial conditio® = o = 0.5. As it can be seen in this figure the algorithm
E[®] = (04,...,0,) for the Kuramoto system. By the weak behaves as expected from the analysis. Oscillators comverg
invariance property, it must be that we can always find &0 a practical stability ball that wanders in space. This
sequence such thaam(E[R,,]) = ¢ for all m > 0. We behavior is representative of what we have seen in many
will show that, with probability one, for all sequences ohios repeated simulations with different initial conditionsdan
there ismg > 0 such thatdiam(E[R,,,] < ¢ unlessc = 0.  relationsr/oc > 1, as long as connectivity is guaranteed
Suppose thadiam(©) > 0. By the algorithm defini- periodically.
tion, this implies that all the agentsthat determine the
diameter of the seto(; , ..., 0,.») Must remain station-
ary. Otherwise, the diametetiam(E[®,,]) will decrease
strictly. In particular, there exists an agentsuch that
0; € 9(co{ly,...,0,}), with §; determining the diameter
of co{6y,...,0,}, for which there is an agent connected
to ¢ an infinite number of times. Recall that the algorithm 2r
update law make#; ,,, — 6; | < 7 hold for all m > 0.
The measurement model error assumes gt is uni- Lsp
formly distributed over a disk of radius centered ab); ,,.
Let « > and 0 < o0 — a < 7 then, with probability 1t
one, there is an infinite number of time instants for whict
0%, —0;m| <7 —0+a<m To see this, observe that: ost

Jm

m=0

V. SIMULATIONS

25r

]P’(|9;i’m—9i’m| <m—0+4+a)=

1’ if ‘aj,m - 9i,m| <m- 20'7
L. [,dP >0, otherwise

To?

Fig. 1.  Diameter evolution of a group of oscillators implemegtia
whereD = [0; ,,—0,0; m+0]N[0im—T+0—0,0; y+T—  modified Kuramoto system with th&gis(r).

o+a| = [0;m—0,0; m+7—0+al. Sinceb; , —m+o—a <

0jm + o is equivalent t06;,, — 0;,, < ™+ a, then  The size of the stability ball is very much affected by
D # 0. Denote byP(|0;, — 05,] < r— o0+ a) = the sparsity of the connectivity graph. FiguP@ presents

a > 0 and let us compute the probability of the eventy run of the diameter of a multi-oscillator system that is
A = {3m>0| |im—0},|<r—o+a}. Infact, we connected through the Delaunay grapiRinin this particular
can write A as the disjoint union of eventd,,, m > 0: simulation,n = 15 and o = 0.05. We have observed in
simulations that with this type of graph, the size of the

; stability ball is typically much larger and increases witle t
Vs <m—1, and|(fi;m — 05, | <7 —0+a}. addition of more agents.

A=UZoAm = Un_o{l0is — 0§,s| >r—o+taq
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Fig. 2.  Diameter evolution of a group of oscillators implemegtia

modified Kuramoto system with the Delaunay graph. [13]

[14]
Simulations also show that even for initial conditions not

satisfying the conditiond;(0) — 6,(0)| < m, convergence is
possible provided there is frequent multiagent conndgytivi [15]
Notice that the state8,,...,60, such thatt, = 6; + k;;~,
with k;; € {0,1} constitute equilibrium points of the
deterministic Kuramoto system. However, except for thecag, g
of k;; = 0 for all 4,7, all these states are unstable. Any
perturbation will bring the system out of these bad equidibr
Therefore, it is very reasonable to expect that the curreht’!
analysis for the modified Kuramoto system can be carried
over to full spheres. (18]
VI. CONCLUSIONS [19]
This paper presents some convergence results for mul-
tiagent systems subject to noise. The analysis makes uss)
of a stochastic analogue of the LaSalle invariance priecipl
for switching systems. Provided periodic connectivity tod t
multiagent system occurs, we can conclude that the expected
value of the diameter of the multiagent system converges to
zero with probability one. Future work will be devoted to
study the effect of random graphs and multiagent connegtion
in probability. We will also investigate the possible exdiem
of the results to the sphere and its consequences for the
modified Kuramoto system.

REFERENCES

[1] V. Kumar, N. Leonard, and A. Morse, ed®roc. of the 2003 Block
Island Workshop on Cooperative Contrefol. 309 of Lecture Notes
in Control and Information Science$pringer-Verlag, 2004.

L. Moreau, “Stability of multiagent systems with time-depent com-

munication links,”IEEE Transactions on Automatic Contralol. 50,

no. 2, pp. 169-182, 2005.

L. Schenato and S. Zampieri, “Optimal rendezvous contool ran-

domized communication topologies,” IEEE Conf. on Decision and
Control, (San Diego), pp. 4339-4344, December 2006.

L. Xiao, S. Boyd, and S.-J. Kim, “Distributed average census
with least-mean-square deviatiod@urnal of Parallel and Distributed
Computing vol. 67, no. 1, pp. 33—-46, 2007.

D. B. Kingston, W. Ren, and R. W. Beard, “Consensus atpars

are input-to-state stable,” iAmerican Control ConferencégPortland,

OR), pp. 1686-1690, June 2005.

(2]

(3]

(4]

(5]

R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensusd a
cooperation in networked multi-agent systemBfbceedings of the
IEEE, vol. 95, no. 1, pp. 215-233, 2007.

V. D. Blondel, J. M. Hendrickx, A. Olshevsky, and J. N. H&klis,
“Convergence in multiagent coordination, consensus, arukifig,”

in IEEE Conf. on Decision and Control and European Control
Conference(Seville, Spain), pp. 2996—-3000, Dec. 2005.

J. Lin, A. S. Morse, and B. D. O. Anderson, “The multi-agent
rendezvous problem. Part 2: The asynchronous c&@éM Journal
on Control and Optimizationvol. 46, no. 6, pp. 2120-2147, 2007.
H. G. Tanner, G. J. Pappas, and V. Kumar, “Leader-to-foionat
stability,” IEEE Transactions on Robotics and Automatiomol. 20,
no. 3, pp. 443-455, 2004.

W. Ren and R. W. BeardDistributed Consensus in Multi-vehicle
Cooperative Control Communications and Control Engineering,
Springer, 2008.

S. Patterson, B. Bamieh, and A. E. Abbadi, “Distributecerage
consensus with stochastic communication failurBsEE Transactions
on Automatic Contrgl2008. Submitted.

B. Triplett, D. Klein, and K. Morgansen, “Discrete timeukamoto
models with delay,” inLecture Notes in Control and Information
SciencesSpringer.

F. Bullo, J. Corés, and S. Mamez, Distributed Control of Robotic
Networks Applied Mathematics Series, Princeton University Press,
2009. To appear. Available at http://www.coordinationkato.

D. Klein, P.Lee, K. Morgansen, and T. Javidi, “Integoat of com-
munication and control using discrete time Kuramoto models for
multivehicle coordination over broadcast networkEEE Journal on
Selected Areas in Communicationsl. 26, May 2008.

Y. Kuramoto, “Self-entrainment of a population of coupleon-linear
oscillators,” in International Symposium on Mathematical Problems
in Theoretical PhysicgH. Araki, ed.), vol. 39 ofLecture Notes in
Physics pp. 420-422, Springer, 1975.

A. Jadbabaie, N. Motee, and M. Barahona, “On the stgbiif
the Kuramoto model of coupled nonlinear oscillators,”American
Control Conference(Boston, MA), pp. 4296-4301, June 2004.

A. Sarlette, R. Sepulchre, and N. E. Leonard, “Disctétes synchro-
nization on then-torus,” in Mathematical Theory of Networks and
Systems(Kyoto, Japan), June 2006.

Z. Lin, B. Francis, and M. Maggiore, “State agreementdontinuous-
time coupled nonlinear systems3IAM Journal on Control and
Optimization vol. 46, no. 1, pp. 288-307, 2007.

D. A. Paley, N. E. Leonard, R. Sepulchre, D. Grunbaum, an#.
Parrish, “Oscillator models and collective motiodEEE Control
Systems Magazineol. 27, no. 4, pp. 89-105, 2007.

S. Marfnez, “Practical multiagent rendezvous through modified cir-
cumcenter algorithms Automatica 2009. To appear.



