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Abstract— We present conditions under which a general class
of multiagent systems subject to noise can reach agreement in
expected value with probability one. The noise can be induced
by the fact that each agent takes erroneous measurements
of neighbors’ positions. The class of systems considered may
be nonlinear and requires that the diameter of the agents be
bounded for all possible error measurements. The convergence
result is related to previous work on the robustness of the
rendezvous algorithm and the stability of multiagent systems
with periodic connectivity. We illustrate the results in terms of
a modified discrete-time Kuramoto system, which is amended
to guarantee the system requirements.

I. I NTRODUCTION

The last years are witnessing an intense research activity
in the area of cooperative control of multiagent systems and
its applications to multi-vehicle sensor networks; see e.g. [1].
A main driving theme is the characterization of the system
stability and robustness properties under different metrics.

For example, recent work has been devoted to the analysis
of multiagent systems under switching graphs [2], [3], [4],
[5], [6], asynchrony and delays [7], [8]. Robustness to noise,
and how multiagent behavior is affected by the network size
is also the subject of recent work; e.g. see [9], [10], [4],
[11] on the input-to-state stability properties of consensus
algorithms, and the degradation of formation control systems
subject to noise.

Motivated by this, we look for general conditions that
guarantee a class of discrete-time multiagent systems con-
verge to an agreement state in expected value with proba-
bility one. For example, the systems can be subject to noise
due to agents taking erroneous measurements of neighbors’
positions. We assume that the possible disturbances belong
to a compact space, and that the expected value of the
measurements correspond to true position values. The class
of systems considered here may be non-linear and extend
the class of multiagent systems considered previously. A
restriction that we impose to ensure a technical requirement
is that the diameter of agents be upper bounded for any
possible error measurement. We illustrate the results in terms
of a discrete-time Kuramoto system introduced in [12]. This
system is further modified in order to satisfy the assumptions
of the main result of the paper. Simulations show that conver-
gence occurs as predicted independently of this restriction.

The paper is organized as follows. In Section II we
present some notation, preliminary concepts on graphs, and
on multiagent systems modeled through set-valued maps. In
particular, we revisit a discrete-time version of a Kuramoto
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oscillator from [12]; which is briefly analyzed using the
tools described. In Section III, we present the class of
multiagent systems subject to noise on which we focus
and introduce a modified version of the Kuramoto oscillator
system as an example. Section IV contains the main results
of the paper which are then used to analyze the modified
Kuramoto system. Section V presents simulations results and
Section VI includes some concluding remarks.

II. N OTATION AND PRELIMINARY DEFINITIONS

A. Preliminaries on geometric notions and graphs

In this subsection, we introduce some notation and pre-
liminary concepts employed throughout the paper, see [13]
for a more information on these.

In the sequel,X will either represent a (convex) subset of
R

d, for somed ≥ 0. Consider a set of pointsp1, . . . , pn ∈
X, its convex hull is defined asco(p1, . . . , pn) =
{λ1p1 + · · · + λnpn| λi ≥ 0,

∑n

i=1 λi = 1}. We will use
tuplesP = (p1, . . . , pn) ∈ Xn to refer to the positions of the
multiagent system in space. The algorithms we will consider
are synchronous, implemented in discrete time over a time
schedulem = 0, 1, 2, 3, . . . , and give rise to point sequences
{Pm = (p1,m, . . . , pn,m) ∈ Xn}m≥0.

A (directed) graphover a finite set of nodesV is a
pair G = (V,E), with E = {(i, j)| i, j ∈ V, i 6= j} ⊆
V ×V \diag(V ×V ). The graph isundirectedwhen(i, j) ∈ E
if and only if (j, i) ∈ E. A proximity graph functionG(P )
associates to a point setVP = {p1, . . . , pn} ⊂ X an
undirected graph with vertex setVP and edge setEG(VP ) ⊆
VP × VP \ diag(VP × VP ). In other words, the edge set
of a proximity graph may depend on the location of its
vertices. We will also consider proximity graphs subject
to link failures, GF (P ). These are graphs onP with an
edge set that may also be dependent on the location of the
vertices. However, given(pi, pj) in GF (P ), the reversed edge
(pj , pi) may not be inGF (P ). In other words,GF (P ) is a
directed graph. We will use these graphs to capture sensing
or communication failures. When elements in the setP are
indexed byi ∈ {1, . . . , n} = V , the graphGF (P ) can be
associated with a graphG over V in a natural way. With
a slight abuse of notation, we will sometimes identify these
two objects. We denote the set of neighbors of agentpi in
GF (P ) by:

Ni(GF ) = {j ∈ {1, . . . , n}| (pi, pj) ∈ EGF (P )} ,

and the cardinality ofNi(GF ) will be denoted asni =
|Ni(GF )|. Given a sequence of graphs{GF,m}m≥0, we will
use the shorthand notationNi,m ≡ Ni(GF,m). We will
denote the set of proximity graphs with failures asGPF. With



a slight abuse of notation, the setGPF(P ) will represent the
set of directed graphs overn vertices.

We recall some concepts from Functional Analysis next.
Let F = {f : Y → Z} be a family of functions defined over
metric spaces(Y, dY ) and (Z, dZ). Let ‖ · ‖Y (resp.‖ · ‖Z)
denote the associated norm onY (resp. onZ). A sequence
{fn}n≥0 ⊆ F converges uniformly tof ∈ F if for all ǫ >
0 there is anǫ > 0 (independently ofy ∈ Y ) such that
∀n ≥ nǫ we have that‖fn(y) − f(y)‖Z ≤ ǫ. The family
F is uniformly bounded inY if there is a constantK ≥ 0
such thatsupy∈Y ‖f(y)‖Z ≤ K for all f ∈ F . The family
F is equicontinuous if for ally0 ∈ Y andǫ > 0, there exists
a δy0

> 0 such that‖f(y0) − f(y)‖Z < ǫ for all f ∈ F
and y ∈ Y with ‖y0 − y‖Y < δ. The theorem of Ascoli-
Arzela is the Bolzano-Weierstrass analogue for sequences of
functions: every equicontinuous family{fm}m≥0 that is also
uniformly bounded, has a uniformly convergent subsequence
{fmk

} ⊆ {fm}.

B. Multiagent dynamics and Kuramoto oscillators

Here we present models of multiagent systems using set-
valued maps and an associated convergence result. As an ex-
ample, we describe a discrete-time Kuramoto multioscillator
taken from [12]. We also point out how to partially prove a
conjecture from [14] regarding the system convergence.

Given P0 ∈ Xd, a proximity graphG, and a mapf :
Xn → Xn, we define a multiagent system evolution as:

Pm = f(Pm−1,G(Pm−1)) =

(f1(Pm−1,N1(G(Pm−1))), . . . , fn(Pm−1,Nn(G(Pm−1)))) .

Observe that local multiagent interactions are introducedby
the fact thatfi(P,G) ≡ fi(pi, pj1 , . . . , pjni

) wherepjl
, l ∈

{1, . . . , ni} are the neighbors of agenti in the graphG(P ).
To capture the possible failures in communication or sensing,
we can employ a set-valued mapTf : Xn

⇉ Xn such that

Pm ∈ Tf (Pm−1) = {f(Pm−1, G) | , G ⊆ G(Pm−1)} .

A set-valued mapTf is closed if for any sequencesPk, Qk

such thatQk ∈ Tf (Pk) and Qk → Q, Pk → P , we have
thatQ ∈ Tf (P ). It is easy to see that, provided thatf(P,G)
is continuous inP for every fixedG, the set-valued map
Tf is closed. A LaSalle invariance principle is available for
multiagent systems as follows; see [13] for more information.

Lemma 1 ([13]): Let T : Xn
⇉ Xn be a set-valued

map defining a discrete-time multiagent dynamical system.
Assume that:

(i) there is a setW ⊆ Xn that is strongly positively
invariant underT ;

(ii) there exists a functionV : Xn → R that is non-
increasing alongT on W .

(iii) all evolutions of the dynamical system with initial
conditions inW are bounded; and

(iv) T is nonempty and closed atW andV is continuous
on W .

Let M denote the largest weakly positively invariant set
contained in{p ∈ W | ∃ p′ ∈ T (p) such thatV (p′) =

V (p)}. Then there exists ac ∈ R such that all evolutions
with initial conditions inW approach the setM ∩ V −1(c).

Example 2 (Discrete-time Kuramoto oscillators):
The Kuramoto system was proposed in [15] to model
synchronization in a population of oscillators. Different
conditions for the stability of the system under switching
graphs have recently been provided [16], [17], [2], [18]. A
motivation for the study of the Kuramoto oscillators has
been the coordination of multiple underwater vehicles [19],
[12]. Since the communication among vehicles occurs
naturally at discrete instants of timeK∆T , the following
discrete-time version of the algorithm was proposed in [12].
Consider an initial conditionθ1,0, . . . , θn,0. For every
k ∈ {1, . . . , n} andm ≥ 0,

θk,m+1 = θk,m+
K∆T

|Nk,m| + 1

∑

i∈Nk,m

sin(θi,m−θj,m) mod 2π ,

(1)
where a particular identification ofS as subset ofR is chosen;
i.e. S ≡ [θ∗, θ∗ + 2π), for some originθ∗, and the sum is
understood modulo2π. Observe that, if the initial conditions
for the oscillators satisfy−π ≤ θi,0 − θj,0 ≤ π for all i, j ∈
{1, . . . , n}, then sin(θi,0 − θj,0) = λij(0)(θi,0 − θj,0), with
0 ≤ λij(0) ≤ 1. Thus, for any choice of originθ∗, we have
that the system (1) satisfies:

θk,1 = θk,0 +
K∆T

|Nk,0| + 1

∑

i∈Nk,0

λik(0)(θi,0 − θk,0)

= θk,0



1 −
K∆T

|Nk,0| + 1

∑

i∈Nk,0

λik(0)





+
K∆T

|Nk,0| + 1

∑

i∈Nk,0

λik(0)θi,0 .

The above linear combination is a convex combination if

0 ≤
K∆T

|Nk,0| + 1
λik(0) ≤ 1, ∀ i ∈ Nk,0

0 ≤ 1 −
K∆T

|Nk,0| + 1

∑

i∈Nk,0

λik(0) ≤ 1 .

This is true provided thatK∆T ∈ [0, 2]. In other words,
θi,1 ∈ co(θ1,0, . . . , θn,0) ⊆ [θ∗ − π, θ∗ + π) and thus−π ≤
θi,1 − θj,1 ≤ π. In this way, the oscillator states remain in
the set [θ∗ − π, θ∗ + π) for all t, the system (1) is well
defined as a system inR and it is not necessary to consider
the modulo operation. Observe that if different agents choose
different coordinates (determined by a different originθ′∗),
in order to implement equation (1), then it holds thatθ′i,m =
θi,m − θ∗ + θ′∗ for all m ≥ 0. That is, the evolutions are
the same except for the origin translation. Without lose of
generality, we will assume that agents make use of a common
origin in S to implement (1).

This system was analyzed in [12] and, under the assump-
tion of all-to-all communication, it is seen that all agents’
states get aligned forK∆T ∈ [0, 2] under bounded delays
for almost all initial conditions. The following result shows



an application of Lemma 1 and proves a partial conjecture
stated in [12].

Proposition 3: Consider the discrete-time Kuramoto sys-
tem (1), with K∆T ∈ [0, 2]. Let θ1,0, . . . , θn,0 be an
initial condition such thatπ < θi,0 − θj,0 < π for all
i, j ∈ {1, . . . , n}. Let {Gm}m≥0, be the sequence of prox-
imity graphs with failures used to obtain the evolution of
{θi,m}m≥0, i ∈ {1, . . . , n}. If there existsM > 0 such
that GkM is strongly connected for everyk ≥ 1, then
limm→∞ θk,m = θ∗.

Proof: A sketch of the proof is given next. The system
can be described with the help of a set-valued mapTKura =
(T1, . . . , Tn) : Xn

⇉ Xn as:

θi,m+1 = Ti(θ1,m, . . . , θn,m)

= {θi,m +
K∆T

|Nk(G)| + 1

∑

i∈Nk(G)

sin(θi,m − θj,m) |G ∈ GPF}

In particular, the evolution of the oscillators under a par-
ticular choice of {Gm}m≥0 is contained into the set of
evolutions that is possible under the set-valued map. If
−π < θi,m − θj,m < π, then it can be seen thatθi,m+1 ∈
co(θ1,m, . . . , θn,m), and −π < θi,m+1 − θj,m+1 < π
(see the above discussion form = 0). Thus the set
W = co(θ1(0), . . . , θn(0))n is (strongly positively) invari-
ant under the set-valued mapTKura. Because we have that
co(θ1,m+1, . . . , θn,m+1) ⊆ co(θ1,m, . . . , θn,m), one can see
that the function diam: Xn → R, diam(θ1, . . . θn) =
maxi,j(θi − θj) is decreasing alongTKura on W . Note also
that diam is continuous onW . Finally, since for every fixed
graph the functionθi + K∆T

|Nk(G)|+1

∑

i∈Nk(G) sin(θi − θj) is
continuous inθ1, . . . , θn, then TKura is closed onW . By
Theorem 1, we have convergence to the largest invariant set
M such that:

M ⊆ {θ ∈ W | ∃ θ′ ∈ TKura(θ) s.t. diam(θ′) = diam(θ)}.

It can be proved by contradiction thatM ⊆ diag([−π, π]n).
Otherwise, take (θ1, . . . , θn) ∈ M such that
diam(θ1, . . . , θn) > 0 and consider it as initial condition for
TKura. It must be that theθi determining the diameter of
co(θ1, . . . , θn) remains stationary underTKura. Otherwise the
diameter ofco(θ1, . . . , θn) will decrease strictly since when
the θi move, they strictly move to the interior of the convex
hull of neighbors. By hypothesis for allMk > 0, GMk is
strongly connected. It can be argued that this implies that
one of the agents determining diam(θ1, . . . , θn), say i, will
have a neighbor underGMk, for somek ≥ 0, say j, with
θi,Mk 6= θj,Mk. Since|θi,m − θj,m| < π for all m ≥ 0, then
sin(θi,Mk − θj,Mk) 6= 0 and necessarilyθi,Mk will strictly
move to the interior ofco(θi,0, . . . , θn,0). Thus the diameter
of the set will be strictly decreased, which is a contradiction
with the fact that it is constant onM . Thus, it must be that
M ⊆ diag([−π, π]n). Also, since [−π, π]n is a compact
set, it must be that{θk,m} converge to a point inM .

III. A CLASS OF RANDOM MULTIAGENT SYSTEMS

In this section, we present the class of multiagent systems
subject to noise that we consider in this paper. As an

example, we introduce a modified version of the discrete-
time Kuramoto system.

Consider a group ofn agents, with states denoted byP =
(p1, . . . , pn) ∈ Xn, i ∈ {1, . . . , n}. Let (Ω,F , P) be a com-
pact probability space withΩ ⊆ R

e for some integere, and
denote byR = {R : Ω → Xn| R is a Random Variable}
the set of random variables overΩ. We will denote the
components ofR ∈ R as R = (R1, . . . , Rn). A se-
quence of random variables will be denoted by{Rm =
(R1,m, . . . , Rn,m)}m≥0.

Let us identify an initial multiagent configuration,P0 =
(p1,0, . . . , pn,0) ∈ Xn, with the constant random variable
R0(ω) = P0, ω ∈ Ω. Now, given a mapF : Xn ×
GPF → R, we can define a discrete-time Markov process
as Rm+1 = F (Rm(ωm),Gm(Rm(ωm))), m ≥ 1, taking
R0 as initial condition1. In this way, a sequence of random
outcomes,{ωm}m≥0, graphs{Gm}m≥0, and an initial con-
dition, P0, give rise to a particular sequence of multiagent
states{Rm(ωm) = Pm = (p1,m, . . . , pn,m)}m≥0. To fix
ideas, the outcomeωm ∈ Ω will correspond to arbitrary
errors in e.g. measuring agents’ positions. That is,pi,m+1

will depend on the previous positionspi,m and the sensed
position of neighbors aspi

j,m = si(pj,m, ω), where si :
X × Ω → X is the sensing function of agenti. For
example,si(pj,m, ω) = pj,m + ωi

j , whereω = (ωi
j) ∈ Ω.

In this way, depending on the error outcomeω, we will
get different new positionsRm+1(ω). For every agent, we
denote the set of neighbors’ sensed positions at timem as
Si,m =

{

pi
j,m = si(pj,m, ωm)| j ∈ Nj,m , ωm = (ωi

j,m)
}

.
In order to consider arbitrary proximity graphs with fail-

ures, we will make use of a set-valued mapTF : Xn
⇉ R

such that:

Rm+1 ∈ TF (Rm(ωm)) = {F (Rm(ωm)), G)| G ∈ GPF} .
(2)

The map F : Xn × GPF → R and a fixed graphG
give rise to another mapFG : Xn × Ω → Xn such
that FG(P, ω) = F (P,G)(ω). We will use the notation
FG(P, ω) = (FG,1(P, ω), . . . , FG,n(P, ω)).

The type of multiagent algorithms that we consider will
satisfy the following properties:

Assumption 1: (i) FG,i(P, ω), i ∈ {1, . . . , n}, is con-
tinuous in(P, ω), for everyG,

(ii) FG(P, ω) is invariant modulo points in the diagonal
of X. That is,FG(P + (q, . . . , q), ω) = FG(P, ω) +
(q, . . . , q) for all (q, . . . , q) ∈ diag(Xn).

(iii) the sequence{Rm}m≥0, obtained throughTF and a
givenP0 will satisfy ‖Ri,m(ω)−Rj,m(ω)‖ ≤ CP0

for
some positive constantCP0

,
(iv) for every m ≥ 0, we have thatpi,m+1 ∈ co(Si,m ∪

{pi,m}). More precisely, when there isj ∈ Ni,m

such that pj,m 6= pi,m, and a certain constraint
set Ci(pi,m,Si,m) 6= ∅, then pi,m+1 ∈ co(Si,m ∪

1Since we are dealing with random variables, we can understand the
equalityRm+1 = F (Rm(ωm),Gm(Rm(ωm))) in the almost sure sense.
That is, Rm+1(ω) = F (Rm(ωm),Gm(Rm(ωm)))(ω) for all ω except
for possibly for a set of probability (or measure) zero.



{pi,m}) \ Si,m ∪ {pi,m}. When Ci(pi,m,Si,m) = ∅,
thenpi,m+1 = pi,m.

Given a mapF : Xn × GPF → R, we consider an
associated mapF : Xn × GPF → R such that

F (P,G(P )) = F (P,G(P ))

− (π1(F (P,G(P ))), . . . , π1(F (P,G(P )))),

whereπ1 : Xn → X is the natural projection. An alternative
way of describing the algorithm defined through mapF that
satisfies Assumption 1 (ii) is the following:

Rm+1 ∈ TF (Rm(ωm)) , m ≥ 0 , (3)

whereTF : Xn
⇉ R is given by

TF (P ) = {F (P ,G) |G ⊆ G(P )} ,

To see this, suppose thatP 0 = P0, and the specific sequences
of graphs{Gm}m≥0, and events{ωm}m≥0 chosen to obtain
{Rm} and {Rm} are the same. Then we have thatRm =
Rm − (π1(Rm), . . . , π1(Rm)), for all m ≥ 1. We will
make use of this relationship to prove our convergence
results in the next section. Alternatively, using the notation
of FG(P, ω) ≡ F (P,G)(ω), we have thatRm+1(ω) =
FGm

(Rm(ωm), ω), m ≥ 1.
Example 4 (Modified discrete-time Kuramoto system):

Suppose that every agentk ∈ {1, . . . , n} can only take noisy
measurements of neighborsi according toθk

i = θi + ωk
i ,

with ωk
i e.g. uniformly distributed over[−σ, σ], for some

σ > 0.
As a consequence of the noise, the direct implementation

of the discrete-time Kuramoto update law (1), could make
agents’ get out of the invariant region−π < θi − θk < π.
Suppose thatπ < θi,0 − θj,0 < π for all i, j ∈ {1, . . . , n}.
Then, the update law in (1) can be modified to guarantee
−π < θi,m − θj,m < π for all m ≥ 0. In what follows we
use the notationΦm(ω) = (φ1,m(ω), . . . , φn,m(ω)) to refer
to the random variables obtained through the algorithm, and
Θm = (θ1,m, . . . , θn,m) to refer to the specific multiagent
states the system evolves through. In this way,φi,m(ωm) =
θi,m. Then, Φm+1(ω) = (φ1,m+1(ω), . . . , φn,m+1(ω)) is
obtained as:

φk,m+1(ω) = Fk(Φm(ωm), Gm)(ω) =

θk,m +
K∆T

|Nk(Gm)| + 1

∑

i∈Nk(Gm)

sin(θ
k

i,m − θk,m) ,

whereθ
k

i,m = θi,m +ωk
i if −π < θk

i,m−θk,m < π, otherwise

θ
k

i,m = θk,m. Observe that this condition on the definition of

θ
k

i,m defines a constraint set,Ck(θk,m,Sk), for each agent.
In other words,Ck(θk,m,Sk) = ∅ if |θi,m +ωk

i − θk,m| ≥ π
for all i ∈ Nk,m, otherwiseCk(θi,m,Sk) = X.

It is easy to see that all conditions of Assumption 1 (i)
through (iii) are satisfied. To see that condition (iv) holds,
we can rewrite the system as:

φk,m+1(ω) = bkk,mθk,m +
∑

i∈Nk(Gm)

bik,mθ
k

i,m ,

for some constants0 ≤ bij,m ≤ 1 (see reasoning before

Proposition 3). It can be seen that wheneverθ
k

i,m 6= θk,m,
then θk,m+1 ∈ co(Sk, θk,m) \ Sk ∪ {θk,m}. Because of the
definition ofC(kθk,m,Sk) taken and the algorithm definition,
condition (iv) holds.

IV. CONVERGENCE RESULTS

This section contains the main convergence results for
a multiagent system satisfying Assumption 1 (i)–(iv). The
proofs of the following theorems and results are contained
in an extended version of this paper; see [20], where we
also analyze related circumcenter algorithms subject to noisy
measurements.

Proposition 5: Consider a multiagent system defined
through a set-valued map as in (2) and (3), satisfying
Assumption 1. Let{Rm}m≥0 be the sequence obtained
through it from the initial conditionP0 ∈ Xn. Then, the
family of functions {Rm}m≥0 is uniformly bounded inΩ
and is equicontinuous.

Given a discrete-time Markov process, we define an
omega-limit set for it as follows.

Definition 1: Consider a discrete-time Markov process
{Rm(ω)}, we define itsomega-limitset as

Ω(Rm) = {R : Ω → Xn random variable|

∃ {Rmk
} ⊆ {Rm} such thatRmk

→ R

uniformly in Ω} . (4)
Observe that since a sequence{Rm} satisfying Assump-

tion 1 (iii) is uniformly bounded and equicontinuous, by
the Ascoli-Arzela theorem, there is always a subsequence
{Rmk

} that is uniformly convergent{Rmk
} → R. In this

way, R ∈ Φ(Rmk
) 6= ∅.

Suppose that{Rm}m≥0 is determined from the set-valued
mapTF , the initial conditionP0 and a sequence of outcomes
{ωm}m≥0. We say thatΩ(Rm) is (weakly) invariant with
respect toTF if for every R ∈ Ω(Rm) there existω ∈ Ω,
and R′ ∈ T (R(ω)) such thatR′ ∈ Φ(Rm). The following
result holds.

Theorem 6:Let TF be a set-valued map as in (3) associ-
ated with a map as in 2 satisfying Assumption 1. The omega-
limit set of the discrete-time Markov process (3) defined
in (4) is invariant with respect toTF .

Theorem 7:Let p1,0, . . . , pn,0 ∈ X be the ini-
tial positions of a multiagent system. Let{Rm(ω) =
(R1,m(ω), . . . , Rn,m(ω))}m≥0 denote the discrete-time
Markov process obtained by applying a set-valued map
algorithm as in (3), associated with a mapF satisfying
Assumption 1. Then{Rm} converges to the largest (weakly
positively) invariant set,M, contained in

{R random variable|∃T (R(ω))

for someω ∈ Ω and diam(E[R′]) = diam(E[R])}.

A. Analysis of the modified discrete-time Kuramoto system

From Theorem 7, we would like to conclude that in
fact limm→∞ diam(E[Rm]) = c = 0, so that we have
multiagent agreement in expected values. Due to the fact that



Ci(pi,m,Si,m) may be empty for alli ∈ {1, . . . , n}, agents
may remain stationary andlimm→∞ diam(E[Rm]) > 0. As
long as one can prove thatCi(pi,m,Si,m) 6= ∅ and the multi-
agent system is connected infinitely often then agreement in
expected value will follow. In the next subsection, we prove
this holds for the modified Kuramoto system. For simplicity
we use sequences of undirected graphs. The result can be
extended to the case of directed graphs as in Proposition 3
and also for graphs that are jointly connected over a fixed
time window.

Theorem 8:Consider the modified discrete-time Ku-
ramoto system proposed in Example 4 and the associated
Markov process{Φm}m≥0 obtained from an initial condition
Θ0 = (θ1,0, . . . , θn,0) such that|θi,0 − θj,0| < π for all
i, j ∈ {1, . . . , n}. Let {Gm}m≥0 be the sequence of graphs
used to obtain{Φm}m≥0 and suppose that there isM > 0
such thatGkM is connected for allm ≥ 0. Then we have
that limm→∞ E[Φm] = 0 with probability one.

Proof. By Theorem 7 we have thatlimm→∞ E[Φm] =
c and that Φm converges almost surely toM ∩
(diam ◦E)−1(c). Using a contradiction argument we see next
that if R ∈ M thendiam(E[R]) = 0 with probability one.

Let Φ ∈ M and consider the initial conditionΘ =
E[Φ] = (θ1, . . . , θn) for the Kuramoto system. By the weak
invariance property, it must be that we can always find a
sequence such thatdiam(E[Rm]) = c for all m ≥ 0. We
will show that, with probability one, for all sequences chosen
there ism0 > 0 such thatdiam(E[Rm0

] < c unlessc = 0.
Suppose thatdiam(Θ) > 0. By the algorithm defini-

tion, this implies that all the agentsi that determine the
diameter of the setco(θ1,m, . . . , θn,m) must remain station-
ary. Otherwise, the diameterdiam(E[Φm]) will decrease
strictly. In particular, there exists an agenti such that
θi ∈ ∂(co{θ1, . . . , θn}), with θi determining the diameter
of co{θ1, . . . , θn}, for which there is an agentj connected
to i an infinite number of times. Recall that the algorithm
update law makes|θj,m − θi,m| < π hold for all m ≥ 0.

The measurement model error assumes thatθi
j,m is uni-

formly distributed over a disk of radiusσ centered atθj,m.
Let α > and 0 < σ − α < π then, with probability
one, there is an infinite number of time instants for which
|θi

j,m − θi,m| ≤ π − σ + α < π. To see this, observe that:

P(|θi
j,m−θi,m| ≤ π − σ + α) =

{

1, if |θj,m − θi,m| ≤ π − 2σ,
1

πσ2

∫

D
d P > 0, otherwise,

whereD = [θj,m−σ, θj,m+σ]∩[θi,m−π+σ−α, θi,m+π−
σ+α] = [θj,m−σ, θi,m+π−σ+α]. Sinceθi,m−π+σ−α <
θj,m + σ is equivalent toθi,m − θj,m < π + α, then
D 6= ∅. Denote byP(|θi,m − θi

j,m| ≤ r − σ + α) =
a > 0 and let us compute the probability of the event
A =

{

∃m > 0| |θi,m − θi
j,m| ≤ r − σ + α

}

. In fact, we
can writeA as the disjoint union of eventsAm, m ≥ 0:

A = ∪∞
m=0Am = ∪∞

m=0{|θi,s − θi
j,s| > r − σ + α,

∀s ≤ m − 1, and |θi,m − θi
j,m| ≤ r − σ + α} .

In this way,

P (A) =

∞
∑

m=0

P (Am) =

∞
∑

m=0

a(1 − a)m =
a

1 − (1 − a)
= 1.

Therefore, there exists a timem > 0 such that agenti makes
a measurement of agentj ∈ Ni,m and |θi,m − θi

j,m| <
π. Thus, we have thatCi(θi,mSi,m) 6= ∅ and θi,m+1 ∈
co(θi,m, θi

j,m|j ∈ Nj,m) \ {θi,m} ∪ {θi
j,m|j ∈ Nj,m}. This

implies thatθi,m strictly moves inside the convex hull of the
θk, with probability one.

In all, we have proven that w.p.1diam(E[Φm]) <
diam(E[Φ]) for some m > 0. Since diam(E[Φm]) =
diam(E[Φ]) for all m ≥ 0 by the invariance property of
the omega limit set, we obtain a contradiction.

V. SIMULATIONS

Figure 2 shows a run of the diameter of a multi-oscillator
system that evolves under the modified Kuramoto dynamics.
The proximity graph considered is theGdisk(r) proximity
graph, forr = 1, which is subject to random failures every
4 time steps. The number of oscillators isn = 15, and
σ = 0.5. As it can be seen in this figure the algorithm
behaves as expected from the analysis. Oscillators converge
to a practical stability ball that wanders in space. This
behavior is representative of what we have seen in many
repeated simulations with different initial conditions and
relations r/σ > 1, as long as connectivity is guaranteed
periodically.

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

Fig. 1. Diameter evolution of a group of oscillators implementing a
modified Kuramoto system with theGdisk(r).

The size of the stability ball is very much affected by
the sparsity of the connectivity graph. Figure?? presents
a run of the diameter of a multi-oscillator system that is
connected through the Delaunay graph inR. In this particular
simulation, n = 15 and σ = 0.05. We have observed in
simulations that with this type of graph, the size of the
stability ball is typically much larger and increases with the
addition of more agents.
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Fig. 2. Diameter evolution of a group of oscillators implementing a
modified Kuramoto system with the Delaunay graph.

Simulations also show that even for initial conditions not
satisfying the condition|θi(0) − θj(0)| ≤ π, convergence is
possible provided there is frequent multiagent connectivity.
Notice that the statesθ1, . . . , θn such thatθi = θj + kijπ,
with kij ∈ {0, 1} constitute equilibrium points of the
deterministic Kuramoto system. However, except for the case
of kij = 0 for all i, j, all these states are unstable. Any
perturbation will bring the system out of these bad equilibria.
Therefore, it is very reasonable to expect that the current
analysis for the modified Kuramoto system can be carried
over to full sphere,S.

VI. CONCLUSIONS

This paper presents some convergence results for mul-
tiagent systems subject to noise. The analysis makes use
of a stochastic analogue of the LaSalle invariance principle
for switching systems. Provided periodic connectivity of the
multiagent system occurs, we can conclude that the expected
value of the diameter of the multiagent system converges to
zero with probability one. Future work will be devoted to
study the effect of random graphs and multiagent connections
in probability. We will also investigate the possible extension
of the results to the sphere and its consequences for the
modified Kuramoto system.
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