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A distributed deterministic annealing algorithm

for limited-range sensor coverage

Andrew Kwok and Sonia Martı́nez

Abstract

This paper presents a distributed coverage algorithm for a network of mobile agents. Unlike previous

work that uses a simple gradient descent algorithm, here we employ an existing deterministic annealing

(DA) technique to achieve more optimal convergence values.We replicate the results of the classical

DA algorithm while imposing a limited-range constraint to sensors. As the temperature is decreased,

phase changes lead to a regrouping of agents, which is decided through a distributed task allocation

algorithm. While simple gradient descent algorithms are heavily dependent on initial conditions, an-

nealing techniques are generally less prone to this phenomena. The results of our simulations confirm

this fact, as we show in the manuscript.

I. INTRODUCTION

The ability to autonomously deploy over a spatial region, aswell as to dynamically adjust

to single-point failures, gives mobile networks an advantage over static ones. This prompts the

study of designing effective motion coordination algorithms for their unsupervised control [1]. A

key area of interest regarding mobile sensor networks is deployment to maximize coverage [2],

[3], [4], [5], [6].

However, most current methods for deployment, i.e. [2], [3], rely on gradient techniques

to converge to an extremum of a cost function. As a result, theresulting final value of the

cost function may not be the globally optimal one. Many annealing techniques exist to find

a better optimal value of a cost function. Of these techniques, there are simulated annealing

(SA) algorithms [7], as well as a more recent development, deterministic annealing (DA) [8].
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Unfortunately, these are centralized algorithms requiring global knowledge of the total state of

the system.

Annealing algorithms differ from standard gradient algorithms through the addition of a

temperature state. The goal, as in physical annealing, is togradually lower this temperature,

so that the internal configuration of the system is always at or near the lowest energy state.

The SA and DA techniques featurephase changesas the temperatures are lowered past certain

critical values, and we quantify these transitions for the distributed algorithm version.

A closely related work is that of Sharma et. al. [9]. The resulting algorithm discards information

of other agents and resources that are far from a given agent.However, the algorithm still requires

knowledge of all agents involved in the optimization to determine the information to discard.

In [10], SA was used to solve the clustering and formation control problems. That work

also considered limited-range interactions, however, punctual long-range communication between

agents was required. A cell decomposition of the environment had to be done a priori.

In this paper, we extend the DA algorithm of [8]. Here, we takethat discrete DA algorithm

to make it continuous in both space and time as well as spatially distributed. We strictly enforce

that an individual agent can only sense the presence of otheragents within a fixed radius. To

do so, we introduce a spatial partition of the environment, and use this to develop a distributed

local check of phase changes. Additionally, we introduce a task assignment algorithm to reassign

vehicles according to phase changes. With the limited-range constraint, we achieve very similar

results as in [8], [9]. Additionally, as this sensing radiusincreases, the algorithm recovers the

original DA algorithm.

The paper is organized as follows. In section II, we introduce the limited range coverage

problem, as well as provide an overview of the DA algorithm. In section III we derive the

gradient direction for a limited-range DA algorithm, and continue in Section IV to provide

a sufficient condition to distributively check for phase changes. We merge the two results in

Section V by describing an algorithm for a network of autonomous agents to implement that

includes a task allocation subroutine. We provide a simulation in Section VI as a proof of

concept, followed by some concluding remarks.
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II. NOTATION AND THE DA ALGORITHM

Let Q be a convex polytope inRd including its interior, and let‖ · ‖ denote the Euclidean

norm. We will useR≥0 to denote the set of positive real numbers. A mapφ : Q → R≥0, or a

distribution density function, will represent a measure of a priori known information thatsome

event takes place overQ. Equivalently, we considerQ to be the bounded support of the function

φ. We will also denote the boundary of a setS as∂S. The cardinality ofS is denoted as|S|.

The proposed limited-range distributed DA algorithm is based on formations of agents (with

leaders atp1, . . . , pn) that split during phase changes. The algorithm finishes with formations of

N single vehicles at positionsp1, . . . , pN . All agents have a limited sensing radiusRi, and they

can communicate with other agents that are2 maxiRi away. LetBi = {q ∈ Q | ‖pi− q‖ < Ri}

be an open ball of radiusRi aroundpi intersected withQ.

We now briefly describe the minimization process of the DA scheme as well as compare this

with the method in [2]. In [8], the end goal is to minimize adistortion function,

D =

∫

Q

φ(q)
n
∑

i=1

P(pi|q)fi(‖q − pi‖)dq , (1)

wherefi : R≥0 → R is a general metric (typicallyfi(x) = x2) andP(pi|q) is the probability of a

point q being associated with an agentpi. However, (1) is not directly minimized. The Shannon

entropy function is introduced:

H = −

∫

Q

φ(q)
n
∑

i=1

P(pi|q) log P(pi|q) , (2)

and the DA algorithm is a discrete-time algorithm that involves the minimization of the La-

grangianF = D − TH, whereT is the temperature of the system. As temperature decreases,

minimizingF becomes more similar to minimizingD. The association probabilitiesP(pi|q) are

derived fromP
∗(pi|q) = argmin

P(pi|q) F . Then, the resultingP∗(pi|q) are substituted intoF to

yield F̂ , and the optimal agent locations are given byp∗i = argminpi
F̂ .

As temperature decreases, the system undergoesphase changes. A phase change occurs when

an equilibrium positionp∗i is no longer attractive in the presence of more than one sufficiently

close agent. Rose in [8] provides a necessary and sufficient condition to detect phase changes,

and we will provide an analogous check in the limited-range case.
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In contrast the objective in [2] was to minimize (1) with trivial association probabilities

determined by a Voronoi partition ofQ. That is, the probability ofq ∈ Q being associated

to pi is 1 iff q is in its generalized Voronoi region.

As in [2], we choose to analyze the distributed DA coverage problem via general metrics

fi : R≥0 → R such thatfi is Lipschitz and non-decreasing. Let0 = Ri,0 < Ri,1 < · · · < Ri,mi
=

Ri be a finite sequence of radii. We assume that eachfi is of the form

fi(x) =

mi
∑

α=1

fi,α(x)1[Ri,α−1,Ri,α) , (3)

such that eachfi,α is differentiable and non-decreasing over[Ri,α−1, Ri,α). Additionally, we have

for all α, fi,α(Ri,α) = fi,α+1(Ri,α), which enforces continuity offi.

In what follows we will consider the limited-range heterogeneous analogues of the area-

maximizing and centroidal sensing metrics found in [2]. Thesensing functions are, respectively,

fa
i (x) =

[(

x

Ri

)c

− 1

]

1[0,Ri)(x) , (4)

fm
i (x) =

[

x2 − R2
i

]

1[0,Ri)(x) , (5)

wherec > 2.

III. L IMITED -RANGE DA L AGRANGIAN GRADIENT

In order to obtain a continuous-time version of the DA algorithm adapted to our coverage

problem, we compute the gradient of the LagrangianF with sensing functions (3) in this section.

To do so, we first start with a derivation of the association probabilities, and then introduce a

partition ofQ that takes advantage of the limited-range nature of agent sensors.

A. Limited-range association probabilities

Similar to the original DA algorithm, we consider each pointq ∈ Q to have some probability

of being associated with an agent atpi. The probabilities,P(pi|q) i ∈ {1, . . . , n}, satisfy the

following constraint for allq ∈ Q:
n
∑

i=1

P(pi|q) = 1 . (6)
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Lemma 1:The association probability distribution that minimizesF = D − TH and satis-

fies (6) is the Gibbs distribution

P(pi|q) =
exp

[

−fi(‖q−pi‖)
T

]

Z(q)
, i ∈ {1, . . . , n} , (7)

where the normalizing factor is:

Z(q) =

n
∑

i=1

exp

[

−
fi(‖q − pi‖)

T

]

. (8)

Proof: Following the DA derivation, we seek to minimizeF = D − TH first with respect

to P(pi|q) subject to (6). We employ the conservation of mass formula found in [2] to compute

derivatives. Starting with (1),

∂D

∂P(pi|q)
=

∫

Q

φ(q)fi(‖q − pi‖)dq +

∫

∂Q

φ(γ)
∑

i

P(pi|γ)fi(‖γ − pi‖)n
T (γ)

�
�

�
�

�>
0

∂γ

∂P(pi|q)
dγ

=

∫

Q

φ(q)f(‖q − pi‖)dq .

Performing the same differentiation on (2),

∂H

∂P(pi|q)
= −

∫

Q

φ(q)[log P(pi|q) + 1]dq .

To solve the constrained minimization problem, we use the Lagrange multipliers technique.

Let G =
∑n

i=1 P(pi|q)− 1. In this way, ∂G
∂P(pi|q)

= 1. We then solve for

∇F = λ∇G , (9)

G = 0 . (10)

Let A =
∫

Q
φ(q)dq, thenλ(∇G)i =

∫

Q
1
A
φ(q)λdq. Starting with (9), we have

∫

Q

φ(q)

[

fi(‖q − pi‖) + T log P(pi|q) + T −
λ

A

]

dq = 0 .

The above is true if for allq ∈ Q,

0 = fi(‖q − pi‖) + T log P(pi|q) + T −
λ

A

P(pi|q) = exp

[

λ

AT
− 1−

fi(‖q − pi‖)

T

]

.
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Substituting the above into (10) results in

exp

[

λ

AT
− 1

]

=
1

∑n
i=1 exp

[

−fi(‖q−pi‖)
T

] ,

and we can extract the results (7) and (8).

Remark 2:The functionZ(q) is continuous since eachfi is Lipschitz. This observation proves

to be important for simplifying the analysis in future sections.

We can take the result (7) and substitute it back intoF :

F̂ =

∫

Q

φ(q)

[

∑

i

P(pi|q)fi(‖q − pi‖) + TP(pi|q)

(

−
fi(‖q − pi‖)

T
− logZ(q)

)]

dq

= −T

∫

Q

φ(q) logZ(q)dq , (11)

where we use the fact that
∑n

i=1 P(pi|q) = 1.

B. Limited-range partition

For further analysis, it is advantageous to partitionQ such thatZ(q) is differentiable over

each region of this partition. We start by assuming that eachsensing functionfi has the form

from (3). We can define the set

Ai,α = {q ∈ Q ‖ Ri,α−1 ≤ ‖q − pi‖ < Ri,α} . (12)

This is the annulus centered atpi with inner radiusRi,α−1 and outer radiusRi,α.

There areM =
∑n

i=1mi of these sets, so we can equivalently enumerate theAi,α asAi for

i ∈ {1, . . . ,M}. Additionally, letβ be the set of binary sequences of lengthM , i.e.: eachbk ∈ β,

k ∈ {1, . . . , 2M} is a finite sequence of zeros and ones.

Proposition 3: Let {Dk} be a collection of sets such that for eachbk ∈ β,

Dk =

M
⋂

i=1

{Ai if bk,i = 1 ;AC
i if bk,i = 0} . (13)

Then,{Dk} forms a partition ofQ andZ(q) is continuously differentiable in eachDk.

Proof: We show that{Dk} forms a partition by verifying that: (i)
⋃

k Dk = Q, and (ii)

Dk ∩Dℓ = ∅ for k 6= ℓ.

For the first criterion, by definition of the setsAi, for any q ∈ Q it is true thatq ∈ Ai∗ for

somei∗ ∈ I∗ ⊆ {1, . . . ,M}. Then consider the binary sequencebk such thatbk,i = 1 for each
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i ∈ I∗. Then by definition of the regions (13),q ∈ Dk. Sinceq is arbitrary, every pointq ∈ Q

lies in someDk, and soQ =
⋃

k Dk.

For the next criterion, take two different regionsDk and Dℓ. They are formed from the

intersections

Dk =

M
⋂

i=1

{Ai if bk,i = 1 ;AC
i if bk,i = 0} , Dℓ =

M
⋂

i=1

{Ai if bℓ,i = 1 ;AC
i if bℓ,i = 0} ,

respectively. Becausek 6= ℓ, the sequencesbk 6= bℓ. Thus, for some indexi∗, bk,i∗ 6= bℓ,i∗. Wlog,

supposebk,i∗ = 1 and bℓ,i∗ = 0. Then we have

Dk ∩Dℓ =

[

⋂

i6=i∗

{Ai if bk,i = 1 ;AC
i if bk,i = 0} ∩ Ai∗

]

∩

[

⋂

i6=i∗

{Ai if bℓ,i = 1 ;AC
i if bℓ,i = 0} ∩AC

i∗

]

=

[

⋂

i6=i∗

{Ai if bk,i = 1 ;AC
i if bk,i = 0} ∩ {Ai if bℓ,i = 1 ;AC

i if bℓ,i = 0}

]

∩
(

Ai∗ ∩A
C
i∗

)

= ∅ .

We have verified both properties, therefore{Dk} is a partition ofQ.

Next we show that the functionZ(q) is continuously differentiable over eachDk. From the

definition (8), and assumption of the form offi in (3), we can write

Z(q) =
n
∑

i=1

mi
∑

α=1

exp

[

−
fi,α(‖q − pi‖)1[Ri,α−1,Ri,α)(‖q − pi‖)

T

]

. (14)

Additionally, each of thefi,α are differentiable over the annulus centered atpi with inner and

outer radii ofRi,α−1 andRi,α, respectively. Because theDk are defined as the intersection of a

subset of these annuli,Z(q) is the sum of the same set of continuously differentiablefi,α over

each regionDk. Thus,Z(q) is continuously differentiable over eachDk.

In the next section, we will useBk to refer to the indices of the pointspi which form the

regionDk. That is,

Bk = {i ∈ {1, . . . , n} | ‖q − pi‖ < Ri, ∀ q ∈ Int(Dk)} .

The regionsDk also have a convenient relation to eachBi.

Proposition 4: LetAi,α be the annulus centered atpi with inner radiusRi,α−1 and outer radius

Ri,α. Each annulusAi,α is exactlycovered by a subcollection of{Dk}. We denote the indices

of this subcollection asCi,α such thatAi,α =
⋃

k∈Ci,α
Dk.
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p1

p2

D0
D1

D2
D3

D4

D5

Variable Description

A1,2 D1 ∪D4

B1 {1}

B4 {1, 2}

C1 {1, 2, 3, 4}

C1,1 {2, 3}

C1,3 {0, 5}

C2 {3, 4, 5}

C2,1 {3, 4, 5}

Fig. 1. Here we show an example for the notation we have introduced.

Proof: Since {Dk} is a partition ofQ, there exists a subcollection{Dk}k∈I such that

Ai ⊆
⋃

k∈I Dk. Let I be the smallest index set such that this is true. Then by definition we have

Dk ∩ Ai 6= ∅ for eachk ∈ I. Additionally, for each pointpi, the set of all annuli centered atpi

coversQ, see (12) and (3).

Now suppose there exists aDk such thatAi∩Dk andDk \Ai are both nonempty. Referencing

the definition ofDk in (13), thisDk must be formed from the intersection ofAi and another

annulus centered atpi, but with different radiiRi,α−1, Ri,α. This intersection, however, is empty,

and such aDk cannot exist.

Corollary 5: Each ballBi of radiusRi centered atpi is exactlycovered by a subcollection

of {Dk}. We denote the set of indices corresponding to this subcollection asCi such that

Bi =
⋃

k∈Ci
Dk. •

We now introduce notation that will facilitate the derivation of the gradient direction and

the critical temperature check. We have shown that a subset of {Dk} forms a partition of each

annulusAi,α in Proposition 4. Thus, for a particularDk, there may be portions of∂Dk that

are circular arcs centered atpi with inner radiusRi,α−1 and outer radiusRi,α. We denote these

circular arcs asArcs(i, k).
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C. Gradient formulation

The next step in the DA derivation is to optimize the Lagrangian F̂ with respect to sensor

positionspi. Each agent in the network will use this result in order to compute its gradient

direction.

Proposition 6: Given the Lagrangian (11), and sensing metrics of the form (3), the gradient

of (11) is:

∂F̂

∂pi

= −T
∑

k∈Ci

∫

Dk

φ(q)
1

Z(q)

∂Z

∂pi

dq . (15)

Proof: We begin by taking the following derivative (via the conservation of mass formula

in [2]):

∂F̂

∂pi
= −T

∑

k

[

∫

Dk

φ(q)
1

Z(q)

∂Z

∂pi
dq +

∫

∂Dk

φ(γk) logZ(γk)n
T (γk)

∂γk

∂pi
dγk

]

.

We now show the integrals over the boundaries∂Dk vanish when summed over allk. Each

γk that parametrizes the boundary ofDk is composed of circular arcs centered at variouspi. For

a particularpi, the derivative∂γk

∂pi
is nonzero only when theγk parametrizes an arc centered at

pi. Since eachArcs(i, k) is a fixed radius frompi,

∂γk

∂pi

=











I , γk ∈ Arcs(i, k) ,

0 , otherwise.

Thus, only the integral along the boundariesArcs(i, k) needs to be considered. The derivative

is now simplified to

∂F̂

∂pi
= −T

∑

k

[

∫

Dk

φ(q)
1

Z(q)

∂Z

∂pi
dq +

∫

Arcs(i,k)

φ(γk) logZ(γk)n
T (γk)dγk

]

.

Since each arc inArcs(i, k) is part of the boundary∂Dk, Each arc inArcs(i, k) is shared

between two regionsDk andDℓ. Thus, there will be two integrals over eachArcs(i, k): one

from Dk and one fromDℓ. For these two integrals, the normal vectorn(γk) will be equal and

opposite. Additionally the functionZ(q) is continuous overQ, so the sum of these two integrals

will be zero. The derivative is simplified to

∂F̂

∂pi
= −T

∑

k

∫

Dk

φ(q)
1

Z(q)

∂Z

∂pi
dq .
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We now show that the derivative∂Z
∂pi

is zero ifq /∈ Bi. Recall from the limited-range assumption

that each sensing functionfi,α(x) is a constant ifx ≥ Ri. ThereforeZ as in (14) has no

dependence onpi if ‖q − pi‖ ≥ Ri. With this realization, we obtain the result (15).

Observe that the setV can be included as part of the integrals because it consists of isolated

points.

Remark 7:For the area-maximizing case (4), we begin by computing the derivative ∂Z
∂pi

.

∂Z

∂pi
=

n
∑

j=1

∂

∂pi
exp

[

−
fa

j (‖q − pj‖)

T

]

= −
1

T

∂

∂pi
[fa

i (‖q − pi‖)] exp

[

−
fa

i (‖q − pi‖)

T

]

.

As an aside, we have the following result:

∂

∂pi
[‖q − pi‖

c] =
∂

∂pi

[

(

(q − pi)
T (q − pi)

)c/2
]

=
c

2

(

‖q − pi‖
2
)c/2−1 ∂

∂pi

[

‖q‖2 − 2qTpi + ‖pi‖
2
]

= c‖q − pi‖
c−2(pi − q)

T .

Then using the above result when taking the derivative of (4), we obtain the following gradient

expression

∂F̂

∂pi

= −T
∑

k∈Ci

∫

Dk

φ(q)
c‖q − pi‖

c−2

Rc
iT

(q − pi)
T
P(pi|q)dq

= −
c

Rc
i

∑

k∈Ci

∫

Dk

φ(q)‖q − pi‖
c−2(q − pi)

T
P(pi|q)dq . (16)

Here we see that the weight‖q − pi‖
c−2 serves to amplify the densityφ for points close to

the boundary ofBi while neglecting the value ofφ close topi for large c. This achieves the

area-maximizing effect that we seek. •

Remark 8:We can compute the derivative∂Z
∂pi

using the sensing function (5) in a similar

manner. We then obtain the gradient (15) to be:

∂F̂

∂pi
= −2

∑

k∈Ci

∫

Dk

φ(q)(q − pi)
T
P(pi|q)dq . (17)

This is similar to the gradient expression for the mixed coverage case in [2], with the addition

of the association probabilitiesP(pi|q) as an extra weighting factor. •
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D. Constant factor approximation

Thus far, we have developed a gradient direction for agents to follow in order to minimize (11),

which for low temperatures, minimizes the underlying distortion function (1). We now relate how

minimizing (11) formaxiRi < diam(Q) bears some relation to minimization of (11) for when

Ri > diam(Q) for all i. In other words, we demonstrate the relation between the gradient-descent

of the limited-range DA algorithm with the gradient descentof the original DA algorithm.

We compare the mixed case (5) as this is most similar to the distance metric found in [8],

F0 = −T

∫

Q

φ(q) logZ0(q)dq , Z0(q) =
∑

i

exp

[

−
‖q − pi‖

2

T

]

. (18)

This proposition makes it clear that minimization of (11) isequivalent to minimization of the

analogous function in the original DA case as sensing radii increase.

Proposition 9: Let F0 be defined as in (18). Additionally, let̂F be defined as from (11). Then,

the following is true:

F̂ + min
i
R2

i ≤ F0 ≤ F̂ + diam2(Q) . (19)

Proof: Let fi(x) = x2 and letfm
i (x) be defined as in (5). Additionally, letα = miniRi and

d = diam(Q). Then it is true that−fm
i (x)−d2 ≤ −fi(x) ≤ −f

m
i (x)−α2. Since the exponential

and logarithmic functions are monotonic increasing, the following statements hold:

∑

i

exp

[

−
fm

i (x) + d2

T

]

≤
∑

i

exp

[

−
fi(x)

T

]

≤
∑

i

exp

[

−
fm

i (x) + α2

T

]

,

−
d2

T
+ log

∑

i

exp

[

−
fm

i (x)

T

]

≤ log
∑

i

exp

[

−
fi(x)

T

]

≤ −
α

T
+ log

∑

i

exp

[

−
fm

i (x)

T

]

.

Substitute each of these into the expression forF to obtain:

−T

∫

Q

φ(q)

[

−
α2

T
+ logZ(q)

]

dq ≤ −T

∫

Q

φ(q) logZ0(q)dq ≤ −T

∫

Q

φ(q)

[

−
d2

T
+ logZ(q)

]

dq .

The result (19) follows sinceφ can be normalized overQ.

IV. L IMITED -RANGE DA PHASE CHANGES

As temperature decreases, the equilibrium points ofF̂ under the evolution of (15) become

unstable. When this happens a phase change occurs and we say that we have reached a critical

temperature. We present a sufficient condition for agents toindividually check if they have
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reached a critical temperature value under both area-maximizing and mixed centroidal-area

coverage.

Using a similar argument as in [8], we enlarge the group of leaders{p1, . . . , pn} with a set of

virtual agents{pn+1, . . . , pl} so that for allj ∈ {n+ 1, . . . , l}, pj = pi for somei ∈ {1, . . . , n}.

Then we introduce perturbationsΨ = (ψ1, . . . , ψl) ∈ R
2l. Given a scaling factorǫ, consider the

perturbed agent locations,xi = pi + ǫψi, for i ∈ {1, . . . , l}. Critical points ofF̂ correspond to

configurations wheredF̂ (x1,...,xl)
dǫ

∣

∣

∣

ǫ=0
= 0. However, those configurations fail to be a minimum

when the second derivatived
2F̂

dǫ2

∣

∣

∣

ǫ=0
≤ 0. We now find the second derivative. Consider the partition

{Dk} associated with the{xi}, i ∈ {1, . . . , l}. The first derivative of the Lagrangian (11) with

respect toǫ is

dF̂

dǫ
= −T

∑

k

[

∫

Dk

φ(q)
1

Z(q)

∂Z

∂ǫ
dq +

∫

∂Dk

φ(γk) logZ(γk)n
T (γk)

∂γk

∂ǫ
dγk

]

.

Using the same reasoning as before when computing the gradient (15), the integrals over the

boundaries∂Dk cancel when summed over allk. Taking another derivative with respect toǫ,

d2F̂

dǫ2
= −T

∑

k

{

∫

Dk

φ(q)

[

−
1

Z2(q)

(

∂Z

∂ǫ

)2

+
1

Z(q)

∂2Z

∂ǫ2

]

dq

+

∫

∂Dk

φ(γk)
1

Z(γk)

∂Z

∂ǫ
nT (γk)

∂γk

∂ǫ
dγk

}

. (20)

Unfortunately, the same convenient cancellation of the boundary terms may not occur here.

Since eachfi(x) is only Lipschitz, andZ(q) is composed of a sum of exponential offi, Z(q)

is also only Lipschitz. The derivative ofZ evaluated at one side of the boundary∂Dk may not

be the same as it is evaluated on the other side.

Let yi = q − xi to reduce the amount of notation. The derivativedZ
dǫ

is computed as follows:

dZ

dǫ
=

l
∑

i=1

mi
∑

α=1

−
1

T

∂fi,α

∂ǫ
exp

[

−
fi,α(‖yi‖)1[Ri,α−1,Ri,α)(‖yi‖)

T

]

1[Ri,α−1,Ri,α)(‖yi‖) .

Again note that this derivative may not be continuous if∂fi,α

∂ǫ
is not continuous. In a particular

regionDk, the above simplifies to

dZ

dǫ
=
∑

j∈Bk

−
1

T

∂fj,α

∂ǫ
exp

[

−
fj,α(‖yj‖)

T

]

. (21)

This is because the indicator function evaluates to zero if‖yi‖ = ‖q − xi‖ ≤ Ri, and the index

setBk captures all suchxi that satisfy this condition. It should be noted that theα in fi,α may
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vary. Thisα indexes the sensing metric associated with an annulus centered at an agentxj . Since

the regionDk is fixed, the associated annulus index corresponding to the regionDk may change

for variousj ∈ Bk.

Continuing, the second derivative is:

d2Z

dǫ2
=
∑

j∈Bk

{[

(

1

T

∂fj,α

∂ǫ

)2

−
1

T

∂2fj,α

∂ǫ2

]

exp

[

−
fj,α(‖yj‖)

T

]

}

. (22)

Sinceyi = q − pi − ǫψi, using the chain rule,∂fi,α

∂ǫ
= −ψT

i
∂fi,α

∂yi
and ∂2fi,α

∂ǫ2
= ψT

i
∂2fi,α

∂y2

i

ψi.

We substitute the results (21) and (22) into (20), and note that 1
Z

exp
[

−fi,α

T

]

= P(xi|q) to

get:

d2F̂

dǫ2
= −T

∑

k

{

∫

Dk

φ(q)

(

−
1

T 2

(

∑

j∈Bk

∂fj,α

∂ǫ
P(xj |q)

)2

+
∑

j∈Bk

[

(

1

T

∂fj,α

∂ǫ

)2

−
1

T

∂2fj,α

∂ǫ2

]

P(xj |q)

)

dq

−
1

T

∫

∂Dk

φ(γk)
∑

j∈Bk

(

∂fj,α

∂ǫ
P(pj |γk)

)

nT (γk)
∂γk

∂ǫ
dγk

}

. (23)

The check for critical temperature is to numerically compute d2F̂
dǫ2

∣

∣

∣

ǫ=0
at an equilibrium con-

figuration. The equilibrium configurations occurs when∂F̂
∂pi

= 0 for all i, or equivalently,

when dF̂
dǫ

∣

∣

∣

ǫ=0
= 0. If the second derivative is negative, then the equilibriumconfiguration is

unstable, and that signifies that we are below a critical temperature value. To simplify the critical

temperature check and make it spatially distributed, we consider the following perturbation. Let

Si ⊆ {1, . . . , m} be such thatj ∈ Si implies pj = pi. We defineΨi to be

Ψi =
{

(ψ1, . . . , ψm) | ψj = 0, ∀ j /∈ Si;
∑

j∈Si

ψj = 0
}

. (24)

If the critical temperature has not yet been reached, then these coincident agents (i.e., leaders

and virtual agents) will remain together. Otherwise, the coincident agents are at an unstable equi-

librium point, and any perturbation will force them apart. By using this particular perturbation,

we will obtain a sufficient condition for critical temperature. We will now take the above results

and consider the metric functions (4) and (5).
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A. Area metric

For the area-maximizing metric, we present the following check for critical temperature.

Proposition 10: Critical temperature for the area-maximizing DA algorithmhas been reached

if for i ∈ {1, . . . , n}, any of the following matricesFi are negative definite:

Fi =
∑

k∈Ci

∫

Dk

φ(q)P(pi|q)

([

(c− 2)−
c‖q − pi‖

c

TRc
i

]

(q − pi)(q − pi)
T + ‖q − pi‖

2I

)

dq , (25)

and ṗi = 0 for all i ∈ {1, . . . , n}.

Proof: With this choice of perturbations, consider the case using the area metricfa
i from (4).

We fix an i such that the perturbation (24) is true and computed2F̂
dǫ2

∣

∣

∣

ǫ=0
using (23).

The derivatives∂fa
i

∂yi
and ∂2fa

i

∂y2

i

are:

∂fa
i

∂yi
=

1

Rc
i

c

2
(‖yi‖

2)c/2−1(2yT
i ) =

c

Rc
i

‖yi‖
c−2yT

i ,

∂2fa
i

∂y2
i

=
c

Rc
i

( c

2
− 1
)

(‖yi‖
2)c/2−2(2yi)y

T
i +

c

Rc
i

‖yi‖
c−2I

=
c

Rc
i

‖yi‖
c−4
[

(c− 2)yiy
T
i + ‖yi‖

2I
]

.

Since yi = q − pi − ǫψi, when ǫ = 0, yj = q − pj for all j ∈ Si. However, sincepj = pi,

yj = q − pi for all j ∈ Si. Similarly, the association probabilitiesP(xj |q) = P(pi|q) for all

j ∈ Si.

When considering the perturbations (24) on (23), we note thefollowing simplification. In (23),

there is a sum overj ∈ Bk involving the first and second derivatives,∂fj,α

∂ǫ
= ψj

∂fj,α

∂yj
and

∂2fj,α

∂ǫ2
= ψT

j
∂2fj,α

∂y2

j

ψj respectively. However, ifj /∈ Si thenψj = 0. Therefore instead of summing

over j ∈ Bk, we can equivalently sum overj ∈ Si.
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With the above results, the second derivative (23) evaluated at ǫ = 0 can be simplified as

follows:

d2F̂

dǫ2

∣

∣

∣

∣

∣

ǫ=0

= −T
∑

k∈Ci

{

∫

Dk

φ(q)

(

−
1

T 2



−
c‖q − pi‖

c−2

Rc
i

(q − pi)
T
P(pi|q)

�
�
�
��
0

∑

j∈Si

ψT
j





2

+
∑

j∈Si

[

(

1

T

∂fj,α

∂ǫ

)2

−
1

T

∂2fj,α

∂ǫ2

]

P(pi|q)

)

dq

−
1

T

∫

∂Dk

φ(γk)



−
c‖γk − pi‖

c−2

Rc
i

(γk − pi)
T
P(pi|γk)

�
�
�
��
0

∑

j∈Si

ψT
j



nT (γk)
∂γk

∂ǫ
dγk

}

= −T
∑

k∈Ci

{

∫

Dk

φ(q)

(

∑

j∈Si

[

(

1

T

∂fj,α

∂ǫ

)2

−
1

T

∂2fj,α

∂ǫ2

]

P(pi|q)

)

dq

= −
∑

j∈Si

∑

k∈Ci

∫

Dk

φ(q)P(pi|q)

[

1

T

(

−
c‖q − pi‖

c−2

Rc
i

ψT
j (q − pi)

)2

− ψT
j

c

Rc
i

‖q − pi‖
c−4
[

(c− 2)(q − pi)(q − pi)
T + ‖q − pi‖

2I
]

ψj

]

dq .

Factoring outψj from the left and right sides and using the substitution (25), the second

derivative evaluated atǫ = 0 is:

d2F̂

dǫ2

∣

∣

∣

∣

∣

ǫ=0

=
c‖q − pi‖

c−4

Rc
i

∑

j∈Si

ψT
j Fiψj .

It is clear now that in order for an equilibrium configurationto be stable in the area-maximizing

case, the matrix quantity in (25) must be positive definite.

B. Mixed metric

We perform the same analysis for the mixed centroidal-area coverage sensing metric (5). This

metric is most similar to that found in [8] and [9].

Proposition 11: Critical temperature for the centroidal-area DA algorithmhas been reached

if for i ∈ {1, . . . , n}, any of the following matricesFi are negative definite:

Fi =
∑

k∈Ci

∫

Dk

φ(q)P(pi|q)

[

I −
2

T
(q − pi)(q − pi)

T

]

dq , (26)

and ṗi = 0 for all i ∈ {1, . . . , n}.
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Proof: The derivatives∂fm
i

∂yi
and ∂2fm

i

∂y2

i

, when‖yi‖ ≤ Ri, are:

∂fm
i

∂yi

= 2yT
i

∂2fa
i

∂y2
i

= 2I .

Since yi = q − pi − ǫψi, when ǫ = 0, yj = q − pi for all j ∈ Si. Similarly, the association

probabilitiesP(xj |q) = P(pi|q) for all j ∈ Si. Therefore, with the perturbations (24) and the

mixed metric (5), the second derivative (23) evaluated atǫ = 0 can be simplified as follows:

d2F̂

dǫ2

∣

∣

∣

∣

ǫ=0

= −T
∑

k∈Ci

{

∫

Dk

φ(q)

(

−
1

T 2



−2(q − pi)
T
P(pi|q)

�
�
�
��
0

∑

j∈Si

ψj





2

+
∑

j∈Si

[

(

−
2

T
ψT

j (q − pi)

)2

−
2

T
ψT

j Iψj

]

P(pi|q)

)

dq

−
1

T

∫

∂Dk

φ(γk)



−2P(pi|γk)(γk − pi)
T

�
�
�
��
0

∑

j∈Si

ψj



nT (γk)
∂γk

∂ǫ
dγk

}

= −
∑

k∈Ci

{

∫

Dk

φ(q)P(pi|q)

[

4

T

∑

j∈Si

(

−ψT
j (q − pi)

)2
− 2ψT

j Iψj

]

dq

}

= 2
∑

j∈Si

∑

k∈Ci

∫

Dk

φ(q)P(pi|q)

[

ψT
j Iψj −

2

T

(

ψT
j (q − pi)

)2
]

dq .

Factoring outψj from the left and right sides and using the substitution (26), the second

derivative evaluated atǫ = 0 is:

d2F̂

dǫ2

∣

∣

∣

∣

∣

ǫ=0

= 2
∑

j∈Si

ψT
j Fiψj .

It is clear now that in order for an equilibrium configurationto be stable in the area-maximizing

case, the matrix quantity in (26) must be positive definite.

V. D ISTRIBUTED IMPLEMENTATION

We have so far demonstrated how a network of agents can descend the gradient and check

for phase changes in a distributed DA algorithm. However, westill must provide a distributed

method for implementing these phase changes.

The DA algorithm begins with one active agent, and the other agents moving in formation

with it. A formation will split in two if its critical temperature is reached. The agents following
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Algorithm 1: Distributed DA algorithm for each agent
T ← initial temperature

while T > Tmin or n < N do

while floodMax(‖ṗi‖) > ǫ) do
ṗi ← −computeGradient()

end

if checkSplit()== true then flood(“Tc reached”)

if received “Tc reached” then
doTaskAssign()N − n times

end

T ← αT
end

doNormalCoverage()

in formation are divided evenly between the current formation leader and a new formation leader.

After the first phase change, it is possible that future phasechanges occur at an agent who is

by itself. Therefore, this agent must communicate its desire for an additional companion, and

the network of agents must distributively assign an inactive agent to this task. We propose a

task-assignment algorithm to accomplish this.

We provide a possible scheme under the following assumptions: (1) Agents have knowledge

of the total number of formationsn and the total number of agentsN , (2) The communication

graph between all active agents is connected, (3) Each active agent knows the number of inactive

agents traveling with it, and (4) All agents have knowledge of the initial temperature, and the

cooling factorα.

Connectivity of the communication graph is important because both the temperature and the

total number of active agents must be constant across all agents. We assume that if the graph is

connected, the agents can agree on the current temperature,and determine through a flooding

algorithm (see [11]) the number of active agentsn at any point in time. Additionally, agents

must wait for the flooding algorithms to terminate; the worstcase is proportional to the diameter

of the communication graph.

The scheme also uses primitives for flooding or agreement over the network to acquire global
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Algorithm 2: Task assignment algorithm for each agent
ai ← number of agents in formation

if checkSplit() == truethen

if ai == 0 then
flood(“need companion atpi”)

M ← positionspj of replies for help

if mi == null, ∀mi ∈M then
return

else
J ← sortAscending({‖pi − pj‖}, j ∈M)

j∗ ← removeFirst(J)

sendMsg(“request companion”,j∗)

flood(“incrementn by 1”)

end

else
split formation evenly

flood(“incrementn by 1”)

end

else // no splitting at pi

M ← received companion requestspj

J ← sortAscending({‖pi − pj‖}, j ∈M)

if ai == 0 then
sendMsg(null,∀ j ∈ J)

else

while length(J)> 0 and ai > 0 do
j∗ ← removeFirst(J)

sendMsg(“help available frompi”, j∗)

ai ← ai − 1

end

end

end
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information. We defineflood(msg) to be an algorithm that floods a message over the entire

network, such that after its completion, each active agent will have knowledge ofmsg (possibly

the null message). Messages to a particular agenti can be sent withsendMsg(msg, i).

We also definefloodMax(xi) as a flooding method to determinemaxi∈{1,...,n} xi over the

entire network as in [11]. We letcomputeGradient() be the function that computes (15),

and we letcheckSplit() be the function that determines if a critical temperature has been

reached as in (25) and (26). Finally, we introducedoNormalCoverage() to mean to perform

limited-range coverage as from [2].

The distributed DA algorithm can informally be described asfollows, see Algorithm 1. Starting

with a single formation, and a high initial temperature, formations descend the gradient (15).

When all agents agree they are stationary, they individually check for phase changes and, if

necessary, implement Algorithm 2N − n times to guarantee the assignment of all companion

requests. The temperature is lowered, regardless of whether or not there was a phase change,

and the gradient descent is continued. This process repeatsuntil the system temperature is below

a minimum temperature thresholdTmin or if n = N . Once this happens, the agents perform the

normal coverage algorithm described in [2], as this is equivalent to havingT = 0.

Algorithm 2 outlines the task assignment algorithm for agents who are in need of a companion

to split. Roughly speaking, there are three rounds of communication where an agent broadcasts

its need for a companion, other agents reply if they can help,and finally a handshake is formed

with the agent transfer. In this algorithm,n is incremented for every new formation, and this

command is flooded over the network. This algorithm has a finite termination time upper bounded

by 3n + n(N − n) messages passed.

VI. SIMULATIONS

We present a simulation of the limited-range DA algorithm using the area-maximizing sensing

function (4) in Figure 2. The total number of agents isN = 8 and the square regionQ has

length10 per side. Each agent has a sensing radius ofR = 2. The initial temperature isT = 10

and the annealing factorα = 0.9 in this simulation.

As the temperature decreases, we see the agents split and continue to increase coverage area.

Once the minimum temperature is reached, the coverage algorithm of [2] is conducted, and

Figure 2 (f) shows the limited-range Voronoi partitions separating each agent.
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Fig. 2. A typical run of the limited-range DA algorithm. Agents are labeled in (a)-(f) and the number of agents in formation

are contained in parenthesis in (a)-(e). The temperatures begin atT = 10 (a), then decrease:T = 0.15 (b), T = 0.12 (c),

T = 0.1 (d), T = 0.01 (e). The final panel (f) shows the result of running normal coverage starting from the configuration of

(e).

To compare this algorithm with the normal limited-range (area) coverage algorithm in [2], we

conducted100 simulations of the normal coverage algorithm and compared the cost function (1)

for T = 0. Eight agents with sensing radiusR = 2 were uniformly and randomly distributed

overQ. Over the100 runs, the minimum area covered was93.5% of the total area, the maximum

was96.4% and the mean was95.9%. The limited-range DA algorithm had a final coverage area

of 96.1%. For the particularφ in Figure 2, the normal (area) coverage simulations show howthe

final cost has dependence on initial conditions. However, the distributed DA algorithm converged

to the same cost over many random initial conditions.

Next, we present a simulation of the limited-range DA algorithm using the mixed centroidal-

area sensing function (5). The total number of agents isN = 6 and the square regionQ has

length10 per side. We will demonstrate the performance of the DA algorithm versus a normal

Lloyd-type gradient descent found in [2] as sensing radius decreases.

We first consider the limiting case where all agents can sensethe entire regionQ. We ran the
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Fig. 3. A typical run of the limited-range DA algorithm. Agents are labeled in (a)-(f) and the number of agents in formation

are contained in parenthesis in (a)-(e). The temperature begins atT = 20, then decrease:T = 13.1 (a), T = 12.5 (b), T = 2.4

(c), T = 2.1 (d), T = 0.5 (e). The final panel (f) shows the result of running the normalgradient-descent coverage starting

from the configuration of (e).

(a) (b)

Fig. 4. A comparison between the best-case performance of the Lloyd-like gradient decent (left) with a cost of10.64, to the

worst-case (right) with a cost of18.19.

DA algorithm once, since the initial condition does not influence the outcome of the convergence.

For comparison, we ran50 simulations starting from random initial conditions of theLloyd-like

algorithm. The DA algorithm converges to the optimal cost of10.64 regardless of initial condition

in Figure 3. On the other hand, the Lloyd-like gradient descent achieved this final configuration

only 4 of the 50 tries. The worst simulation converged to a final cost of18.19, see Figure 4.
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Fig. 5. A typical run of the limited-range DA algorithm withR = 4. Agents are labeled in (a)-(f) and the number of agents in

formation are contained in parenthesis in (a)-(e). The temperature begins atT = 20, then decrease:T = 2.2 (a), T = 2.1 (b),

T = 2.0 (c), T = 1.9 (d), T = 0.1 (e). The final panel (f) shows the result of running the normalgradient-descent coverage

starting from the configuration of (e).

(a) (b)

Fig. 6. A comparison between the best-case performance of the Lloyd-like gradient decent (left), to the worst-case (right). The

sensing radius for all agents isR = 4.

The average final cost of the50 simulations was15.4.

Now we consider smaller sensing radii to see how the DA algorithm performs. A sensing range

of R = 4 for each agent was sufficiently large for the DA algorithm to converge to the final

configuration shown in Figure 5 regardless of initial position. Next,50 trials of the Lloyd-like

gradient descent were computed. The DA algorithm convergesto the minimum cost of−277.5
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Fig. 7. Two runs of the limited-range DA algorithm withR = 3. In (a)–(c), the temperature begins atT = 20 and decreases:

T = 2.2 (a), T = 0.8 (b), with a final configuration in (c). Similarly in (d)–(f), the temperature begins atT = 20 and decreases:

T = 2.0 (d), T = 0.5 (e), with a final configuration in (f).

(a) (b)

Fig. 8. A comparison between the best-case performance of the Lloyd-like gradient decent (left), to the worst-case (right). The

sensing radius for all agents isR = 3.

regardless of initial position whereas only3 of the 50 trials of the Lloyd-like gradient descent

achieve that cost. The worst case converged to a cost of−270.3 with a mean of−272.3. The

cost values are negative since the metric (5) has the−R2
i term. When inserted into the distortion

function (1), this creates large negative quantities.

We further reduce the sensing radius toR = 3, and perform similar trials. Due to the smaller
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Fig. 9. For initial conditions of the limited-range DA algorithm that start to the left of the thick black line, simulations converge

to the optimal solution.

(a) (b)

Fig. 10. A comparison between the best-case performance of the Lloyd-like gradient decent (left), to the worst-case (right) for

the symmetric Gaussian scenario. The sensing radius for allagents isR = 3.

sensing radius, initial conditions begin to influence the outcome of the DA algorithm. For this

particular choice ofφ, we have the two possible outcomes shown in Figure 7. The better outcome

of the DA attains a final cost of−151.5, while the worse outcome reaches a final cost of−110.5.

Over the50 random Lloyd-like gradient descent simulations, only2 reach the configuration shown

in 8, which is also 7 (c). The worst case of all50 trials was a cost of−103.5, with an average

of −135.3.

Further analysis of this scenario, however, demonstrates that the limited-range DA algorithm

still has an advantage over a normal gradient descent algorithm. Figure 9 shows the set of initial

conditions for which the limited-range DA algorithm converges to the best solution. Note that

over half of the possible initial condition locations leadsto the optimal solution while only4%

of the Lloyd-like gradient descent simulations achieved the same final cost.

The limited-range DA algorithm may have decreased performance versus a normal gradient-

descent algorithm. If sensing range is not large enough, as was observed in the previous example,
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(a) (b) (c)

(d) (e) (f)

Fig. 11. A demonstration of a heating and cooling cycle withR = 3. Agents perform area-maximizing coverage (a), then

agents run the limited-range DA algorithm for high temperature,T = 20, (b)–(c). Finally, agents perform the usual limited-range

DA algorithm in (d)–(f).

the DA algorithm may fall into a local minimum. Consider the distribution shown in Figure 10,

where there are two equal Gaussians symmetrically placed atopposite corners ofQ. Almost

every simulation of the limited-range DA algorithm resultsin a final configurations like 10(a),

or its mirror image. This occurs because the DA algorithm begins with only one agent, and

this agent moves towards the nearest Gaussian that it sensesand stays there. Then, future phase

changes result in only adding more agents around the same Gaussian.

On the other hand, over50 trials of the Lloyd-like gradient descent with similar initial

conditions as before, we see an improved statistic. Only18 of the 50 simulations fell into

the worst-case minima of Figure 10(a). However, none of the simulations were able to converge

to the best configuration, which is having5 agents located around each Gaussian.

A possible way to address this problem of the limited-range DA algorithm is to consider a

heating and cooling cycle. Agents can deploy overQ using an area-maximizing technique. Thus,

agents will tend to move away from each other and cover all ofQ, as shown in Figure 11(a).

Then, the limited-range DA algorithm is run with a high temperature. This forces agents to
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collect together about denser parts ofQ, shown in Figure 11(b)–(c). Finally, the usual limited-

range DA coverage is run, causing agents to split evenly overthe important areas ofQ, as

in Figure 11(d)–(f). Note, however, that the communicationconnectivity requirement must be

modified so that an agent can communicate with any other agentin Q for this solution to work.

VII. CONCLUSIONS

We have introduced a limited-range and distributed implementation of the DA algorithm

developed by Rose, and applied it to the coverage problem. Wedeveloped limited-range results

that extend those in [8] and [9]. When the sensing radius is aslarge as the diameter ofQ, this

algorithm becomes the normal DA algorithm of Rose. While thelimited-range DA algorithm is

able to outperform a Lloyd-like gradient descent algorithmin many cases, the algorithm has its

limitations as sensing range decreases. Consideration of aheating and cooling cycle produces

improved results, but it is still an ad hoc solution to the underlying problem.
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