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A distributed deterministic annealing algorithm

for limited-range sensor coverage

Andrew Kwok and Sonia Mainmez

Abstract

This paper presents a distributed coverage algorithm fetwark of mobile agents. Unlike previous
work that uses a simple gradient descent algorithm, heremydoy an existing deterministic annealing
(DA) technique to achieve more optimal convergence valWéss.replicate the results of the classical
DA algorithm while imposing a limited-range constraint tensors. As the temperature is decreased,
phase changes lead to a regrouping of agents, which is detideugh a distributed task allocation
algorithm. While simple gradient descent algorithms aravilg dependent on initial conditions, an-
nealing techniques are generally less prone to this phemanieghe results of our simulations confirm

this fact, as we show in the manuscript.

I. INTRODUCTION

The ability to autonomously deploy over a spatial regionwadl as to dynamically adjust
to single-point failures, gives mobile networks an advgataver static ones. This prompts the
study of designing effective motion coordination algamithfor their unsupervised control [1]. A
key area of interest regarding mobile sensor networks itogleent to maximize coverage [2],
[3], [4]. [3], [6].

However, most current methods for deployment, i.e. [2], [@ly on gradient techniques
to converge to an extremum of a cost function. As a result,rédsalting final value of the
cost function may not be the globally optimal one. Many afingatechniques exist to find
a better optimal value of a cost function. Of these techrsquieere are simulated annealing

(SA) algorithms [7], as well as a more recent developmengrdenistic annealing (DA) [8].
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Unfortunately, these are centralized algorithms reqgigiobal knowledge of the total state of
the system.

Annealing algorithms differ from standard gradient algums through the addition of a
temperature state. The goal, as in physical annealing, gradually lower this temperature,
so that the internal configuration of the system is alwaysrabear the lowest energy state.
The SA and DA techniques featuphase changeas the temperatures are lowered past certain
critical values, and we quantify these transitions for treridbuted algorithm version.

A closely related work is that of Sharma et. al. [9]. The réaglalgorithm discards information
of other agents and resources that are far from a given agewever, the algorithm still requires
knowledge of all agents involved in the optimization to detme the information to discard.

In [10], SA was used to solve the clustering and formationt@drproblems. That work
also considered limited-range interactions, howevercpual long-range communication between
agents was required. A cell decomposition of the envirortrhad to be done a priori.

In this paper, we extend the DA algorithm of [8]. Here, we tafkat discrete DA algorithm
to make it continuous in both space and time as well as slyatistributed. We strictly enforce
that an individual agent can only sense the presence of atlamnts within a fixed radius. To
do so, we introduce a spatial partition of the environment| ase this to develop a distributed
local check of phase changes. Additionally, we introducas& tissignment algorithm to reassign
vehicles according to phase changes. With the limitedgamstraint, we achieve very similar
results as in [8], [9]. Additionally, as this sensing radinsreases, the algorithm recovers the
original DA algorithm.

The paper is organized as follows. In section II, we intradtice limited range coverage
problem, as well as provide an overview of the DA algorithm.slection 11l we derive the
gradient direction for a limited-range DA algorithm, andntiaue in Section IV to provide
a sufficient condition to distributively check for phase whas. We merge the two results in
Section V by describing an algorithm for a network of autooom agents to implement that
includes a task allocation subroutine. We provide a simain Section VI as a proof of

concept, followed by some concluding remarks.
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II. NOTATION AND THE DA ALGORITHM

Let Q be a convex polytope ifR? including its interior, and let| - || denote the Euclidean
norm. We will useR-, to denote the set of positive real numbers. A map) — Ry, or a
distribution density functionwill represent a measure of a priori known information teame
event takes place ové}. Equivalently, we considep to be the bounded support of the function
¢. We will also denote the boundary of a setasdS. The cardinality ofS is denoted asS)|.

The proposed limited-range distributed DA algorithm isdzhen formations of agents (with
leaders apy, .. ., p,) that split during phase changes. The algorithm finishek feitmations of
N single vehicles at positions, ..., py. All agents have a limited sensing radiits, and they
can communicate with other agents that areax; R; away. LetB; = {¢ € Q | ||p; — q|| < R;}
be an open ball of radiug; aroundp; intersected with).

We now briefly describe the minimization process of the DAesgh as well as compare this

with the method in [2]. In [8], the end goal is to minimizedastortion function
D= [ o0 3 Bwloilla ~nilia ®
=1

where f;: R>o — R is a general metric (typically;(x) = z*) andP(p;|q) is the probability of a
point ¢ being associated with an agent However, (1) is not directly minimized. The Shannon

entropy function is introduced:

= [ oto Z P(p1]q) log P(pilg) @

and the DA algorithm is a discrete-time algorithm that imesl the minimization of the La-
grangianF' = D — T H, whereT is the temperature of the system. As temperature decreases,
minimizing /' becomes more similar to minimizingG. The association probabilitié(p;|q) are

derived fromP*(p;|q) = argming,, ., F'. Then, the resulting”*(p;|q) are substituted intd" to

pilg
yield F', and the optimal agent locations are givenjly= argmin,, F.

As temperature decreases, the system undernguese change®A phase change occurs when
an equilibrium positiorp! is no longer attractive in the presence of more than one gritly
close agent. Rose in [8] provides a necessary and sufficerdition to detect phase changes,

and we will provide an analogous check in the limited-rangsec
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In contrast the objective in [2] was to minimize (1) with Al association probabilities
determined by a Voronoi partition af. That is, the probability of; € Q being associated
to p; is 1 iff ¢ is in its generalized Voronoi region.

As in [2], we choose to analyze the distributed DA coveragebl@m via general metrics
fi: R>o — R such thatf; is Lipschitz and non-decreasing. Let= R, < R;1 < -+ < Rjm, =
R; be a finite sequence of radii. We assume that e&adh of the form

fi(x) = Z fi,a(ﬁ)l[Ri,(x,l,Ri,a) ) 3)

such that eaclf; , is differentiable and non-decreasing oV&r .1, R; ). Additionally, we have
for all o, f;o(Ria) = fia+1(Ria), Which enforces continuity of;.
In what follows we will consider the limited-range heterogeus analogues of the area-

maximizing and centroidal sensing metrics found in [2]. Beasing functions are, respectively,
€T (&
o= (%) -1 tonte), @
fi'(x) = [2% = Ri] 1om) (@), (5)

wherec > 2.

Il. LIMITED-RANGE DA LAGRANGIAN GRADIENT

In order to obtain a continuous-time version of the DA altfori adapted to our coverage
problem, we compute the gradient of the Lagrangiawith sensing functions (3) in this section.
To do so, we first start with a derivation of the associationbpbilities, and then introduce a

partition of ) that takes advantage of the limited-range nature of ageTsoss.

A. Limited-range association probabilities

Similar to the original DA algorithm, we consider each pajnt () to have some probability
of being associated with an agentzat The probabilities[P(p;|q) i € {1,...,n}, satisfy the

following constraint for ally € Q:

> P(pilg) =1. (6)
i=1
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Lemma 1:The association probability distribution that minimiz€s= D — T'H and satis-
fies (6) is the Gibbs distribution

exp [_n(an—pzm]

Z(q)

P(piM): NS {1,...,”}, (7)

where the normalizing factor is:

Zexp[ filllg — pzll)] . ®)

Proof: Following the DA derivation, we seek to minimizé = D — T H first with respect
to P(p;|¢) subject to (6). We employ the conservation of mass formuleadoin [2] to compute

derivatives. Starting with (1),
0

)d d
%m /¢ ﬁMzwq+/¢ ) SRl - m><@%ﬁ§v
/¢ F(la - pill)da

Performing the same differentiation on (2),

OH
oPpila)

To solve the constrained minimization problem, we use thgravage multipliers technique.

/¢ )log P(pilg) + 1]dg

Let G =>" P(pilg) — 1. In this way, =7~ B]P’(p 7 = 1. We then solve for
VE = \VG, (9)
G=0. (10)
Let A= [, d(q)dg, then\(VG); = [, 36(q)Adg. Starting with (9), we have
/ch(q) [fi(Hq —pill) + Tlog P(pilq) + T — %] dg=0.

The above is true if for all € Q,

A
0= fi(llg = pill) + Tlog P(pilg) + T — —

A
P(pilg) = exp [AAT —1-— M} .
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Substituting the above into (10) results in

[ A 1] 1

eXP | =7 — == ] — )

AT 2?21 exp [_ fz(“quz||)i|

and we can extract the results (7) and (8). [ ]

Remark 2:The functionZ(q) is continuous since eacfy is Lipschitz. This observation proves
to be important for simplifying the analysis in future seat.

We can take the result (7) and substitute it back iAto

F:/Qéb(Q) _ filllg — pill)

ZP(piIQ)fz(llq—piH) +TIP’(pi\Q)< — 7 —logZ(q)> dg
— T / 6(q) log Z(q)dq. 1)
Q

where we use the fact that , P(p;|q) = 1.

B. Limited-range partition

For further analysis, it is advantageous to partiti@nsuch thatZ(q) is differentiable over
each region of this partition. We start by assuming that esising functionf; has the form

from (3). We can define the set

Ai,a = {q c Q H Ri,a—l S Hq _sz < Ri,a} . (12)

This is the annulus centered @twith inner radiusk; ,—, and outer radius?; ,.
There areM = """  m; of these sets, so we can equivalently enumeratedtheas A, for

i €{1,..., M}. Additionally, let 3 be the set of binary sequences of lengthi.e.: each, € 3,

ke {1,...,2M} is a finite sequence of zeros and ones.
Proposition 3: Let {D,} be a collection of sets such that for edghe g,
M
Dy = ({Aiif b; = 1; ACif by = 0} (13)

i=1
Then,{D,} forms a partition ofQ) and Z(q) is continuously differentiable in each;.
Proof: We show that{D,} forms a partition by verifying that: (i} J, Dr = @, and (ii)
DN D, =0 for k # ¢.
For the first criterion, by definition of the sett;, for anyq € Q it is true thatg € A;- for

somei* € I* C {1,...,M}. Then consider the binary sequerigesuch thath,;, = 1 for each

January 30, 2009 DRAFT



1 € I*. Then by definition of the regions (13),€ D,. Sinceq is arbitrary, every point € @)
lies in someDy, and soQ = |J, D.
For the next criterion, take two different regiods, and D,. They are formed from the

intersections
M M

Dy = ({Aiif by = 1; ACif b, =0}, Dy = [{Aiifby; = 1; ACif by = 0},

i=1 i=1
respectively. Becausk # ¢, the sequencels, # b,. Thus, for some index’, by ;- # by~ Wlog,

supposéy, ;~ = 1 andb, ;- = 0. Then we have

DN Dy = |[({Aiif bi = 1; AT if by = 0} N Age| 0

i

({Asifbe; = 1; AT if by = 0} N AL
iAi*

(V{Aif brs = 1; AT if by = 0} N {Aiif by = 15 A if by = 0}
iAi*

=0.

N (Ax N AY)

We have verified both properties, therefdrB,} is a partition of(.
Next we show that the functio&(¢) is continuously differentiable over eadh,. From the

definition (8), and assumption of the form @fin (3), we can write

- 7,0 ) 1 1,Ri) )
ZZ { fialllg = pill) [le,j rio)(la = pil) (14)
i=1 a=1

Additionally, each of thef; , are differentiable over the annulus centereg,awith inner and
outer radii ofR; ,—1 and R, ,, respectively. Because the, are defined as the intersection of a
subset of these annulf(q) is the sum of the same set of continuously differentiafyle over
each regionD,. Thus, Z(q) is continuously differentiable over eadb,. [ |

In the next section, we will us#, to refer to the indices of the poingg which form the

region Dy. That is,
B, = {Z c {1, .. .,n} | Hq —pi|| < R;,Vqe Int(Dk)} .

The regionsD,, also have a convenient relation to eah
Proposition 4: Let A, , be the annulus centeredatwith inner radiusk; ,—; and outer radius
R, .. Each annulus4,; , is exactlycovered by a subcollection dfD, }. We denote the indices

of this subcollection ag’; , such that4; , = Ukecm D
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Variable | Description

Ao | DU Dy
By | {1}
By | {1,2}
Cy | {1,2,3,4}
Cia | {2,3}
Cis | {0,5}

Do Cy | {3,4,5}
Co | {3,4,5}

Fig. 1. Here we show an example for the notation we have intred.

Proof: Since {D,} is a partition of ), there exists a subcollectiofiD; },c; such that
A; € Uier Di- Let I be the smallest index set such that this is true. Then by tlefinive have
D, N A; # () for eachk € 1. Additionally, for each poinp;, the set of all annuli centered at
covers(@, see (12) and (3).

Now suppose there exists/a. such that4; N D, and D, \ A; are both nonempty. Referencing
the definition of D, in (13), this D, must be formed from the intersection df and another
annulus centered at, but with different radiiR; ,_, R; . This intersection, however, is empty,
and such aD;, cannot exist. [ ]

Corollary 5: Each ball B; of radius R; centered ap; is exactlycovered by a subcollection
of {D;}. We denote the set of indices corresponding to this sulstalle as C; such that
Bi = Usec, Dr- ¢

We now introduce notation that will facilitate the derivati of the gradient direction and
the critical temperature check. We have shown that a sulbsgbp} forms a partition of each
annulus4; , in Proposition 4. Thus, for a particuldp;, there may be portions ofD,, that
are circular arcs centered gt with inner radiusk; ,—, and outer radiusz; ,. We denote these

circular arcs as\rcs(i, k).
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C. Gradient formulation

The next step in the DA derivation is to optimize the Lagrangf’ with respect to sensor
positionsp;. Each agent in the network will use this result in order to pate its gradient
direction.

Proposition 6: Given the Lagrangian (11), and sensing metrics of the formtf& gradient
of (11) is:

::—TEZ ! gzd (15)
keC; ) Pi

Proof: We begin by taking the following derivative (via the consion of mass formula

in [2]):

029@

8F = 0z T Ok
o —Tzk: [ P(q ) AT )OpZdQ+ . &(vk) log Z (yi)n® (k) . dyi| -

We now show the integrals over the boundai@dg, vanish when summed over &l Each
~, that parametrizes the boundary Bf is composed of circular arcs centered at varipug-or
a particularp;, the derivativegi; is nonzero only when the, parametrizes an arc centered at

pi- Since eachArcs(i, k) is a fixed radius fronmp;,

Ok I, € Arcs(i, k),

Opi

0, otherwise

Thus, only the integral along the boundariéscs(i, k) needs to be considered. The derivative

IS now simplified to
1 oz

8pz B _TZ Z(q) Op;

Since each arc mArcs(z,k) is part of the boundaryD,, Each arc inArcs(i, k) is shared

m+/ 1 BOR) e W ()
Arcs(i,k

between two region®), and D,. Thus, there will be two integrals over eaéhcs(i, k): one
from D, and one fromD,. For these two integrals, the normal vectdry,) will be equal and
opposite. Additionally the functio& (¢) is continuous ove€), so the sum of these two integrals

will be zero. The derivative is simplified to

1 07z
8pz Z 8])2 d
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We now show that the derivati\%% is zero ifq¢ ¢ B;. Recall from the limited-range assumption
that each sensing functiofi ,(z) is a constant ifz > R;. ThereforeZ as in (14) has no
dependence op; if ||¢ — p;|| > R;. With this realization, we obtain the result (15). [

Observe that the sét can be included as part of the integrals because it condistelated
points.

Remark 7:For the area-maximizing case (4), we begin by computing EbTB/ativeg—i.

07 <0 [ f2lla-pl)
Ipi B ; Op; b [_ : T }
— il = pijey | - EEUL2D )

As an aside, we have the following result:

0 c
gy llr =il = 5 [((a=p)"(a =)
c/2-1 0
=5 (g =pd?)*™ 5 - ol = 26"pi+ I1piP) = ella = pill =i = 0)"

Then using the above result when taking the derivative qf #) obtain the following gradient

expression
OF clg = pill*? r
=-T ¢qu—pi P(pilq)dq
o, ];QDk() ReT ( )" P(pila)
C —
= > | 0@lla—pill(a — p) Plpila)dg. (16)
i kec;” Pk

Here we see that the weighiy — p;||°~% serves to amplify the density for points close to

the boundary ofB; while neglecting the value ab close top; for large c. This achieves the

area-maximizing effect that we seek. °
Remark 8:We can compute the derivativ%% using the sensing function (5) in a similar

manner. We then obtain the gradient (15) to be:

aF_ =-2Y | éa)qg—p) " Ppilg)dg. (17)

This is similar to the gradient expression for the mixed cage case in [2], with the addition

of the association probabilitié®(p;|q) as an extra weighting factor. °
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D. Constant factor approximation

Thus far, we have developed a gradient direction for agerf@lbw in order to minimize (11),
which for low temperatures, minimizes the underlying distm function (1). We now relate how
minimizing (11) formax; R; < diam(Q) bears some relation to minimization of (11) for when
R; > diam(Q) for all i. In other words, we demonstrate the relation between thdiggredescent
of the limited-range DA algorithm with the gradient descehthe original DA algorithm.

We compare the mixed case (5) as this is most similar to thardie metric found in [8],

Fo= =1 [ owoszalaia. 2w = e | ZEE] s

This proposition makes it clear that minimization of (11)eiguivalent to minimization of the
analogous function in the original DA case as sensing radiiciase.
Proposition 9: Let £, be defined as in (18). Additionally, Iét be defined as from (11). Then,

the following is true:
F +min R? < Fy < F + diam*(Q) . (19)

Proof: Let f;(z) = 2? and letf™(z) be defined as in (5). Additionally, let = min; R; and
d = diam(Q). Then it is true that- f(z) —d? < — fi(z) < — f™(x) — a?. Since the exponential
and logarithmic functions are monotonic increasing, tH&)\Mng statements hold:

Do [ £24] s Ton[ 4] Do [ 172

d2 i 7 fim ZE')
_?jtlogzi:exp [— } Slogzi:exp [— T ] §—T+logzi:exp {_T} .

Substitute each of these into the expressionAaio obtain:

-1 [ ota) |5 +108.200)| do < = [ stoyion Zarin < = [ ota) |~ +102200)| o

The result (19) follows sinceé can be normalized ovep. [ |

IV. LIMITED-RANGE DA PHASE CHANGES

As temperature decreases, the equilibrium points'afinder the evolution of (15) become
unstable. When this happens a phase change occurs and weasayethave reached a critical

temperature. We present a sufficient condition for agentsdovidually check if they have
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reached a critical temperature value under both area-mazxignand mixed centroidal-area
coverage.

Using a similar argument as in [8], we enlarge the group odées{p,,...,p,} with a set of
virtual agents{p,,+1,...,p} so that for allj € {n+1,...,l}, p; = p; for somei € {1,... n}.
Then we introduce perturbationls = (v, ..., ;) € R%. Given a scaling factot, consider the
perturbed agent Iocation$ = pi + ey, fori € {1,...,1}. Critical points of F' correspond to
= 0. However, those configurations fail to be a minimum

e=0
< 0. We now find the second derivative. Consider the partition
=0

when the second derlvatl\égg
{Dy} associated with théx;}, i € {1,...,1}. The first derivative of the Lagrangian (11) with

respect tce is
dF_ 1 8Z T 07k
= —Tzk: [ . #a) 7(q) 9c dq + - ¢(Vk) log Z(vk)n (%)gd%] :

Using the same reasoning as before when computing the gtgd®), the integrals over the

boundaries) D, cancel when summed over &l Taking another derivative with respect ¢p

°F 1 (0z\* 1 0°Z
ﬁ:‘@{/ﬂ@ 7w (%) * 2]
1 0z T 8’}%
R O T (%)Ed%} (20)

Unfortunately, the same convenient cancellation of thenbawy terms may not occur here.
Since eachf;(x) is only Lipschitz, andZ(q) is composed of a sum of exponential Hf Z(q)
is also only Lipschitz. The derivative df evaluated at one side of the boundar, may not
be the same as it is evaluated on the other side.

Let y; = ¢ — x; to reduce the amount of notation. The derivatigeis computed as follows:

5 10 g [ Sl it il
DRI @ |- e o) ()

i=1 a=1

Again note that this derivative may not be continuouggji iS not continuous. In a particular

region Dy, the above simplifies to

az 1 9fja Sialllysll)
oY g e | Lefull] @

JEB
This is because the indicator function evaluates to zeftw;if = ||¢ — ;|| < R;, and the index

set B, captures all suchy; that satisfy this condition. It should be noted that thén f; , may
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vary. Thisa indexes the sensing metric associated with an annulusreeinti¢ an agent,. Since
the regionD,, is fixed, the associated annulus index corresponding toetiem D, may change
for various; € By.

Continuing, the second derivative is:

2z 19fia\> 10*fa fiallysl)
L — 2 B T — NI . 22
s (6% ] ) e
JEB
Sincey; = g — p; — eyy, using the chain rule?e = —@DZ-T%’;‘ and 828’:2“ = @DZ-TE’ZJ;;& (3

We substitute the results (21) and (22) into (20), and node thexp [—fTa] = P(z]q) to

get:
% =-TY { /Dk ¢(Q)<— % (Z 8gj€’a19’($jIQ)>

k JEBy
10fia\° 10%f4
+Z <T 86) T 9e2 IP’(xj|q) dg
JEB
! Ofiap, 7 Ok
" ¢<w>§3k< D) n 00 5 d%}. @3)

The check for critical temperature is to numerically conepﬁljg

at an equilibrium con-
figuration. The equilibrium configurations occurs whgﬁ_ =0 ;Z? all 4, or equivalently,
when % e 0. If the second derivative is negative, then the equilibricomfiguration is
unstable, and that signifies that we are below a critical tatpre value. To simplify the critical
temperature check and make it spatially distributed, wesiciem the following perturbation. Let
S; € {1,...,m} be such thay € S, implies p; = p;. We define¥; to be

= {(Wr o n) [ =0, € S Y = 0. (24)
JES;

If the critical temperature has not yet been reached, thesetltoincident agents (i.e., leaders
and virtual agents) will remain together. Otherwise, themcident agents are at an unstable equi-
librium point, and any perturbation will force them aparyy Bsing this particular perturbation,
we will obtain a sufficient condition for critical temperagu We will now take the above results

and consider the metric functions (4) and (5).
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A. Area metric

For the area-maximizing metric, we present the followingathfor critical temperature.

Proposition 10: Critical temperature for the area-maximizing DA algoritihias been reached

if for ¢ € {1,...,n}, any of the following matrices; are negative definite:
C — Pi ¢
=% [ swrelo (|e-2 - DL o=+ lo-nlPr) @i, @9
kel )

andp;, =0 forall: e {1,...,n}.
Proof: With this choice of perturbations, consider the case usiegitea metrig; from (4).

We fix ani such that the perturbation (24) is true and compﬂg@% using (23).
ofe 82f“

The derlvatlves— and —+ are:
aff  lec c
c/2—1 2 Ty _ c—2 T
by B2 5 Ugall) 7>~ 2ui) —RgllyzH Yi s
02 fo c c
i _ __1) 12)/272 (20, )y e21
o = 7 (3~ 1) Ul ol + gl

c o
= g lluil e =2yl + lwllP1]

Sincey; = ¢ — p; — ey, whene = 0, y; = ¢ — p; for all j € S,. However, sincep; = p;,
y; = q — p; for all j € S;. Similarly, the association probabilitiéd(z;|q) = P(p;|q) for all
Jjes.

When considering the perturbations (24) on (23), we notdat@wing simplification. In (23),
there is a sum ovej € B, involving the first and second derivativegff—’“ = jag;’“ and
BZ{Q“ @bTaafg“ ; respectively. However, if ¢ S; theny,; = 0. Therefore instead of summing
overj € By, we can equivalently sum overc S;.
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With the above results, the second derivative (23) evalllate = 0 can be simplified as

follows:

A~ 0 2
d*F 1 cllg — pil|“? T T
7 =_T Z {/ (— T2 (Rf(q — i) P(ﬁi|‘]);‘¢j

0 keC; Jesi

2

JES;

lafj,a ? 1af]a
T Oe A

P(pi\q)>dq
| e = pille= ! o
c — DPi
—7 [ elw) (—”’“Rffm - p»TP(pim)ZZ f) nm%m}

B mfj,a)2 1321361 )
_ (— i | p()q) | dg

C 35 [ s
; RCH(J pill ™ [(e = 2)(g — pi) (g —pi)" + llg — pil 1] %] dq .

j€S; keC;

Factoring outwy; from the left and right sides and using the substitution ,(2b¢ second
derivative evaluated at= 0 is:

d*F

de?

_clla—pill<

> o] Faby

e=0 i JES;

It is clear now that in order for an equilibrium configuratitmbe stable in the area-maximizing

case, the matrix quantity in (25) must be positive definite. [ |

B. Mixed metric

We perform the same analysis for the mixed centroidal-aosarage sensing metric (5). This
metric is most similar to that found in [8] and [9].
Proposition 11: Critical temperature for the centroidal-area DA algorithas been reached
if for i € {1,...,n}, any of the following matricesF; are negative definite:
2
Fi = i I—=(¢g—p)lg—p)T|dqg, 26
kezc plq){ =(a—p)(a—p)"| dg (26)

andp; =0foralli e {1,...,n}.
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Proof: The denvatlvesf— and

", when ||y;|| < R;, are:

8 2 ]
aofm
Yhi g9
Ou; Yi
02 fo
L =27J.
oy?

Sincey; = ¢ — p; — ey, whene = 0, y; = ¢ — p; for all j € S;. Similarly, the association
probabilitiesP(z;|q) = P(p;|q) for all j € S;. Therefore, with the perturbations (24) and the

mixed metric (5), the second derivative (23) evaluated -at0 can be simplified as follows:

0\ 2
— _Tkez; {/ <— % —2(q pi)TP(piQ)%%)

(-2efa-m) - oI ij] P(pi\q>> g

0
—% . (k) | —2P(pilve) (x —pz’)T‘% j) (%)%d%}

=—Z{/ S@Pwl0) [ 3 (0T~ pz>)2—2wfw,»] dq}

d2F

de? |,

kel ]GS
—2 ZS Z P(pilq) {Wf% — 2 (Wl —pz))z} dq.
JES; keCy

Factoring outw; from the left and right sides and using the substitution ,(26¢ second
derivative evaluated at= 0 is:
PF

S| =2 U Fy

e=0 JES;
It is clear now that in order for an equilibrium configuratitmbe stable in the area-maximizing

case, the matrix quantity in (26) must be positive definite. [ |

V. DISTRIBUTED IMPLEMENTATION

We have so far demonstrated how a network of agents can dksicergradient and check
for phase changes in a distributed DA algorithm. However,stilé must provide a distributed
method for implementing these phase changes.

The DA algorithm begins with one active agent, and the otlgents moving in formation

with it. A formation will split in two if its critical temperture is reached. The agents following
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Algorithm 1: Distributed DA algorithm for each agent
T < initial temperature

while T" > Thin or n < N do

while floodMax(p;||) > €) do
p; < —computeGradient()

end
if checkSplit(}== true then flood(“T, reached”)

if received “I. reached”then
doTaskAssign()V — n times

end

T — oT
end

doNormalCoverage()

in formation are divided evenly between the current fororateader and a new formation leader.
After the first phase change, it is possible that future plwsages occur at an agent who is
by itself. Therefore, this agent must communicate its @efr an additional companion, and
the network of agents must distributively assign an inactigent to this task. We propose a
task-assignment algorithm to accomplish this.

We provide a possible scheme under the following assumgti@d) Agents have knowledge
of the total number of formations and the total number of ageni$, (2) The communication
graph between all active agents is connected, (3) Eacheaamgjgnt knows the number of inactive
agents traveling with it, and (4) All agents have knowledfehe initial temperature, and the
cooling factora.

Connectivity of the communication graph is important bessaboth the temperature and the
total number of active agents must be constant across altagé/e assume that if the graph is
connected, the agents can agree on the current temperaharaletermine through a flooding
algorithm (see [11]) the number of active agentst any point in time. Additionally, agents
must wait for the flooding algorithms to terminate; the warase is proportional to the diameter
of the communication graph.

The scheme also uses primitives for flooding or agreementtbeenetwork to acquire global
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Algorithm 2: Task assignment algorithm for each agent

a; < number of agents in formation
if checkSplit() == truethen

if ¢, == 0 then
flood(“need companion at;”)

M « positionsp; of replies for help

if m; == null, Vm; € M then
return

else
J «— sortAscending{||p; — p;ll},j € M)

j* < removeFirst{)
sendMsg(“request companiony;)

flood(“incrementn by 17)
end

else
split formation evenly

flood(“incrementn by 17)
end

else
M «— received companion requesis

J — sortAscending{||p; — p,||},7 € M)

if a; == 0 then
sendMsg(nully j € .J)

else

while length(J)> 0 and a; > 0 do
j* < removeFirst{)

sendMsg(“help available from,”, j*)

ai<—ai—1
end

end

end

/'l no splitting at p;
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information. We defind | ood( msg) to be an algorithm that floods a message over the entire
network, such that after its completion, each active ageththave knowledge ofnsg (possibly
the nul | message). Messages to a particular agecan be sent witteendMsg( msg, 1) .

.....

We also definef | oodMax(z;) as a flooding method to determineax;cy;,.. . x; over the
entire network as in [11]. We latonput eGr adi ent () be the function that computes (15),
and we letcheckSpl it () be the function that determines if a critical temperature been
reached as in (25) and (26). Finally, we introdal@Nor mal Cover age() to mean to perform
limited-range coverage as from [2].

The distributed DA algorithm can informally be described@®ws, see Algorithm 1. Starting
with a single formation, and a high initial temperature,nfiations descend the gradient (15).
When all agents agree they are stationary, they indivigugtlleck for phase changes and, if
necessary, implement Algorithm ® — n times to guarantee the assignment of all companion
requests. The temperature is lowered, regardless of whetheot there was a phase change,
and the gradient descent is continued. This process repetitthe system temperature is below
a minimum temperature threshdld,;, or if n = N. Once this happens, the agents perform the
normal coverage algorithm described in [2], as this is eajaim to havingl’ = 0.

Algorithm 2 outlines the task assignment algorithm for d@gevho are in need of a companion
to split. Roughly speaking, there are three rounds of comecation where an agent broadcasts
its need for a companion, other agents reply if they can leeid,finally a handshake is formed
with the agent transfer. In this algorithm,is incremented for every new formation, and this
command is flooded over the network. This algorithm has aefieitmination time upper bounded

by 3n + n(N — n) messages passed.

VI. SIMULATIONS

We present a simulation of the limited-range DA algorithrmgghe area-maximizing sensing
function (4) in Figure 2. The total number of agentsNs= 8 and the square regio@ has
length 10 per side. Each agent has a sensing radiug ef 2. The initial temperature i$’ = 10
and the annealing facter = 0.9 in this simulation.

As the temperature decreases, we see the agents split atidueoto increase coverage area.
Once the minimum temperature is reached, the coverageithigoof [2] is conducted, and

Figure 2 (f) shows the limited-range Voronoi partitions &eging each agent.
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ég) 40)a &) ol
- -

(d) (e) M

Fig. 2. A typical run of the limited-range DA algorithm. Agsnare labeled in (a)-(f) and the number of agents in formatio
are contained in parenthesis in (a)-(e). The temperatuegstat” = 10 (a), then decreasé’ = 0.15 (b), 7' = 0.12 (c),
T = 0.1 (d), T = 0.01 (e). The final panel (f) shows the result of running normaletage starting from the configuration of

(e).

To compare this algorithm with the normal limited-ranges@rcoverage algorithm in [2], we
conducted 00 simulations of the normal coverage algorithm and compdredost function (1)
for T = 0. Eight agents with sensing radiug = 2 were uniformly and randomly distributed
over(). Over thel00 runs, the minimum area covered wWis5% of the total area, the maximum
was 96.4% and the mean wa$5.9%. The limited-range DA algorithm had a final coverage area
of 96.1%. For the particular in Figure 2, the normal (area) coverage simulations show thew
final cost has dependence on initial conditions. Howeverdiktributed DA algorithm converged
to the same cost over many random initial conditions.

Next, we present a simulation of the limited-range DA alton using the mixed centroidal-
area sensing function (5). The total number of agentd is- 6 and the square regiof) has
length 10 per side. We will demonstrate the performance of the DA dligor versus a normal
Lloyd-type gradient descent found in [2] as sensing radeehses.

We first consider the limiting case where all agents can s#resentire regiorf). We ran the
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Fig. 3. A typical run of the limited-range DA algorithm. Agsnare labeled in (a)-(f) and the number of agents in formatio
are contained in parenthesis in (a)-(e). The temperatwmbat? = 20, then decreasel’ = 13.1 (a),7 = 12.5 (b), T = 2.4
(€), T = 2.1 (d), T = 0.5 (e). The final panel (f) shows the result of running the norgraldient-descent coverage starting

from the configuration of (e).

(a) (b)

Fig. 4. A comparison between the best-case performanceeofltyd-like gradient decent (left) with a cost ©6.64, to the

worst-case (right) with a cost afs.19.

DA algorithm once, since the initial condition does not iefigce the outcome of the convergence.
For comparison, we rab0 simulations starting from random initial conditions of thieyd-like
algorithm. The DA algorithm converges to the optimal cost@b4 regardless of initial condition

in Figure 3. On the other hand, the Lloyd-like gradient des@ehieved this final configuration

only 4 of the 50 tries. The worst simulation converged to a final costi®fl9, see Figure 4.
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Fig. 5. A typical run of the limited-range DA algorithm witR = 4. Agents are labeled in (a)-(f) and the number of agents in
formation are contained in parenthesis in (a)-(e). The gratpre begins &' = 20, then decreaseél’ = 2.2 (a), T = 2.1 (b),
T =20(), T=1.9(d), T =0.1 (e). The final panel (f) shows the result of running the norgraldient-descent coverage

starting from the configuration of (e).

(a) (b)

Fig. 6. A comparison between the best-case performanceedfltyd-like gradient decent (left), to the worst-casetft)g The

sensing radius for all agents B = 4.

The average final cost of th# simulations wad5.4.

Now we consider smaller sensing radii to see how the DA algarperforms. A sensing range
of R = 4 for each agent was sufficiently large for the DA algorithm tmwerge to the final
configuration shown in Figure 5 regardless of initial pasitiNext,50 trials of the Lloyd-like

gradient descent were computed. The DA algorithm convei@éise minimum cost of-277.5

January 30, 2009 DRAFT



23

", 4(0)
.G
® 23(8) éoc%6;’;(0)
. .
(@ (®) (©)
1) A o%gmf%@
. .

(d) (e) ()

Fig. 7. Two runs of the limited-range DA algorithm wifR = 3. In (a)—(c), the temperature beginsZat= 20 and decreases:
T =22 (a),T = 0.8 (b), with a final configuration in (c). Similarly in (d)—(f)hé temperature begins @t= 20 and decreases:
T = 2.0 (d), T = 0.5 (e), with a final configuration in (f).

@) (b)

Fig. 8. A comparison between the best-case performanceedfltyd-like gradient decent (left), to the worst-caselft)g The

sensing radius for all agents I8 = 3.

regardless of initial position whereas ortlyof the 50 trials of the Lloyd-like gradient descent
achieve that cost. The worst case converged to a cost2@f.3 with a mean of—272.3. The
cost values are negative since the metric (5) has-tRg term. When inserted into the distortion
function (1), this creates large negative quantities.

We further reduce the sensing radiusito= 3, and perform similar trials. Due to the smaller
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Fig. 9. For initial conditions of the limited-range DA algfthm that start to the left of the thick black line, simulat®converge

to the optimal solution.

(a) (b)

Fig. 10. A comparison between the best-case performandeedflbyd-like gradient decent (left), to the worst-caselit) for

the symmetric Gaussian scenario. The sensing radius fagelits iskR = 3.

sensing radius, initial conditions begin to influence thécome of the DA algorithm. For this
particular choice ob, we have the two possible outcomes shown in Figure 7. Therbmitcome
of the DA attains a final cost of 151.5, while the worse outcome reaches a final cost ©10.5.
Over the50 random Lloyd-like gradient descent simulations, othhgach the configuration shown
in 8, which is also 7 (c). The worst case of all trials was a cost of-103.5, with an average
of —135.3.

Further analysis of this scenario, however, demonstraiasthe limited-range DA algorithm
still has an advantage over a normal gradient descent #igarFigure 9 shows the set of initial
conditions for which the limited-range DA algorithm conges to the best solution. Note that
over half of the possible initial condition locations leadsthe optimal solution while only%
of the Lloyd-like gradient descent simulations achieveel $ame final cost.

The limited-range DA algorithm may have decreased perfao®asersus a normal gradient-

descent algorithm. If sensing range is not large enoughaasolvserved in the previous example,
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(@) (b) ()

(d) (e) ()

Fig. 11. A demonstration of a heating and cooling cycle with= 3. Agents perform area-maximizing coverage (a), then
agents run the limited-range DA algorithm for high temperat?” = 20, (b)—(c). Finally, agents perform the usual limited-range
DA algorithm in (d)—(f).

the DA algorithm may fall into a local minimum. Consider thistdbution shown in Figure 10,
where there are two equal Gaussians symmetrically placexp@bsite corners of). Almost
every simulation of the limited-range DA algorithm resultsa final configurations like 10(a),
or its mirror image. This occurs because the DA algorithmirmegvith only one agent, and
this agent moves towards the nearest Gaussian that it sendestays there. Then, future phase
changes result in only adding more agents around the samssiaau

On the other hand, oves0 trials of the Lloyd-like gradient descent with similar iiait
conditions as before, we see an improved statistic. AQllyof the 50 simulations fell into
the worst-case minima of Figure 10(a). However, none of imeilsitions were able to converge
to the best configuration, which is havidgagents located around each Gaussian.

A possible way to address this problem of the limited-rande dlgorithm is to consider a
heating and cooling cycle. Agents can deploy oeusing an area-maximizing technique. Thus,
agents will tend to move away from each other and cover at)ohs shown in Figure 11(a).

Then, the limited-range DA algorithm is run with a high temgiare. This forces agents to
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collect together about denser parts(@f shown in Figure 11(b)—(c). Finally, the usual limited-
range DA coverage is run, causing agents to split evenly twerimportant areas of), as
in Figure 11(d)—(f). Note, however, that the communicato@mmnectivity requirement must be

modified so that an agent can communicate with any other ageptfor this solution to work.

VIlI. CONCLUSIONS

We have introduced a limited-range and distributed implsiadéon of the DA algorithm
developed by Rose, and applied it to the coverage problemdé¥eloped limited-range results
that extend those in [8] and [9]. When the sensing radius iar@e as the diameter @p, this
algorithm becomes the normal DA algorithm of Rose. While ltheted-range DA algorithm is
able to outperform a Lloyd-like gradient descent algoritinnmany cases, the algorithm has its
limitations as sensing range decreases. Considerationhefiing and cooling cycle produces

improved results, but it is still an ad hoc solution to the enging problem.
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