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Abstract— We introduce a procedure to adapt local interpo- as a way to decentralize Kalman filters [9]. The devise of
lations to represent spatial fields as they are measured by a gptimal sensor placement or motion coordination plans have
mobile sensor network. The scheme incorporates new Sensorpean recently addressed to improve Kalman-filter estimatio
(synchronous) measurements in a similar fashion to a Kalman d for t t tracki 10 th timal i
filter-like recursion. We derive necessary conditions that allow proce gre; or target tracking [ _]’ or _e optima sa_ng)_ln
the distributed computation of the recursion and present an Of spatial fields [3]. The assumption of fixed communication
algorithm that makes use of agreement rules that satisfy them. topologies, all-to-all communication or the existence of a
We show how the Nearest Neighbor interpolation scheme is central station that is able to fuse information and commu-
compatible with the motion coordination algorithm for region  picate with all vehicles is a restriction considered in most
coverage proposed in [1]. Finally, we illustrate the performance A related to th ¢ K is [11 hich
of the algorithms in simulation. F:ases_' relate 'paper _O e presen work is [11], _W Ic

investigates user information retrieval protocols fromtatis
sensor network based on a Nearest Neighbor partition of the
|. INTRODUCTION space. However, [11] leaves the problem of sensor datarfusio
unaddressed. In [12] a distributed parametric estimatign a

An intensive research activity is being directed to the g :
S ; roach is is presented that makes use of consensus algsrithm
development of coordination algorithms that allow the u{é

of multi-vehicle sensor networks in practical scenariog- E 0 agree on the parameter distribution. The paper [13] makes

amples of such systems used in exploration and scientifie. of kriging techniques for the distributed estimate @f th

ventures include multi-buoy systems [2], coordinated egisd gradient of a random field.

for oceanographic research [3], and unmanned aerial \&=hicl dStzitelmerFt.otf cor}trl_butlontSNe mtrodutce atprlcx]:c_e?(lj.lre bto
(UAVS) for atmospheric observation [4]. adapt local interpolations to represent spatial fields by a

. . multi-vehicle sensor system. The interpolation provide®a-
Typically, these sensor networks are required to commu- . ) ) Lo ) .
. . . . . parametric estimate of the field, which is refined via a Kalman
nicate with a base station that gathers all the informatiqn

needed to produce an approximation of the spatial fieldsgbei Ilter-like recursion as new measurements are collected. We
erive the expression of the optimal gain of the filter ancbt

measured. This leads to a centralized control arChitecnfcrgnditions under which the scheme admits decentralization
which is not scalable to large numbers of vehicles,

It II‘S'or the case of Nearest Neighbor interpolations, the reduir

non-robust to station failures, and becomes too rigid toecoP . . .
: . o . . . nter-vehicle communication graph should contain a newly-
with changing conditions in the environment. In particular

the process of directing vehicles to time-varying cues can Ec)ientmed proximity graph function that is related to the

significantly slowed down, since the processing of the da aelaunay graph. Finally, we discuss how the schemes can be

. : maodified to account for data compression procedures to make
is delayed until all measurements are gathered at the b?hsgm more scalable
station. Placing part of the estimation and processing toad ’
the vehicles themselves will allow for greater autonomy and

increase the capacity of reaction much needed for adaptive |l. PROBLEM STATEMENT AND PRELIMINARIES

sampling applications. In order to make this possible, theHere we state the general problem scenario with given

identification of suitable methods for cooperative estiorat . . . T .
assumptions, and introduce basic preliminaries on \Voronoi

%nisgor;(tjétéon;nfo; dfjhfgngfséﬁgﬁfnd e(:qr;‘t):tatr'gg sgogg.n? artitions, graphs and spatial interpolation methods; esom
Investig : " ge | produ "M ferences are [14], [15], [16].

tion algorithms that are compatible with other multi-véaic
system tasks. As part of this effort, this paper presents a
(non-parametric) inference method whose computation ean &, Motivating Problem and Assumptions

distributed and is compatible with coverage algorithmslih [ Let Rs, denote the positive real numbers includingnd

Literature review The investigation of the requwementzﬁtpl,m’pn denote the positions of vehicles moving on a

needed for decentralized estimation dates back to the mpact and convex region of the spage- Re. We assume

_Sl_ie egth [Si]’ a:cngi ;fibretlaéed t?di;h(?[i ?:e? Orfitr?rinsfcc)n;t:: SI9fat each vehicle is endowed with physico-chemical sensors
€ synthesis ot distributed coordination algo S and is able to take point measurementsof certain scalar

agent sensor systems is the subject of current researchf. Ip .
. . [ : R R~q. For exampl might represen
particular, agreement and consensus algorithms [6], [V¢ ha eld ¢ X @ — R>o. For example,¢ might represent

been widely analyzed and proposed for sensor fusion [8] aaﬁ environmental substance such as salinity concentration
y y prop I O sea, aerosol pollutant in the atmosphere or any chemical
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California at San Diego, La Jolla, CA 92098oni and@icsd. edu is static i.e., ¢ : @ — R>o. We will also assume that the



measurements;, i € {1,...,n}, are affected by a spatially Assume that a sequence of configuratio®’ =

and temporally uncorrelated white noise. In other words, (p!,...,p’)}ren C Q is defined over a time schedules .
Denote byYs the set of graphs over the set of vertices
zi(t) = ¢(pi(t)) + €i(t) , €i(t) ~ N(0,0), vt >0, {1,...,n}, including proximity graphs. We define the Nearest
Ele;(t)e;(s)] =0 fori#jort+#s, Neighbor graph mapgxy : Z>o — Xg, such that for each

{ € Z>g, ?) is the directed gra £) = (V,En)),
where NV(0,0) is a zero-mean Gaussian distribution with) ., ff(ggNNNN((é))) —{jeV| V{(%z_pF)Ng(V,)(Peg £ 8?( \;\Be
covariancer, andE[-] denotes the expectation operator. Undef ,ca the shorthand notatioﬁs(PZ) - and NWN(0) =

these assumptions, we would like to determine a distributeﬁ_(gNNw)) ie1 n}, ¢ € Zo, from now on. Similarly.

qon—parametric scheme for the coIIectivg and distributed &ve define the Local Inverse Distance Weighting (LIDW) graph
timation of . We shall assume that vehicles have access A%ap, GLiow : Zoo — %, such thaGuow (¢) = (V, Euow (£))

their positions through; for example, GPS measurements. with A (Guow () = {j € V| VLA BRSL R NVEN
g - J i i

B(pr% R) # 0}. In the sequel, we will use the notation
B. Preliminaries on Graphs and Notation NEDW () = N;(Gupw (0)), fori € {1,...,n}, £ € Z>y.

Let || - || denote the Euclidean norm iR? and letB(p, R)
depote thg closed ball cent'ered;awnh radius R. A graph C. Spatial Interpolation Methods
G is a pairg = (V,&) defined by a set of vertice¥ =
{1,...,n}, and an edge sef C V x V. Graphically, a  There are several methods available to predict multi-teria
pair (i,j) € £ is represented by an arrow from vertesto fields ¢ : @ — Ry from scattered data. One of such
vertex j. The adjacency matrixof a graph,A(G) = (a;;) € approaches relies on spatial interpolations to provide- non
R™*", has entriesz;; € {0,1} anda;; # 0 iff (i,7) € &. parametric estimates of fields. In the absence of measutemen
The degree matrix of a grapi)(G), is a diagonal matrix noise, the general formulation of a spatial interpolatioobp
D(G) = diag(dy,...,d,) such thatd; = Y. a;;. The lem is the following: given the: values of the studied phe-
set of neighborsof vertex i in the graphg is denoted as homenon.z; = ¢(p;), measured at discrete poinis, . . ., pn,
Ni(G) = {j € V|(i,j) € €}. An undirected graprsatisfies find a function® : Q@ — R>o such that®(p;) = z;, for all
(i,7) € € if and only if (4,¢) € &, while in adirected graph ¢ € {1,...,n}.

this property is not necessarily true. An interpolant® is called global (resp.local), when the
A special class of graphs apeoximity graphsA proximity ~value of @ at any pointq € Q depends onall the data
graph has as vertex sét= {1,...,n} and an edge set mapVvalues (resp. only on data values“aearby” points). Global

& Rix (M) xR _, 2VXV (efined as a function of relative interpolants are affected by the addition or deletion ofadat

positions’P — (pl» . ;pn) c Rdn associated with the Verticesvalues and by Changes in the location of data sites, while

in V. That is, for each configuratiofp:, . . ., p,) a set of edges local interpolants are only affected at a vicinity of the whes.

E(p1,-...pn) CV x Vis defined. An example of proximity The required scalability properties of distributed systeamnd

graph is theR-disk graph Gr.gsk = (V,Erisk), such that their decentralized nature make local interpolants maaelite

(i,) € Eradisk(p1, - - -, pn) if and only if ||p; — p;|| < R. The adaptable for groups of multiple vehicles.

set of neighbors of an agent §y.qisk are those indices whose Some of the most widely used local interpolation methods

positions are contained in the ball centerecpatvith radius include the Nearest Neighbor (NN) and Natural Neighbor

R. That is,N;(Grudisk) = {j € V|p; € B(pi, R)}. (Nat) interpolations, and interpolations based on a Tiiang
A proximity graph that we will use in the sequel is thdated Irregular Networks (TIN) [17], [14], [16]. The simpsie

Delaunay graph associated with a Voronoi partition. Recafterpolation of a function over) is given by the Nearest

that the (Euclidean) Voronoi partition @@ C R¢ generated Neighbor (NN) rule:

by a tuple ofn distinct positionsP? = (py,...,p,) € R*is a o

collection of sets (P) = {Vi(P)}™, such that* , V;(P) = ®(g) =z, llg =pill <lla=psll, 7 #1-

@, andVi(P) is the region defined as: The resulting function is discontinuous at the boundaries o

Vi(P)={q€Q|llg—pill <llg—p,| forall j i}, the Voronoi regiond/;(P) associated with the location of the
pi, © € {1,...,n}. An extension of this method is given by
forall i € {1,...,n}. We will usually refer toV;(P) asV;. the Natural Neighbors interpolation method defined as¥lo

It is easy to see that; belongs to its Voronoi regioft;, i €  Given a pointy € @ and a set of location®, compute? (P U
{1,...,n}. We say thayj is aVoronoi neighborof i if and only  {4}). The value®(q) becomes:
if V; andV; have a non-empty intersection at their boundary.

\oronoi partmons_ give rise to the undwecjcmalaunay graph B(q) = Z wi(q)zi, wilg) = (g) 7

Go = (V, &p), defined over the set of verticds= {1,...,n} v > ken, Me(@)

and edge sefp = Ep(p1,-.-,pn) = {(4,7) | ViNV; #0, j €

{1,...,n}}. We refer to [14] for details on Voronoi partitionsfor i € {1,...,n}. Here, N, denotes the set of neighbors of

and the Delaunay graph. We will denote the set of Vorongiin the Delaunay graph associated with(P U {¢}) and,
neighbors ofp; as eithetN; = {j € {1,...,n}|V;NV; # 0} usually, the functions\;(¢) are chosen to be a function of the
or N,,, when there is no risk of confusion. distance between andp;, i € N.



The Inverse Distance Weighting (IDW) interpolatiorFor simplicity, we will use the notatiol®,y) = Q(¢, P*, 1)),

method is a global interpolation defined as: whenever it is clear that the siteB’ correspond to the
" 1 vehicles’ positions at timé € Zx,. Similarly, ¢/ = €(¢,p?),
P(q) = Zwi(q)zi’ wi(q) = %7 for ¢ eizzo_ andi € {1,...,n}. Theneercted \Zalue of
= 2k=1 Ta=pT Q(¢, Py, ¥) will be denoted agd, i = 327, (4, pi)wl(q).
for i € {1,...,n}. A local version of IDW becomes: Let ¢ : @ — R be the static field we would like
to estimate. Suppose that there is an initial field estimate

ml[o,Rl(Hq—PiH) ¢y available. As new measurements are taken, we use an
n 1 - update rule inspired by a Kalman-like recursion to refine the
2kt <\|4*Pk|| Lo.n(la pk||)> interpolation. The convex combinatien = ¢, +Wy(Qep—
for i € {1,...,n}. Here,1j g (r) is the indicator function Qe¢¢—1), ¢ > 1, yields an estimated valug, = E[¢/] of
over the intervall0, R]. In other words, in this local version the field¢ at time /. By induction, one can see that:
only the nodeg; which are within distancét of ¢ will affect L o o
the value of the interpolation. by =bp 1+ Wi(Qup — Qupy_y), €>1. (1)
Although the NN, Nat, and local IDW (LIWD) approaches
do not give rise to continuous representations, they argpaemHere, W, plays the role of the gain at timé € Z>,. The
tationally very fast and can be easily extended to any badindeombination (1) is a weighted sum of the predicted value ef th
set of any dimension. In comparison, the TIN approachégld, ¢,_;, and themeasurement innovatio®,¢ — Qsé,_;,
require the computation of a set of generalized tetrahedrawhere Q,¢ is the new observation op and Q,¢, is the
R™, which can lead to complications when defining partitiongredicted observation. The rule (1) thus produces a waighte
of compact domains. A solution to deal with this problengverage of measurement values and is understood as a point-
see [14], requires the placement of many nodes along thise equality for allg € @. The new estimatep, will
boundary of@. In the following, we will pay attention to be different from the previous one as long @¢(q) #
the NN and LIDW interpolations for their computational simQ¢.—1(q) for all ¢ € Q. The fact thatQ,¢(q) = Qrps—1(q)
plicity and to obtain different adaptive interpolation eaies means thatp(pf) has to be equal to a linear combination

D(q) = Zwi(Q)Zi; wi(q) =

to estimate a field. of previous measurements for dll which is not be true in
general. By the law of large numbers, sampling repeatedly at
I1l. CENTRALIZED INTERPOLATION SCHEMES all possible locations will make (1) approach the valuepof

In this section, we introduce the centralized interpokatio Givent € ¢ and an estimate) € ¢ such thatE[y] = v,
schemes that will serve as a basis for the distributed intere We define the mean minimum square error (MMSE):
schemes proposed later. The schemes make use of the NN
and LIDW interpolation rules refined through a Kalman-like MMSE(¢), ¢) = / E[(1(q) —(q))? dq.
procedure. We will consider that the time schedilg, is Q
known by each agent and synchronizes the taking ofrthe
independent measurementg?), ¢ € {1,....n}, { € Z>
and actions described later. This is a reasonable assump

In the following, we obtain an expression fS{MSE(¢, ¢),
éoe N, in order to find the optimal value of the gains which
for static fields, where waiting time periods for all vehigle Minimize this error. For simplicity we will use the notation
can be established. MMSE(¢, ¢¢) = MMSE,, £ €.

Agenti’s dominance regiomt time( € Zs, D!, is defined ~ Lémma 1:The next equalities hold fof € N, ¢,p € @:
to be D! = V! or D! = V¥ n B(p,R), where R is the _ _
radius of spatial correlation in tHDW interpolation method. Elde-1(q) Qe (p)] = 00-1(9) Qed(p),
Consider the classes of functions: E[Q9(q) Qed(p)] = Qed(q) Qed(p) + 02,

E

Qe9(q)
C={Y:RxQ—Ryo|VteR, g 1t q) piece. cont, [Qed(q) Qepr—1(p)] = Qedp(q) Qepy—1(p) + 0.

¢ ={:RxQ—=R[3Y € C sty(t,q) ~N((tq),0) Using these formulas, one can obtain the expression
and E[y(t,p)y (s, q)] = 0 for t # s or p # q} . El¢e(q) de(p)] = de(q) dp(p) + o2ITE_, (1 — W,)2.

Associated with these, we can defineaiiservation operator Proof: We omit the proof for brevity. =
Q: ZZO X Qn X € — &, for a given interp0|ati0n method. Lemma 2:The fOIIOWing equalities hold for alf € N:
That is, Q(t,, P¢,v) € € is a new static spatial field defined o
as Q((, P, 9)(q) = Yr, wl(q) (DL, pl) + e(t,pt), for all  El(Qe0)*] = (Qee)* + 0%,
q € Q. Herey (¢, p) + e(¢, pf) is the measurement of € € E[(Qugr—1)?] = (Qedy_y)* + 0 (1 + 21— W,)?)
that sensor ap! takes, where : R x Q— R is a white noise El¢ Qud] = 6 0u6b
such thate(t,p) ~ N(0,0), E[e(t,p)e(s,q)] = 0 for t # s or o
p # q. The functionw!(q) is the weight corresponding to one E[¢ Qupr] = ¢ Qedy—1,
of the mentioned interpolation methods. _ Elgp—1 Q1] = bp_q Qedy_q + 0TI (1 — W,)2.
In other words, @ provides asnapshotof a given v
according to measurements at vehicle sRésit time/ € Z>,. Using these formulas and Lemma 1, it is possible to obtain



the recursive expression fér> 1:
MMSE,;, = MMSE,;_; +
WE( | (@06~ Q) da + P LZN(1 W) 0g)

—aw( /Q (6 — By1)(0ud — Tidy_y) dg

+ oI (1 = W) M) ©)
where Mg is the volume ofQ, Mg = [, dg.
Proof: We omit the proof for brevity.
Theorem 3:Consider the NN interpolation method

(resp. theLIDW interpolation method with correlation radiu
R > 0). Given previous valuesV, s € {1,...,0 — 1},
the optimal gain W)Y (resp. W}PW) that guarantees
MMSE, < MMSE,_1, for all £ € N, is given by:

S 1 (D) = o1 (15)) [pe(6(a) — bp-1(q))dg + C
ZZ’:M)(pf) - 5@—1(17?))2]\/[1)5 +C

(resp. WZLIDW = jZ?:l[ZjeNi(ng.disk) ((b(pﬁ) - @71(292))
Joe wi(@)(8(a) = dp1())dal + C)/ (1 [Xk jen (Garamd
(6(p5) = 601 (P (G(0}) = Go1(P1)) J e w§(@)wy,(q)dg) +
C)) whereC' = oI} (1 — W,)?Mq and Mpe = Jpe da.
ie{l,...,n} '
Proof: Taking the partial derivative oMMSE, with
respect tol, in (2) and equating this to zero, we obtain:

)

0 MMSE,
oWy

- 2/ (¢5 - 5471)(@@ - @4@71) dq—C
Q

= QWL;( /Q(Qé(b - 6254—1)2 dq + C)

The critical value of the gainlV/, is thus given by:

fQ(¢ — $p_1)(Qetp — Qudy_1)dg + C

W, = — ——
' Jo(Qed — Qudy 1)2dq +C
. . 0*MM . -
which satlsflesaizsm > 0; thusW; is a local mini-
aWE ‘W*

J4

A similar computation leads to:

~/Q(¢ - $€71)(@f¢ - @Zaefl)

= Z(¢(pf)

Thus the claimed expression for)*N using aNN interpola-
tion is obtained. ]
Remark 4: The computation of the optimal gaifil/;, in a
practical setting can be done only approximately. For examp
precise knowledge of the value of the integral ofover
the dominance region®?, i € {1,...,n}, for both the

B ) / (6(a) — Fo_1())da.
Dl

i

SNN interpolation and th&.IDW interpolation (integral in the

numerator) is required. With limited information abauteach
vehicle can only compute this value approximately through
e.g., quadrature rules [18]. Suppasés locally Lipschitz over

Q@ and letQ) C @ be a compact subset. A quadrature rule for
the computation off, ¢(q)dq is defined as:

m

[ otada =3 ota) - Ma,. 3)
Q k=1

whereg; € Q and {4}, is a partition of(2 into convex
sets associated witly,...,q,) € Q™. The subtraction of
both terms in (3) can be bounded as follows:

k=1

> [ 1ot

k=1 k

|/Q¢(q)dq — > blgr) - Ma,|

<

~ola)ldg <Ly [ g~ alda
k=1 Ak

where L is the Lipschitz constant ofh. When k& — oo,
My, =~ 0, the above is a good approximation. For a finite
number of measurements [, it can be proven; see [18],
that the quadrature is minimized fad; Voronoi regions
and ¢, € A being at thecentroids of these regions; i.e.,
qr = CAk, with CAk = WIAk qu(q)dq, for all

kE € {1,...,m}. Since @ is compact andy is piecewise
continuous, each vehicle could take the simple approxonati
Jpe #(@)dq = ¢(Cpe)Mpe for the computation ofV™. In

mum. The particular observation operator and the intetjpwla order to approximateC,,, the estimatep, , can be used.

method that we use will further determine the value of th?he gain obtained in this Way,/[}N
gain. In the following we present the derivations for the enory;, P

simple NN interpolation, being the computations faiDW
analogous. Using that (P*) is a partition ofQ:

/Q (Qeb(q) — Ty 1(q)) dg
> / (000~ Ba0D) Loy la)ia =
> (60) = ber () *Mpe
=1

where we have used the fact thas: (q) - 1 5¢(q) is identically
i 3J
zero for alli # j except for a set of measure zetd); NID}.

N'is an approximation of
NN, As more measurements ofare stored by vehicles (e.g.,
possibly taken along a path frop to C,¢) the approximation

will improve and we will haveW N — WY as/ — .
This approximation of the gain (which is optimal in certain
sense) will induce a particular motion control algorithm on
the vehicles to the centroids of their dominance regions. As
we will see later, this is compatible with the task of coverag
presented in [1]. As foLLIDW, a possibility is:

saw(ads~o(Ch) [ wi(ada, wih
D

Dt
1

ct =

7 fD/ we(q)m(q)dq Dt qwf (Q)af(q)dqa
i i




since to approximate the integrals of(¢)¢(q), j € NFPW, In order to compute the gain, each inter{alé + 1] can be
vehicles would need to take several measurements. A simitivided into 7" time slots to establish a set of communication
discussion with an approximatio’'°W of W}HPW holds. rounds between neighboring agent$ic Gemm(¢) as follows.
On the other hand, the value$p?) are also required for the Let m € {1,...,T} index the communication rounds, €
computation oft¥ NN, Since the mean value of measuremen{g, ¢ + 1). At eacht,, an undirected communication graph is
z; i1s assumed to be the trug(p;), ¢ € {1,...,n}, the established. Thatigj(¢,,) = ({1,...,n},&(m)) is undirected
value ¢(p;) can be approximated by each vehicle byat andi,; can exchange a message at time if and only if
the same position. We will assume this procedure is takirig) j) € £(m).
place whenever we refer to the fact that a vehicle computesSuppose that, by communicating with neighborgji® Gp
#(p;). This introduces another approximation error into thior the NN interpolation approach (0§ 2 Gor.gisk for the
computation of the gain, but does not affect the convergenc&DW), agenti is able to compute at:
of the filter as we see in simulations. ° NEHL(0) (@)

IV. DISTRIBUTED INTERPOLATION SCHEMES - —
V. D TERPOLATION SC = ) - B @COMpgen ~ [ Flarda) + C.
In this section, we describe a distributed implementatibn o : D1

the centralized schemes of the previous section. As we SBRsp. N1 (0) = Z (B(PST) = BT [A(CL) M
below, the distributed computation is possible if agents ar JEN: (oo / Y /
able to form a jointly connected communication network in

order to agree on the values of the optimal gains. On the other — /
hand, in order to update the scheme estimate, communication Dt

Wit (q)$e(q) dg + C)] )

according toGnn or, resp.Gupw Will have to be granted. An LT (0) = (¢(pi™) — 5z(pf+1))2MDf+1 +C, (5)
assumption that makes this more feasible is that the sensor f41 o 041y T o0t
network is dense in the environment; see Remark 7, fors(;?eSp'Li (0)= Z (@(p; ™) — @elp; 7)) (6)

discussion of this fact. On the other hand, it is not necgssar k3 N (Gar-ask)

that each vehicle maintains a global representatiog,diut  x (¢(Pi+1) 7@@?1))/ w§+1(q)w£+1(q) dq+ C)
just a local one over its regiod!~' U DY. i
Let W; denote the optimal gain obtained in Theorem 0.0 ~ _— UQMQHZ:i(l — W7)2. Then, during theT

either by the NN or LIDW methods. We will assume that,mmunication rounds take place, agents can update thesvalu
at each step of the time schedulec Z>, several actions ¢ N!(m) and D{(m), m € {1,...,T}, by e.g., using an
(measurement taking and computations) are performed QYeréging algorit;im. In the particular case that — oo the

agents synchronously. Additionally the time sjaté + 1] will approximated value of the gain will tend to the origif&j;

be divided into communication rounds that will allow SeIssol,q discussed next.

to update their estimate of the gain. The main algorithm andTheorem 5:Let £ € Zs, be fixed. Suppose that at tire

L o e e e descrbe i PSS ooy agen = abe 0 compute (9) and (5. ey,
: interpotat m € {1,...,T} the communication graphs established at

methods. We provide an informal description of the algaonith . . )
in what follows, and establish the conditions needed for i{(s)undSt’”’ € (£,£+1). Define the agreement algorithms:
correctness after this.
[Informal description]. At time ¢ each agent main-
tains in memory the current estimate of the field

N m+1) = 3 Fjm)N{T (m),
i=1

over the current dominance region, until the field DSt (m+1) = ZF;(m)DfH(m)’ (7)
is updated through the following sequence of steps. i=1
First, each agent computes an approximated “cen- \\here F(s) is the stochastic matrixF(m) = (I +

troids” according to formula. This will a motion D(G(m)))~ (I + A(G(m))). Suppose we lel’ — +oo. If

path for each agent has to visit while taking new  here exists alf > 0 such that for anym, € N the union
measurements according to Remark 4. After this, a UmetMg(m) is connected, thenV‘™(m)/Di(m) —
! J J

new dominance region is computed by communi- 2. °
cating with neighbors. This will be the region over
which the new estimate of the field will be updated.
Simultaneously, agents determine which are the set
of neighbors they need to transmit the information

. : - o , 1 i1 1 i1
of the field estimate to. Then, the initial condition  ues are given by—ZNi (0) and — ZDZ. (0),
for a gain computation subroutine is computed:; i i
see Thm 5. The gain computation is completed af-  respectively. ThereforeNf*l(m)/Dﬁl(m) converges to
ter several synchronous communication rounds with (37", N/t1(0))/(X0L, Di(0)) = Wi, asm — +oo.
other agents. Finally, each agent sends information The exponential convergence nature of consensus algo-
to the right set of neighbors and receives the required rithms is also a known fact, see [19], and it depends on the
information to update the field in the new region. connectivity of theG(m) and the number of agents [ ]

W, exponentially fast as» — 4o, for all j € {1,...,n}.
Proof: The proof is a consequence of the con-

vergence properties of agreement algorithms, see [6],

[19]. For undirected gnraphs, the agreement limit val-

n



Function Field-Estimate using NN interpolation (resp. using.IDW interpolation)
Requires Common consensus running tirfig possible computation of own positiomé,

communication with others iGp and Gan (¢) (resp.Gar-disk and Gripw (£))
Initialization : ¢o(g), DY, and the initial measurement are obtained.

For ¢ > 0 agent: does the following:
1: Compute the approximated centr(ﬂtf

Jpe abe—1(a)dg .-
m Jpe awi(a)é(a)da)

2: Move top! ! = C%, take a measuremenf+1 =¢(pth) + e”l and computeD!**
(resp. move through thé‘ , take meatsurementgZ = ¢(C ) setpé+1 equal to the last visited centroid, and complllté+1

3: Compute the approxmatloﬁDHl ¢(q)dq =~ z; LHlpg ptt (resp compute the apprOX|mat|cﬁz)¢+1 o(q)w ( )dg ~ z” fDHl w; £(q)dq)
4: Compute the numbers: ! !

£+1 £+1 - (41 2+1
NEF = G =B ) My = [

D/z ¢z(q)dq
(resp. the approximated centrmd#

&(q)dq) + C

o1
(resp.N{F1 = S (@ - G,005Y) |2 M e — Wit (@)Gy(q) dg+ C) | +C)
€N (92 Raisk) ’ ' it
JE 2 R-disk. i
Lf+1 ( Z+l _(z) ( €+1))2MD‘.€+1 +C
Cesp.LfH10)= > (T -GN —a ) [, wi @u @ da+0)
k,j €N (G2 R-disk) i

5: Obtain the approximated gali,; = GainAlgo(T, N/ 1, L)
6: Compute the update af in the new reglomﬁHl = FleIdUpdate(WHl, &%, D“rl D‘)
return ¢°(q)

Function GainAlgo for NN interpolation (resp. foLIDW interpolation)
Requires Common consensus running tirfie periodic communication graph connectivity, initial valués/ariablesN; (0), L;(0).

for m € {1,...,T} agenti does the following:

1 Ni(m) = m (Nz(m -+ ZjeNi(m—l)(Nj( -1) - ( )))
2: Li(m ):m(L'(m—1)+2je/\/i(m71)(13 (m—1)—L; )
3: If m =T, computeW = %

endfor,

return W

Function FieldUpdate for NN interpolation (resp. fo.LIDW interpolation)
Requires Previous estimate in regioﬁz, regioan, current regioan*l, gain Wy, 1, measurementf“,
communication with neighbors iGxn (£) (resp. communication with neighbors Gy, 1pw (£))

1: Obtaing? (q) = fg(q)ng(q) from j € NNN(¢) (resp. fromj € NEIPW (7))

2: Computef 1 (2) = 3 en N g1y 97 (@) + Wera (27 = 040 ™)
(resp.fi 1 (@) = 3 jentow g1y 97(0) + Wesrwy T (@) (27 — CAC))

return f{, (@)1 He41

TABLE |
FUNCTIONS FOR THE DISTRIBUTED INTERPOLATION FILTER USING TH NN APPROACH

A decentralization procedure that requires less memangtwork moving over a convex regio@ C R¢. Suppose
is one where vehicles just have information @f on their vehicles can synchronously take new measurements of a field
dominance region®?, ¢ € N. In fact, this is at least necessarys : Q — R as specified by the time schedule.,. Assume
for each vehicle to comput&//(0) and D{(0), ¢ € N. More also that agents can compute the gaifis, ¢ € Zso, in
precisely, the information needed to compyitgq) over D! a distributed manner, e.g., as described in Theorem 5, and
is the following: that {D{,..., D’} is a partition of the support op for all

(i) To compute D{(0) in the NN scheme, agent needs ¢ ¢ {0} UN. Then, 4, can be computed as a distributed
to know the position of neighborg € N;(Go(¢)) (resp. in sum of contributionsg,(q) = S, é,(q), for all ¢ € Q,
the LIDW scheme, agent needs to know the position of if agents can communicate with neighbors in the (connected)
neighbors; € N;(G2r-disk(€))), graph Gux(¢), ¢ € Z>o, when using aNN interpolation

(ii) to compute ¢,(¢) in the NN scheme, agent needs scheme or, respectively, in the graimyw (£) when using

to communicate with neighborg € NV N(¢) (resp. in the 41 1pw interpolation scheme. Hefg (¢) = fi(q)- 1pe(q) is
LIDW scheme, agentneeds to communicate with ”e'ghbor%aintained by each vehicle, where:

j € NFPW(e).) _
Now vehicles can thus compute(q) over D! as follows. fi(q) = > fi_,( Q) pe-r(a) + WS (B(pf) — be—1(P)))
Theorem 6:Letpy, ..., p, denote the positions of a vehicle eNNN(



Z ff 1 D[ 1(q) (8) Further, by equation (1), we obtain the following computas

]e/\/LIDW(ﬁ that prove the induction:
+ WrPYwi(q)(6(pf) — ¢4-1(pi)),  in the LIDW case
Z Z fé 1 D" 1(q )
_ . _ k=1 ie NN (£)
¢£71(p§) - f;il(Pf) with p§ c Dijl’ for all ¢ € N, and e
fg(q) = ¢(p(]?), in theNN case, respfg (q) = ¢(p?)w§-)(q), in + W (o(pe) — (b(pk)))lDﬁ (q), for NN,
the LIDW case, for allj € {1,...,n}. _ o ;
Proof: We will prove the result by induction. We will 0 = Z(, ;w fffl(Q)lDf’l(q)
provide computations for th§N andLIDW cases in parallel. FELENPY() B
Let ¢ = 1. By definition, see (1), + WP (g)(6(p1) — ¢(p1))1pe (), for LIDW.
_ _ _ ]
$1 = g+ Wi (Q1d — Qidy). (99 Remark 7 (Vehicle motions and network densiffjom

here we see that, in order to maintain a data-base
Since{D}}}_, is a partition of the support af for all / € N representation of¢ in the current dominance region,

each vehicle needs to communicate with others that were
— - contributing to the estimation over portions of its region
Po(@) =D _ oW po(a) =D (D ¢ p @)1p1(@)- Gne time- sgtep before. An assumpnor? is tHa!}r | is e?
partition of the support op. This is always true for a Voronoi
partition, but might not hold for balls3(p;, R) with small
R > 0 unless there is a sufficiently large number of vehicles
(a dense network). In case the number of vehicles is not large
enough, the scheme only serves to update the function over

Since 1p0(q)1p1(q) # 0 iff &k € NIN(1) (resp. k €
NFDPW (1)), then we have:

Z > 61y (a ))1p:(q), for NN, a limited area. On the other hand, the motion of the vehicles
=1 KeN TN (1) may also be restricted in order to guarantee communication
with others at the expense of getting less efficient estimate
Py of the gainW/. For example, in the limited range case, where
o Z > o)w(@)1pe (@) 1p:(q), for LIDW. g P g

the sensing radius if? (equal to the correlation radius of
the LIDW) and the communication radius &R, it can be
Using this fact and equation (9), we obtain: guaranteed that vehicles move to regions of agents which are
within communication range by restricting their motion to a
range of R/2. In this way, the vehicles would have to move

J=1 keN}TPW (1)

Z Z¢> pk Jpo(q TN(@(p)) — do(pj))) % toward their approximated centroids as much as possible but
J=keNNN(1 stay within R/2. °
Remark 8 (Information loss)The question of information
X 1D 1(q) —Zfo 1D () > for NN, or measurement loss is an important issue that we have

consciously left out of the paper. A thorough treatment; e.g
as in [20], also connects this problem with asynchronocity,

Z Z P(Ph)w 1D0 (9) which we mention as future work. However, assuming that
J=1ke NPV (1) there is a procedure to acknowledge measurement receipt fro
+ WHPW (g (p 1.) — go(p;))) x 1pi(q) neighbors, a version of the filter that.only considgrs mesasur
’ ments that were successfully transmitted can be implerdente
_ Zfo 1D1 . for LIDW. In this way, the computation of the global gaiii will take

into account only those successfully transmitted measemnésn
to update the filter. Since other than this, the computation o
Let f7_,(q), j € {1,...,n}, £ > 2, be defined as in (8) and_lv_[; is robuSS)t t% othler corl;nmumcahtlon fallure(sj (ii expflalned in
oy eorem 5), the algorithm can then procee e information
suppose thab_(q) = L1, /i 1()] pi-1(9). Using that loss will mainly affect the covariance of the error of theefilt
and the limit value of theMIMSE. In particular, sincep is
static, the filter will still make the covariance and thEVISE
By ( Zfl | D’f 1(q) approach a bounded limit. However, the value of this limd an
the velocity of convergence to it will be affected. °
Remark 9 (Data CompressionAs more measurements are
Zfl 1 De 1(@)1pe(q) gathered, the load of information to be transmitted between
(> finl

{Df _, is a partition of the support af for all ¢ € N, then:

vehicles increases. In order to maintain the overall p®ces

scalable, some sort of a data compression procedure should
D’-’*l(‘I))lDi(‘I)' be implemented. Any compression procedure will induce a
k=1 ieN} (0) modification of the filter as we describe in the following.

|
2l M:



Apart from the gain information, the data that each ageat 10 x 10 area units. The variance of the white noise in the
needs to transmit to others is basically encodedpjiiy), mMeasurement model is taken to bé)5. Figure 1 presents
i€{l,...,n}. LetC; : € — ¥ be a compression methodthe estimate ofy through theNN interpolation filter using
for agenti. This induces the general expressi6n,(q) = 75 sensors with a limited range @5. Figure 2 shows the
ELN@Z(Q): which, in turn, changes the filter update (1)asti.mate ofg throug.hLIDW using 64 sensors. The'number
according to: of time steps used in the computation of the gaiflis- 25.

_ _ _ . These simulations do not consider loss of resolution. The
Go(q) = Cop_1(q) + We(Qeg(q) — QeCdy_1(q)) -

smaller number of sensors employed for thEDW makes
In this way, the expression of the optimal gain should a|§ge MMSE a bit larger. We have implemented the filter with
change according to:

a time-varying¢ moving on a circle. Starting with absolute
- . o knowledge of the density, one can see M@&ISE reach a
fQ(¢ —Cy_1)(Qep — QeCoy_1)dg + C
Qup — QuCh,_1)2dg + C
Jq(Que = QuCoy)*da + VI. CONCLUSIONS

similar bound with these filters.

see the proof of Theorem 5. _ _ We have presented adaptive interpolation schemes for

Particular compression procedures that vehicles can implg,y|y time-varying field estimation. Conditions for thegsi>
ment can also be based on interpolations such as a LIy jecentralization of the schemes were obtained andreequi
quantization method as explained next. In general, €@ath) (1) mild connectivity assumptions for the computation o th
can be expressed as a sum: gains, and (2) communication between neighbors in the graph
Gun(?) and Gpw (¢). Future work will be dedicated to the
investigation of distributed schemes using global int&pons
and kriging methods, as well as the effect of measuremest los
in the filter performance.

Wy =

) M
5u(@) = Fi@lpe(@) = Y aly(@lae (@), (10)
k=1

for some setsA!, C D! with disjoint interiors, and:!, (¢) €
R which are linear combination of measurements weighted
by wf(q) functions. A possible way to compress (10) is to
limit the number of summands ta. < M. That is, take the
approximation
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V. SIMULATIONS

This section presents two simulation experiments of the
proposedNN and LIDW filters for the estimation ob(q) =
0.05 4+ 3exp—zla=m1* 13 exp=3lla—"21" 13 expla—117 with
r = (8,2), ro = (8,4) andrs = (3,7) over a square areaFig. 2.

An implementation of th&N decentralized interpolation filter.
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