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Distributed interpolation schemes
for field estimation by mobile sensor networks

Sonia Mart́ınez

Abstract— We introduce a procedure to adapt local interpo-
lations to represent spatial fields as they are measured by a
mobile sensor network. The scheme incorporates new sensor
(synchronous) measurements in a similar fashion to a Kalman
filter-like recursion. We derive necessary conditions that allow
the distributed computation of the recursion and present an
algorithm that makes use of agreement rules that satisfy them.
We show how the Nearest Neighbor interpolation scheme is
compatible with the motion coordination algorithm for region
coverage proposed in [1]. Finally, we illustrate the performance
of the algorithms in simulation.

I. I NTRODUCTION

An intensive research activity is being directed to the
development of coordination algorithms that allow the use
of multi-vehicle sensor networks in practical scenarios. Ex-
amples of such systems used in exploration and scientific
ventures include multi-buoy systems [2], coordinated gliders
for oceanographic research [3], and unmanned aerial vehicles
(UAVs) for atmospheric observation [4].

Typically, these sensor networks are required to commu-
nicate with a base station that gathers all the information
needed to produce an approximation of the spatial fields being
measured. This leads to a centralized control architecture
which is not scalable to large numbers of vehicles, it is
non-robust to station failures, and becomes too rigid to cope
with changing conditions in the environment. In particular,
the process of directing vehicles to time-varying cues can be
significantly slowed down, since the processing of the data
is delayed until all measurements are gathered at the base
station. Placing part of the estimation and processing loadon
the vehicles themselves will allow for greater autonomy and
increase the capacity of reaction much needed for adaptive
sampling applications. In order to make this possible, the
identification of suitable methods for cooperative estimation
and conditions for their distributed computation should be
investigated. An additional challenge is to produce estima-
tion algorithms that are compatible with other multi-vehicle
system tasks. As part of this effort, this paper presents a
(non-parametric) inference method whose computation can be
distributed and is compatible with coverage algorithms in [1].

Literature review. The investigation of the requirements
needed for decentralized estimation dates back to the ’80;
see e.g., [5], and is related to the area of sensor fusion.
The synthesis of distributed coordination algorithms for multi-
agent sensor systems is the subject of current research. In
particular, agreement and consensus algorithms [6], [7] have
been widely analyzed and proposed for sensor fusion [8], and
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as a way to decentralize Kalman filters [9]. The devise of
optimal sensor placement or motion coordination plans have
been recently addressed to improve Kalman-filter estimation
procedures for target tracking [10], or the optimal sampling
of spatial fields [3]. The assumption of fixed communication
topologies, all-to-all communication or the existence of a
central station that is able to fuse information and commu-
nicate with all vehicles is a restriction considered in most
cases. A related paper to the present work is [11], which
investigates user information retrieval protocols from a static
sensor network based on a Nearest Neighbor partition of the
space. However, [11] leaves the problem of sensor data fusion
unaddressed. In [12] a distributed parametric estimation ap-
proach is is presented that makes use of consensus algorithms
to agree on the parameter distribution. The paper [13] makes
use of kriging techniques for the distributed estimate of the
gradient of a random field.

Statement of contributions. We introduce a procedure to
adapt local interpolations to represent spatial fields by a
multi-vehicle sensor system. The interpolation provides anon-
parametric estimate of the field, which is refined via a Kalman
filter-like recursion as new measurements are collected. We
derive the expression of the optimal gain of the filter and obtain
conditions under which the scheme admits decentralization.
For the case of Nearest Neighbor interpolations, the required
inter-vehicle communication graph should contain a newly-
identified proximity graph function that is related to the
Delaunay graph. Finally, we discuss how the schemes can be
modified to account for data compression procedures to make
them more scalable.

II. PROBLEM STATEMENT AND PRELIMINARIES

Here we state the general problem scenario with given
assumptions, and introduce basic preliminaries on Voronoi
partitions, graphs and spatial interpolation methods; some
references are [14], [15], [16].

A. Motivating Problem and Assumptions

Let R≥0 denote the positive real numbers including0 and
let p1, . . . , pn denote the positions ofn vehicles moving on a
compact and convex region of the spaceQ ⊆ R

d. We assume
that each vehicle is endowed with physico-chemical sensors
and is able to take point measurementszi of certain scalar
field φ : R × Q → R≥0. For example,φ might represent
an environmental substance such as salinity concentrationin
the sea, aerosol pollutant in the atmosphere or any chemical
concentration. For simplicity, we will consider here thatφ
is static; i.e., φ : Q → R≥0. We will also assume that the
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measurementszi, i ∈ {1, . . . , n}, are affected by a spatially
and temporally uncorrelated white noise. In other words,

zi(t) = φ(pi(t)) + ǫi(t) , ǫi(t) ∼ N (0, σ) , ∀t ≥ 0 ,

E[ǫi(t)ǫj(s)] = 0 for i 6= j or t 6= s ,

where N (0, σ) is a zero-mean Gaussian distribution with
covarianceσ, andE[·] denotes the expectation operator. Under
these assumptions, we would like to determine a distributed,
non-parametric scheme for the collective and distributed es-
timation of φ. We shall assume that vehicles have access to
their positions through; for example, GPS measurements.

B. Preliminaries on Graphs and Notation

Let ‖ · ‖ denote the Euclidean norm inRd and letB(p,R)
denote the closed ball centered atp with radiusR. A graph
G is a pair G = (V, E) defined by a set of verticesV =
{1, . . . , n}, and an edge setE ⊆ V × V. Graphically, a
pair (i, j) ∈ E is represented by an arrow from vertexi to
vertex j. The adjacency matrixof a graph,A(G) = (aij) ∈
R

n×n, has entriesaij ∈ {0, 1} and aij 6= 0 iff (i, j) ∈ E .
The degree matrix of a graph,D(G), is a diagonal matrix
D(G) = diag(d1, . . . , dn) such thatdi =

∑
j 6=i aij . The

set of neighborsof vertex i in the graphG is denoted as
Ni(G) = {j ∈ V | (i, j) ∈ E}. An undirected graphsatisfies
(i, j) ∈ E if and only if (j, i) ∈ E , while in a directed graph
this property is not necessarily true.

A special class of graphs areproximity graphs. A proximity
graph has as vertex setV = {1, . . . , n} and an edge set map
E : R

d× (n). . . ×R
d → 2V×V defined as a function of relative

positionsP = (p1, . . . , pn) ∈ R
dn associated with the vertices

in V. That is, for each configuration(p1, . . . , pn) a set of edges
E(p1, . . . , pn) ⊆ V × V is defined. An example of proximity
graph is theR-disk graph, GR-disk = (V, ER-disk), such that
(i, j) ∈ ER-disk(p1, . . . , pn) if and only if ‖pi − pj‖ ≤ R. The
set of neighbors of an agent inGR-disk are those indices whose
positions are contained in the ball centered atpi with radius
R. That is,Ni(GR-disk) = {j ∈ V | pj ∈ B(pi, R)}.

A proximity graph that we will use in the sequel is the
Delaunay graph associated with a Voronoi partition. Recall
that the (Euclidean) Voronoi partition ofQ ⊆ R

d generated
by a tuple ofn distinct positionsP = (p1, . . . , pn) ∈ R

nd is a
collection of setsV (P) = {Vi(P)}n

i=1 such that∪n
i=1Vi(P) =

Q, andVi(P) is the region defined as:

Vi(P) = {q ∈ Q | ‖q − pi‖ ≤ ‖q − pj‖ for all j 6= i} ,

for all i ∈ {1, . . . , n}. We will usually refer toVi(P) asVi.
It is easy to see thatpi belongs to its Voronoi regionVi, i ∈
{1, . . . , n}. We say thatj is aVoronoi neighborof i if and only
if Vi andVj have a non-empty intersection at their boundary.
Voronoi partitions give rise to the undirectedDelaunay graph,
GD = (V, ED), defined over the set of verticesV = {1, . . . , n}
and edge setED ≡ ED(p1, . . . , pn) = {(i, j) |Vi∩Vj 6= ∅ , j ∈
{1, . . . , n}}. We refer to [14] for details on Voronoi partitions
and the Delaunay graph. We will denote the set of Voronoi
neighbors ofpi as eitherNi = {j ∈ {1, . . . , n} |Vi ∩Vj 6= ∅}
or Npi

, when there is no risk of confusion.

Assume that a sequence of configurations{Pℓ =
(pℓ

1, . . . , p
ℓ
n)}ℓ∈N ⊆ Q is defined over a time scheduleZ≥0.

Denote by ΣG the set of graphs over the set of vertices
{1, . . . , n}, including proximity graphs. We define the Nearest
Neighbor graph map,GNN : Z≥0 → ΣG , such that for each
ℓ ∈ Z≥0, GNN(ℓ) is the directed graphGNN(ℓ) = (V, ENN(ℓ)),
with Ni(GNN(ℓ)) = {j ∈ V | Vj(P

ℓ−1) ∩ Vi(P
ℓ) 6= ∅}. We

will use the shorthand notationsVi(P
ℓ) = V ℓ

i andNNN
i (ℓ) =

Ni(GNN(ℓ)), i ∈ {1, . . . , n}, ℓ ∈ Z≥0, from now on. Similarly,
we define the Local Inverse Distance Weighting (LIDW) graph
map,GLIDW : Z≥0 → ΣG , such thatGLIDW (ℓ) = (V, ELIDW (ℓ)),
with Ni(GLIDW (ℓ)) = {j ∈ V |V ℓ−1

j ∩ B(pℓ−1
j , R) ∩ V ℓ

i ∩
B(pℓ

j , R) 6= ∅}. In the sequel, we will use the notation
NLIDW

i (ℓ) = Ni(GLIDW (ℓ)), for i ∈ {1, . . . , n}, ℓ ∈ Z≥0.

C. Spatial Interpolation Methods

There are several methods available to predict multi-variate
fields φ : Q → R≥0 from scattered data. One of such
approaches relies on spatial interpolations to provide non-
parametric estimates of fields. In the absence of measurement
noise, the general formulation of a spatial interpolation prob-
lem is the following: given then values of the studied phe-
nomenon,zi = φ(pi), measured at discrete pointsp1, . . . , pn,
find a functionΦ : Q → R≥0 such thatΦ(pi) = zi, for all
i ∈ {1, . . . , n}.

An interpolantΦ is called global (resp. local), when the
value of Φ at any point q ∈ Q depends onall the data
values (resp. only on data values at“nearby” points). Global
interpolants are affected by the addition or deletion of data
values and by changes in the location of data sites, while
local interpolants are only affected at a vicinity of the changes.
The required scalability properties of distributed systems and
their decentralized nature make local interpolants more readily
adaptable for groups of multiple vehicles.

Some of the most widely used local interpolation methods
include the Nearest Neighbor (NN) and Natural Neighbor
(Nat) interpolations, and interpolations based on a Triangu-
lated Irregular Networks (TIN) [17], [14], [16]. The simplest
interpolation of a function overQ is given by the Nearest
Neighbor (NN) rule:

Φ(q) = zi , ‖q − pi‖ < ‖q − pj‖, j 6= i .

The resulting function is discontinuous at the boundaries of
the Voronoi regionsVi(P) associated with the location of the
pi, i ∈ {1, . . . , n}. An extension of this method is given by
the Natural Neighbors interpolation method defined as follows.
Given a pointq ∈ Q and a set of locationsP, computeV (P∪
{q}). The valueΦ(q) becomes:

Φ(q) =
∑

i∈Nq

wi(q)zi , wi(q) =
λi(q)∑

k∈Nq
λk(q)

,

for i ∈ {1, . . . , n}. Here,Nq denotes the set of neighbors of
q in the Delaunay graph associated withV (P ∪ {q}) and,
usually, the functionsλi(q) are chosen to be a function of the
distance betweenq andpi, i ∈ Nq.
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The Inverse Distance Weighting (IDW) interpolation
method is a global interpolation defined as:

Φ(q) =

n∑

i=1

wi(q)zi , wi(q) =

1
‖q−pi‖∑n

k=1
1

‖q−pk‖

,

for i ∈ {1, . . . , n}. A local version of IDW becomes:

Φ(q) =

n∑

i=1

wi(q)zi, wi(q) =

1
‖q−pi‖

1[0,R](‖q − pi‖)
∑n

k=1

(
1

‖q−pk‖
1[0,R](‖q − pk‖)

) ,

for i ∈ {1, . . . , n}. Here, 1[0,R](r) is the indicator function
over the interval[0, R]. In other words, in this local version
only the nodespi which are within distanceR of q will affect
the value of the interpolation.

Although the NN, Nat, and local IDW (LIWD) approaches
do not give rise to continuous representations, they are compu-
tationally very fast and can be easily extended to any bounded
set of any dimension. In comparison, the TIN approaches
require the computation of a set of generalized tetrahedra in
R

n, which can lead to complications when defining partitions
of compact domains. A solution to deal with this problem,
see [14], requires the placement of many nodes along the
boundary ofQ. In the following, we will pay attention to
the NN and LIDW interpolations for their computational sim-
plicity and to obtain different adaptive interpolation schemes
to estimate a fieldφ.

III. C ENTRALIZED INTERPOLATION SCHEMES

In this section, we introduce the centralized interpolation
schemes that will serve as a basis for the distributed inference
schemes proposed later. The schemes make use of the NN
and LIDW interpolation rules refined through a Kalman-like
procedure. We will consider that the time scheduleZ≥0 is
known by each agent and synchronizes the taking of then
independent measurementszi(ℓ), i ∈ {1, . . . , n}, ℓ ∈ Z≥0

and actions described later. This is a reasonable assumption
for static fields, where waiting time periods for all vehicles
can be established.

Agent i’s dominance regionat timeℓ ∈ Z≥0, Dℓ
i , is defined

to be Dℓ
i = V ℓ

i or Dℓ
i = V ℓ

i ∩ B(pℓ
i , R), whereR is the

radius of spatial correlation in theLIDW interpolation method.
Consider the classes of functions:

C = {ψ : R ×Q→ R>0 | ∀ t ∈ R, q 7→ ψ(t, q) piece. cont.},

C = {ψ : R ×Q→ R | ∃ψ ∈ C s.t.ψ(t, q) ∼ N (ψ(t, q), σ)

andE[ψ(t, p)ψ(s, q)] = 0 for t 6= s or p 6= q} .

Associated with these, we can define anobservation operator,
Q : Z≥0 × Qn × C → C , for a given interpolation method.
That is,Q(tℓ,P

ℓ, ψ) ∈ C is a new static spatial field defined
asQ(ℓ,Pℓ, ψ)(q) =

∑n
i=1 w

ℓ
i (q)(ψ(ℓ, pℓ

i) + ǫ(ℓ, pℓ
i)), for all

q ∈ Q. Hereψ(ℓ, pℓ
i) + ǫ(ℓ, pℓ

i) is the measurement ofψ ∈ C

that sensor atpℓ
i takes, whereǫ : R ×Q→ R is a white noise

such thatǫ(t, p) ∼ N (0, σ), E[ǫ(t, p)ǫ(s, q)] = 0 for t 6= s or
p 6= q. The functionwℓ

i (q) is the weight corresponding to one
of the mentioned interpolation methods.

In other words,Q provides a snapshot of a given ψ
according to measurements at vehicle sitesPℓ at timeℓ ∈ Z≥0.

For simplicity, we will use the notationQℓψ ≡ Q(ℓ,Pℓ, ψ),
whenever it is clear that the sitesPℓ correspond to the
vehicles’ positions at timeℓ ∈ Z≥0. Similarly, ǫℓi = ǫ(ℓ, pℓ

i),
for ℓ ∈ Z≥0 and i ∈ {1, . . . , n}. The expected value of
Q(ℓ,Pℓ, ψ) will be denoted asQℓψ =

∑n

i=1 ψ(ℓ, pi)w
ℓ
i (q).

Let φ : Q → R≥0 be the static field we would like
to estimate. Suppose that there is an initial field estimate
φ0 available. As new measurements are taken, we use an
update rule inspired by a Kalman-like recursion to refine the
interpolation. The convex combinationφℓ = φℓ−1+Wℓ(Qℓφ−
Qℓφℓ−1), ℓ ≥ 1 , yields an estimated valueφℓ = E[φℓ] of
the fieldφ at time ℓ. By induction, one can see that:

φℓ = φℓ−1 +Wℓ(Qℓφ−Qℓφℓ−1) , ℓ ≥ 1. (1)

Here,Wℓ plays the role of the gain at timeℓ ∈ Z≥0. The
combination (1) is a weighted sum of the predicted value of the
field, φℓ−1, and themeasurement innovation, Qℓφ−Qℓφℓ−1,
where Qℓφ is the new observation ofφ and Qℓφℓ is the
predicted observation. The rule (1) thus produces a weighted
average of measurement values and is understood as a point-
wise equality for all q ∈ Q. The new estimateφℓ will
be different from the previous one as long asQℓφ(q) 6=
Qℓφℓ−1(q) for all q ∈ Q. The fact thatQℓφ(q) = Qℓφℓ−1(q)
means thatφ(pℓ

i) has to be equal to a linear combination
of previous measurements for allℓ, which is not be true in
general. By the law of large numbers, sampling repeatedly at
all possible locations will make (1) approach the value ofφ.

Givenψ ∈ C and an estimatêψ ∈ C such thatE[ψ̂] = ψ,
we define the mean minimum square error (MMSE):

MMSE(ψ, ψ̂) =

∫

Q

E[(ψ(q) − ψ̂(q))2] dq .

In the following, we obtain an expression forMMSE(φ, φℓ),
ℓ ∈ N, in order to find the optimal value of the gains which
minimize this error. For simplicity we will use the notation
MMSE(φ, φℓ) ≡ MMSEℓ, ℓ ∈ N.

Lemma 1:The next equalities hold forℓ ∈ N, q, p ∈ Q:

E[φℓ−1(q)Qℓφ(p)] = φℓ−1(q)Qℓφ(p) ,

E[Qℓφ(q)Qℓφ(p)] = Qℓφ(q)Qℓφ(p) + σ2 ,

E[Qℓφ(q)Qℓφℓ−1(p)] = Qℓφ(q)Qℓφℓ−1(p) + σ2 .

Using these formulas, one can obtain the expression
E[φℓ(q)φℓ(p)] = φℓ(q)φℓ(p) + σ2Πℓ

s=1(1 −Ws)
2.

Proof: We omit the proof for brevity.
Lemma 2:The following equalities hold for allℓ ∈ N:

E[(Qℓφ)2] = (Qℓφ)2 + σ2 ,

E[(Qℓφℓ−1)
2] = (Qℓφℓ−1)

2 + σ2
(
1 + Πℓ−1

s=1(1 −Ws)
2
)
,

E[φQℓφ] = φQℓφ ,

E[φQℓφℓ−1] = φQℓφℓ−1 ,

E[φℓ−1 Qℓφℓ−1] = φℓ−1 Qℓφℓ−1 + σ2Πℓ−1
s=1(1 −Ws)

2 .

Using these formulas and Lemma 1, it is possible to obtain
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the recursive expression forℓ ≥ 1:

MMSEℓ = MMSEℓ−1 +

W 2
ℓ

( ∫

Q

(Qℓφ−Qℓφℓ−1)
2 dq + σ2Πℓ−1

s=1(1 −Ws)
2MQ

)

− 2Wℓ

( ∫

Q

(φ− φℓ−1)(Qℓφ−Qℓφℓ−1) dq

+ σ2Πℓ−1
s=1(1 −Ws)

2MQ

)
, (2)

whereMQ is the volume ofQ, MQ =
∫

Q
dq.

Proof: We omit the proof for brevity.
Theorem 3:Consider the NN interpolation method

(resp. theLIDW interpolation method with correlation radius
R > 0). Given previous valuesWs, s ∈ {1, . . . , ℓ − 1},
the optimal gain WNN

ℓ (resp. WLIDW
ℓ ) that guarantees

MMSEℓ ≤ MMSEℓ−1, for all ℓ ∈ N, is given by:

∑n
i=1(φ(pℓ

i) − φℓ−1(p
ℓ
i))

∫
Dℓ

i

(φ(q) − φℓ−1(q))dq + C
∑n

i=1(φ(pℓ
i) − φℓ−1(p

ℓ
i))

2MDℓ
i
+ C

,

(resp.WLIDW
ℓ = (

∑n
i=1[

∑
j∈Ni(G2R-disk)

(φ(pℓ
j) − φℓ−1(p

ℓ
j))∫

Dℓ
i

wℓ
j(q)(φ(q) − φℓ−1(q))dq] + C)/(

∑n
i=1[

∑
k,j∈Ni(G2R-disk)

(φ(pℓ
j) − φℓ−1(p

ℓ
j))(φ(pℓ

k) − φℓ−1(p
ℓ
k))

∫
Dℓ

i

wℓ
j(q)w

ℓ
k(q)dq] +

C)) whereC = σ2Πℓ−1
s=1(1 −Ws)

2MQ andMDℓ
i

=
∫

Dℓ
i

dq,
i ∈ {1, . . . , n}.

Proof: Taking the partial derivative ofMMSEℓ with
respect toWℓ in (2) and equating this to zero, we obtain:

∂MMSEℓ

∂Wℓ

= 2Wℓ

( ∫

Q

(Qℓφ−Qℓφℓ−1)
2 dq + C

)

− 2

∫

Q

(φ− φℓ−1)(Qℓφ−Qℓφℓ−1) dq − C

The critical value of the gain,W ∗
ℓ , is thus given by:

W ∗
ℓ =

∫
Q

(φ− φℓ−1)(Qℓφ−Qℓφℓ−1)dq + C
∫

Q
(Qℓφ−Qℓφℓ−1)

2 dq + C
,

which satisfies
∂ 2 MMSEℓ

∂W 2
ℓ |W∗

ℓ

> 0; thusW ∗
ℓ is a local mini-

mum. The particular observation operator and the interpolation
method that we use will further determine the value of the
gain. In the following we present the derivations for the more
simple NN interpolation, being the computations forLIDW
analogous. Using thatV (Pℓ) is a partition ofQ:

∫

Q

(Qℓφ(q) −Qℓφℓ−1(q))
2 dq =

n∑

i=1

∫

Dℓ
i

(φ(pℓ
i) − φℓ−1(p

ℓ
i))

2 · 1Dℓ
i
(q)dq =

n∑

i=1

(φ(pℓ
i) − φℓ−1(p

ℓ
i))

2MDℓ
i
,

where we have used the fact that1Dℓ
i
(q) ·1Dℓ

j
(q) is identically

zero for alli 6= j except for a set of measure zero,∂Dℓ
i ∩∂D

ℓ
j .

A similar computation leads to:
∫

Q

(φ− φℓ−1)(Qℓφ−Qℓφℓ−1)

=

n∑

i=1

(φ(pℓ
i) − φℓ−1(p

ℓ
i))

∫

Dℓ
i

(φ(q) − φℓ−1(q))dq .

Thus the claimed expression forWNN
ℓ using aNN interpola-

tion is obtained.
Remark 4:The computation of the optimal gain,W ∗

ℓ , in a
practical setting can be done only approximately. For example,
precise knowledge of the value of the integral ofφ over
the dominance regionsDℓ

i , i ∈ {1, . . . , n}, for both the
NN interpolation and theLIDW interpolation (integral in the
numerator) is required. With limited information aboutφ, each
vehicle can only compute this value approximately through
e.g., quadrature rules [18]. Supposeφ is locally Lipschitz over
Q and letΩ ⊆ Q be a compact subset. A quadrature rule for
the computation of

∫
Ω
φ(q)dq is defined as:

∫

Ω

φ(q)dq ≈
m∑

k=1

φ(qk) ·MAk
, (3)

where qi ∈ Ω and {Ak}
m
k=1 is a partition ofΩ into convex

sets associated with(q1, . . . , qm) ∈ Ωm. The subtraction of
both terms in (3) can be bounded as follows:

∣∣
∫

Ω

φ(q)dq −
m∑

k=1

φ(qk) ·MAk

∣∣

≤
m∑

k=1

∫

Ak

|φ(q) − φ(qi)|dq ≤ L
m∑

k=1

∫

Ak

|q − qi|dq,

where L is the Lipschitz constant ofφ. When k → ∞,
MAk

≈ 0, the above is a good approximation. For a finite
number of measurements inΩ, it can be proven; see [18],
that the quadrature is minimized forAk Voronoi regions
and qk ∈ Ak being at thecentroids of these regions; i.e.,
qk = CAk

, with CAk
= 1

R

Ak
φ(q)dq

∫
Ak
qφ(q)dq, for all

k ∈ {1, . . . ,m}. SinceQ is compact andφ is piecewise
continuous, each vehicle could take the simple approximation∫

Dℓ
i

φ(q)dq ≈ φ(CDℓ
i
)MDℓ

i
for the computation ofWNN

ℓ . In

order to approximateCDℓ
i
, the estimateφℓ−1 can be used.

The gain obtained in this way,̂WNN
ℓ is an approximation of

WNN
ℓ . As more measurements ofφ are stored by vehicles (e.g.,

possibly taken along a path frompℓ
i toCDℓ

i
) the approximation

will improve and we will haveŴNN
ℓ → WNN

ℓ as ℓ → ∞.
This approximation of the gain (which is optimal in certain
sense) will induce a particular motion control algorithm on
the vehicles to the centroids of their dominance regions. As
we will see later, this is compatible with the task of coverage
presented in [1]. As forLIDW, a possibility is:

∫

Dℓ
i

φ(q)wℓ
j(q)dq ≈ φ(Cℓ

ij)

∫

Dℓ
i

wℓ
j(q)dq , with

Cℓ
ij =

1∫
Dℓ

i

wℓ
j(q)φℓ(q)dq

∫

Dℓ
i

qwℓ
j(q)φℓ(q)dq ,
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since to approximate the integrals ofwj(q)φ(q), j ∈ NLIDW
i ,

vehicles would need to take several measurements. A similar
discussion with an approximation̂WLIDW

ℓ of WLIDW
ℓ holds.

On the other hand, the valuesφ(pℓ
i) are also required for the

computation ofWNN
ℓ . Since the mean value of measurements

zi is assumed to be the trueφ(pi), i ∈ {1, . . . , n}, the
value φ(pi) can be approximated by each vehicle byzi at
the same position. We will assume this procedure is taking
place whenever we refer to the fact that a vehicle computes
φ(pi). This introduces another approximation error into the
computation of the gain, but does not affect the convergence
of the filter as we see in simulations. •

IV. D ISTRIBUTED INTERPOLATION SCHEMES

In this section, we describe a distributed implementation of
the centralized schemes of the previous section. As we see
below, the distributed computation is possible if agents are
able to form a jointly connected communication network in
order to agree on the values of the optimal gains. On the other
hand, in order to update the scheme estimate, communication
according toGNN or, resp.GLIDW will have to be granted. An
assumption that makes this more feasible is that the sensor
network is dense in the environment; see Remark 7, for a
discussion of this fact. On the other hand, it is not necessary
that each vehicle maintains a global representation ofφ, but
just a local one over its regionDℓ−1

i ∪Dℓ
i .

Let W ∗
ℓ denote the optimal gain obtained in Theorem 3

either by the NN or LIDW methods. We will assume that
at each step of the time scheduleℓ ∈ Z≥0 several actions
(measurement taking and computations) are performed by
agents synchronously. Additionally the time slot[ℓ, ℓ+1] will
be divided into communication rounds that will allow sensors
to update their estimate of the gain. The main algorithm and
functions that are called inside it are described in pseudocode
in Table IV for both theNN and theLIDW interpolation
methods. We provide an informal description of the algorithm
in what follows, and establish the conditions needed for its
correctness after this.

[Informal description].At time ℓ each agent main-
tains in memory the current estimate of the field
over the current dominance region, until the field
is updated through the following sequence of steps.
First, each agent computes an approximated “cen-
troids” according to formula. This will a motion
path for each agent has to visit while taking new
measurements according to Remark 4. After this, a
new dominance region is computed by communi-
cating with neighbors. This will be the region over
which the new estimate of the field will be updated.
Simultaneously, agents determine which are the set
of neighbors they need to transmit the information
of the field estimate to. Then, the initial condition
for a gain computation subroutine is computed;
see Thm 5. The gain computation is completed af-
ter several synchronous communication rounds with
other agents. Finally, each agent sends information
to the right set of neighbors and receives the required
information to update the field in the new region.

In order to compute the gain, each interval[ℓ, ℓ+ 1] can be
divided intoT time slots to establish a set of communication
rounds between neighboring agents inG ⊆ Gcmm(ℓ) as follows.
Let m ∈ {1, . . . , T} index the communication roundstm ∈
(ℓ, ℓ+ 1). At eachtm an undirected communication graph is
established. That is,G(tm) = ({1, . . . , n}, E(m)) is undirected
and i, j can exchange a message at timetm if and only if
(i, j) ∈ E(m).

Suppose that, by communicating with neighbors inG ⊇ GD

for the NN interpolation approach (orG ⊇ G2R-disk for the
LIDW), agenti is able to compute atℓ:

N ℓ+1
i (0) (4)

= (φ(pℓ+1
i ) − φℓ(p

ℓ+1
i ))(φ(Cℓ

i )MD
ℓ+1

i
−

∫

D
ℓ+1

i

φℓ(q)dq) + C ,

(resp.N ℓ+1
i (0) =

∑

j∈Ni(G2R-disk)

(φ(pℓ+1
j ) − φℓ(p

ℓ+1
j ))[φ(Cℓ

ij)MD
ℓ+1

i

−

∫

D
ℓ+1

i

wℓ+1
j (q)φℓ(q) dq + C)] )

Lℓ+1
i (0) = (φ(pℓ+1

i ) − φℓ(p
ℓ+1
i ))2M

D
ℓ+1

i
+ C , (5)

(resp.Lℓ+1
i (0)=

∑

k,j∈Ni(G2R-disk)

(φ(pℓ+1
j ) − φℓ(p

ℓ+1
j ))× (6)

× (φ(pℓ+1
k ) − φℓ(p

ℓ+1
k ))

∫

D
ℓ+1

i

wℓ+1
j (q)wℓ+1

k (q) dq + C)

where C = σ2MQΠℓ−1
s=1(1 − W ∗

s )2. Then, during theT
communication rounds take place, agents can update the values
of N ℓ

i (m) and Dℓ
i (m), m ∈ {1, . . . , T}, by e.g., using an

averaging algorithm. In the particular case thatKℓ → ∞ the
approximated value of the gain will tend to the original̂W ∗

ℓ

as discussed next.
Theorem 5:Let ℓ ∈ Z≥0 be fixed. Suppose that at timeℓ

each agent is able to compute (4) and (5). Denote byG(m),
m ∈ {1, . . . , T} the communication graphs established at
roundstm ∈ (ℓ, ℓ+ 1). Define the agreement algorithms:

N ℓ+1
j (m+ 1) =

n∑

i=1

F i
j (m)N ℓ+1

i (m),

Dℓ+1
j (m+ 1) =

n∑

i=1

F i
j (m)Dℓ+1

i (m), (7)

where F (s) is the stochastic matrixF (m) = (I +
D(G(m)))−1(I + A(G(m))). Suppose we letT → +∞. If
there exists aM > 0 such that for anym0 ∈ N the union
∪m0+M

m=m0
G(m) is connected, thenN ℓ+1

j (m)/Dℓ+1
j (m) →

Ŵ ∗
ℓ+1 exponentially fast asm→ +∞, for all j ∈ {1, . . . , n}.

Proof: The proof is a consequence of the con-
vergence properties of agreement algorithms, see [6],
[19]. For undirected graphs, the agreement limit val-

ues are given by
1

n

n∑

i=1

N ℓ+1
i (0) and

1

n

n∑

i=1

Dℓ+1
i (0),

respectively. ThereforeN ℓ+1
j (m)/Dℓ+1

j (m) converges to

(
∑n

i=1N
ℓ+1
i (0))/(

∑n
i=1D

ℓ+1
i (0)) = Ŵ ∗

ℓ+1 asm→ +∞.
The exponential convergence nature of consensus algo-

rithms is also a known fact, see [19], and it depends on the
connectivity of theG(m) and the number of agentsn.



6

FunctionField-Estimate usingNN interpolation (resp. usingLIDW interpolation)
Requires: Common consensus running timeT , possible computation of own positionspℓ

i ,
communication with others inGD andGNN(ℓ) (resp.G2R-disk andGLIDW(ℓ))

Initialization : φ0(q), D0
i , and the initial measurementz0

i are obtained.

For ℓ ≥ 0 agenti does the following:
1: Compute the approximated centroidCℓ

i = 1
R

Dℓ
i

φℓ(q)dq

R

Dℓ
i

qφℓ−1(q)dq .

(resp. the approximated centroidsCℓ
ij = 1

R

Dℓ
i

wℓ
j
(q)φ(q)dq

R

Dℓ
i

qwℓ
j(q)φ(q)dq)

2: Move topℓ+1
i = Cℓ

i , take a measurementzℓ+1
i = φ(pℓ+1

i ) + ǫℓ+1
i , and computeDℓ+1

i

(resp. move through theCℓ
ij , take measurementszℓ

ij = φ(Cℓ
ij) + ǫℓ

ij , setpℓ+1
i equal to the last visited centroid, and computeDℓ+1

i )

3: Compute the approximation
R

D
ℓ+1

i

φ(q)dq ≈ zℓ+1
i M

D
ℓ+1

i

(resp. compute the approximation
R

D
ℓ+1

i

φ(q)wℓ
j(q)dq ≈ zℓ

ij

R

D
ℓ+1

i

wℓ
j(q)dq)

4: Compute the numbers:

Nℓ+1
i = (zℓ+1

i − φℓ(p
ℓ+1
i ))(zℓ+1

i M
D

ℓ+1

i

−

Z

D
ℓ+1

i

φℓ(q)dq) + C

(resp.Nℓ+1
i =

X

j∈Ni(G2R-disk)

(zℓ+1
i − φℓ(p

ℓ+1
j ))

"

zℓ
ijM

D
ℓ+1

i

−

Z

D
ℓ+1

i

wℓ+1
j (q)φℓ(q) dq + C)

#

+ C )

Lℓ+1
i = (zℓ+1

i − φℓ(p
ℓ+1
i ))2M

D
ℓ+1

i

+ C

(resp.Lℓ+1
i (0) =

X

k,j∈Ni(G2R-disk)

(zℓ+1
j − φℓ(p

ℓ+1
j ))(zℓ+1

k
− φℓ(p

ℓ+1
k

))

Z

D
ℓ+1

i

wℓ+1
j (q)wℓ+1

k
(q) dq + C )

5: Obtain the approximated gainWℓ+1 = GainAlgo(T, Nℓ+1
i , Lℓ+1

i )

6: Compute the update ofφ in the new regionφi
ℓ+1 = FieldUpdate(Wℓ+1, φi

ℓ
, Dℓ+1

i , Dℓ
i ),

return φi(q)

FunctionGainAlgo for NN interpolation (resp. forLIDW interpolation)
Requires: Common consensus running timeT , periodic communication graph connectivity, initial valuesof variablesNi(0), Li(0).

for m ∈ {1, . . . , T} agenti does the following:

1: Ni(m) = 1
|Ni(m−1)|+1

“

Ni(m − 1) +
P

j∈Ni(m−1)(Nj(m − 1) − Ni(m − 1))
”

2: Li(m) = 1
|Ni(m−1)|+1

“

Li(m − 1) +
P

j∈Ni(m−1)(Lj(m − 1) − Li(m − 1))
”

3: If m = T , computeW =
Ni(T )
Li(T )

.

end for ,
return W

FunctionFieldUpdate for NN interpolation (resp. forLIDW interpolation)
Requires: Previous estimate in regionφi

ℓ
, regionDℓ

i , current regionDℓ+1
i , gain Wℓ+1, measurementzℓ+1

i ,
communication with neighbors inGNN(ℓ) (resp. communication with neighbors inGLIDW(ℓ))

1: Obtaingj(q) = f
j
ℓ
(q)1

Dℓ
j
(q) from j ∈ NNN

i (ℓ) (resp. fromj ∈ NLIDW
i (ℓ))

2: Computef i
ℓ+1(q) =

P

j∈NNN
i

(ℓ+1) gj(q) + Wℓ+1(zℓ+1
i − φi

ℓ
(pℓ+1

i ))

(resp.f i
ℓ+1(q) =

P

j∈NLIDW
i

(ℓ+1) gj(q) + Wℓ+1wℓ+1
i (q)(zℓ+1

i − φi
ℓ
(pℓ+1

i )))

return f i
ℓ+1(q)1

D
ℓ+1

i

TABLE I

FUNCTIONS FOR THE DISTRIBUTED INTERPOLATION FILTER USING THE NN APPROACH.

A decentralization procedure that requires less memory
is one where vehicles just have information ofφℓ on their
dominance regionsDℓ

i , ℓ ∈ N. In fact, this is at least necessary
for each vehicle to computeN ℓ

i (0) andDℓ
i (0), ℓ ∈ N. More

precisely, the information needed to computeφℓ(q) overDℓ
i

is the following:
(i) To computeDℓ

i (0) in the NN scheme, agenti needs
to know the position of neighborsj ∈ Ni(GD(ℓ)) (resp. in
the LIDW scheme, agenti needs to know the position of
neighborsj ∈ Ni(G2R-disk(ℓ))),

(ii) to computeφℓ(q) in the NN scheme, agenti needs
to communicate with neighborsj ∈ NNN

i (ℓ) (resp. in the
LIDW scheme, agenti needs to communicate with neighbors
j ∈ NLIDW

i (ℓ).)
Now vehicles can thus computeφℓ(q) overDℓ

i as follows.
Theorem 6:Let p1, . . . , pn denote the positions of a vehicle

network moving over a convex regionQ ⊆ R
d. Suppose

vehicles can synchronously take new measurements of a field
φ : Q −→ R as specified by the time scheduleZ≥0. Assume
also that agents can compute the gainsW ∗

ℓ , ℓ ∈ Z≥0, in
a distributed manner, e.g., as described in Theorem 5, and
that {Dℓ

1, . . . ,D
ℓ
n} is a partition of the support ofφ for all

ℓ ∈ {0} ∪ N. Then, φℓ can be computed as a distributed
sum of contributionsφℓ(q) =

∑n
i=1 φ

i

ℓ(q), for all q ∈ Q,
if agents can communicate with neighbors in the (connected)
graph GNN(ℓ), ℓ ∈ Z≥0, when using aNN interpolation
scheme or, respectively, in the graphGLIDW(ℓ) when using
a LIDW interpolation scheme. Hereφ

i

ℓ(q) = f i
ℓ(q) ·1Dℓ

i
(q) is

maintained by each vehicle, where:

f i
ℓ(q) =

∑

j∈NNN
i (ℓ)

f j
ℓ−1(q)1D

ℓ−1

j
(q) +WNN

ℓ (φ(pℓ
i) − φℓ−1(p

ℓ
i)) ,
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f i
ℓ(q) =

∑

j∈NLIDW
i (ℓ)

f j
ℓ−1(q)1D

ℓ−1

j
(q) (8)

+WLIDW
ℓ wℓ

i (q)(φ(pℓ
i) − φℓ−1(p

ℓ
i)) , in the LIDW case,

φℓ−1(p
ℓ
j) = f

kj

ℓ−1(p
ℓ
j) with pℓ

j ∈ Dℓ−1
kj

, for all ℓ ∈ N, and

f j
0 (q) = φ(p0

j ), in theNN case, resp.f j
0 (q) = φ(p0

j )w
0
j (q), in

the LIDW case, for allj ∈ {1, . . . , n}.
Proof: We will prove the result by induction. We will

provide computations for theNN andLIDW cases in parallel.
Let ℓ = 1. By definition, see (1),

φ1 = φ0 +W ∗
1 (Q1φ−Q1φ0) . (9)

Since{Dℓ
j}

n
j=1 is a partition of the support ofφ for all ℓ ∈ N:

φ0(q) =

n∑

k=1

φ(p0
k)1D0

k
(q) =

n∑

j=1

( n∑

k=1

φ(p0
k)1D0

k
(q)

)
1D1

j
(q) .

Since 1D0
k
(q)1D1

j
(q) 6= 0 iff k ∈ NNN

j (1) (resp. k ∈

NLIDW
i (1)), then we have:

φ0(q) =
n∑

j=1

( ∑

k∈NNN
j (1)

φ(p0
k)1D0

k
(q)

)
1D1

j
(q) , for NN,

φ0(q) =

n∑

j=1

( ∑

k∈NLIDW
j (1)

φ(p0
k)w0

k(q)1D0
k
(q)

)
1D1

j
(q) , for LIDW.

Using this fact and equation (9), we obtain:

φ1(q) =
n∑

j=1

(
∑

k∈NNN
j (1)

φ(p0
k)1D0

k
(q) +WNN

1 (φ(p1
j ) − φ0(p

1
j )))×

× 1D1
j (q) =

n∑

j=1

f j
0 (q)1D1

j (q) , for NN,

φ1(q) =
n∑

j=1

(
∑

k∈NLIDW
j (1)

φ(p0
k)w0

k(q)1D0
k
(q)

+WLIDW
1 (φ(p1

j ) − φ0(p
1
j ))) × 1D1

j
(q)

=
n∑

j=1

f j
0 (q)1D1

j
(q) , for LIDW.

Let f j
ℓ−1(q), j ∈ {1, . . . , n}, ℓ ≥ 2, be defined as in (8) and

suppose thatφℓ−1(q) =
∑n

i=1 f
j
ℓ−1(q)1D

ℓ−1

i
(q). Using that

{Dℓ
j}

n
j=1 is a partition of the support ofφ for all ℓ ∈ N, then:

φℓ−1(q) =
n∑

i=1

f i
ℓ−1(q)1D

ℓ−1

i
(q)

=
n∑

k=1

(
n∑

i=1

f i
ℓ−1(q)1D

ℓ−1

i
(q))1Dℓ

k
(q)

=
n∑

k=1

(
∑

i∈N∗

k
(ℓ)

f i
ℓ−1(q)1D

ℓ−1

i
(q))1Dℓ

k
(q) .

Further, by equation (1), we obtain the following computations
that prove the induction:

φℓ =
n∑

k=1

(
∑

i∈NNN
k

(ℓ)

f i
ℓ−1(q)1D

ℓ−1

i
(q)

+WNN
ℓ (φ(pℓ

k) − φ(pℓ
k)))1Dℓ

k
(q) , for NN ,

φℓ =

n∑

k=1

(
∑

i∈NLIDW
k

(ℓ)

f i
ℓ−1(q)1D

ℓ−1

i
(q)

+WLIDW
ℓ wℓ

k(q)(φ(pℓ
k) − φ(pℓ

k)))1Dℓ
k
(q) , for LIDW .

Remark 7 (Vehicle motions and network density):From
here we see that, in order to maintain a data-base
representation ofφ in the current dominance region,
each vehicle needs to communicate with others that were
contributing to the estimation over portions of its region
one time-step before. An assumption is that{Dℓ

i}
n
i=1 is a

partition of the support ofφ. This is always true for a Voronoi
partition, but might not hold for ballsB(pi, R) with small
R > 0 unless there is a sufficiently large number of vehicles
(a dense network). In case the number of vehicles is not large
enough, the scheme only serves to update the function over
a limited area. On the other hand, the motion of the vehicles
may also be restricted in order to guarantee communication
with others at the expense of getting less efficient estimates
of the gainW . For example, in the limited range case, where
the sensing radius isR (equal to the correlation radius of
the LIDW) and the communication radius is2R, it can be
guaranteed that vehicles move to regions of agents which are
within communication range by restricting their motion to a
range ofR/2. In this way, the vehicles would have to move
toward their approximated centroids as much as possible but
stay withinR/2. •

Remark 8 (Information loss):The question of information
or measurement loss is an important issue that we have
consciously left out of the paper. A thorough treatment; e.g.
as in [20], also connects this problem with asynchronocity,
which we mention as future work. However, assuming that
there is a procedure to acknowledge measurement receipt from
neighbors, a version of the filter that only considers measure-
ments that were successfully transmitted can be implemented.
In this way, the computation of the global gainW will take
into account only those successfully transmitted measurements
to update the filter. Since other than this, the computation of
W is robust to other communication failures (as explained in
Theorem 5), the algorithm can then proceed. The information
loss will mainly affect the covariance of the error of the filter
and the limit value of theMMSE. In particular, sinceφ is
static, the filter will still make the covariance and theMMSE
approach a bounded limit. However, the value of this limit and
the velocity of convergence to it will be affected. •

Remark 9 (Data Compression):As more measurements are
gathered, the load of information to be transmitted between
vehicles increases. In order to maintain the overall process
scalable, some sort of a data compression procedure should
be implemented. Any compression procedure will induce a
modification of the filter as we describe in the following.
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Apart from the gain information, the data that each agent
needs to transmit to others is basically encoded inφ

i

ℓ(q),
i ∈ {1, . . . , n}. Let Ci : C → C be a compression method
for agent i. This induces the general expressionCφℓ(q) =∑n

i=1 Ciφ
i

ℓ(q), which, in turn, changes the filter update (1)
according to:

φℓ(q) = Cφℓ−1(q) + Wℓ(Qℓφ(q) −QℓCφℓ−1(q)) .

In this way, the expression of the optimal gain should also
change according to:

W∗
ℓ =

∫
Q

(φ− Cφℓ−1)(Qℓφ−QℓCφℓ−1)dq + C
∫

Q
(Qℓφ−QℓCφℓ−1)

2dq + C
,

see the proof of Theorem 5.
Particular compression procedures that vehicles can imple-

ment can also be based on interpolations such as a Lloyd
quantization method as explained next. In general, eachφ

i

ℓ(q)
can be expressed as a sum:

φ
i

ℓ(q) = f i
ℓ(q)1Dℓ

i
(q) =

M∑

k=1

aℓ
ik(q)1Aℓ

ik
(q) , (10)

for some setsAℓ
ik ⊆ Dℓ

i with disjoint interiors, andaℓ
ik(q) ∈

R which are linear combination of measurements weighted
by wr

j (q) functions. A possible way to compress (10) is to
limit the number of summands tom ≪ M . That is, take the
approximation

M∑

k=1

aℓ
ik(q) 1Aℓ

ik
(q) ≈

m∑

k=1

bℓik 1Bℓ
ik

(q) ,

using a lower dimensional set ofbℓik ∈ R and Bℓ
ik ⊆ Dℓ

i ,
k ≤ m. To do this, a Lloyd quantization algorithm can
be implemented by each vehicle as follows. First,m initial
conditions are chosen,F(0) = {qk ∈ Dℓ

i | k ∈ {1, . . . ,m}},
bℓik(0) = φ

i

ℓ(qk) andBℓ
ik(0) = Vk(F(0)), k ∈ {1, . . . ,m}.

Then, these are updated for a number of times according
to F(s + 1) = {CBℓ

ik
(s) |CBℓ

ik
(s) is the centroid ofBℓ

ik(s)},

bℓik(s + 1) = φ
i

ℓ(CBℓ
ik

(s)), B
ℓ
ik(s + 1) = Vk(F(s)), k ∈

{1, . . . ,m} and s ≥ 1. The iteration leads to a suboptimal
approximation of (10) usingm summands. •

Remark 10 (Relation to coverage problems):The prescrip-
tion of the motion of the vehicles to the approximated cen-
troids of their regions corresponds to what is done in coverage
algorithms proposed in [21]. Clearly, as the approximations
φℓ(q) become more and more accurate, the approximated
centroids will become as well. In this way, the final config-
uration of the vehicles will converge to acentroidal Voronoi
configuration, where agents are placed at the centroids of their
dominance regions. This configurations are suboptimal with
respect to a multi-center function measuring coverage. •

V. SIMULATIONS

This section presents two simulation experiments of the
proposedNN andLIDW filters for the estimation ofφ(q) =
0.05+3 exp− 1

2
‖q−r1‖

2

+3 exp− 1
2
‖q−r2‖

2

+3 exp‖q−r1‖
2

, with
r1 = (8, 2), r2 = (8, 4) and r3 = (3, 7) over a square area

of 10 × 10 area units. The variance of the white noise in the
measurement model is taken to be0.05. Figure 1 presents
the estimate ofφ through theNN interpolation filter using
75 sensors with a limited range of0.5. Figure 2 shows the
estimate ofφ throughLIDW using 64 sensors. The number
of time steps used in the computation of the gain isT = 25.
These simulations do not consider loss of resolution. The
smaller number of sensors employed for theLIDW makes
the MMSE a bit larger. We have implemented the filter with
a time-varyingφ moving on a circle. Starting with absolute
knowledge of the density, one can see theMMSE reach a
similar bound with these filters.

VI. CONCLUSIONS

We have presented adaptive interpolation schemes for
slowly time-varying field estimation. Conditions for the possi-
ble decentralization of the schemes were obtained and require
(1) mild connectivity assumptions for the computation of the
gains, and (2) communication between neighbors in the graphs
GNN(ℓ) and GLIDW (ℓ). Future work will be dedicated to the
investigation of distributed schemes using global interpolations
and kriging methods, as well as the effect of measurement loss
in the filter performance.
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