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An approximate dual subgradient algorithm for multi-agent non-convex
optimization

Minghui Zhu and Sonia Martı́nez

Abstract— We consider a multi-agent optimization problem
where agents aim to cooperatively minimize a sum of local
objective functions subject to a global inequality constraint and
a global state constraint set. In contrast to existing papers,
we do not require that the objective, constraint functions,
and state constraint sets are convex. We propose a distributed
approximate dual subgradient algorithm to enable agents to
asymptotically converge to a pair of approximate primal-
dual solutions over dynamically changing network topologies.
Convergence can be guaranteed provided that the Slater’s
condition and strong duality property are satisfied.

I. INTRODUCTION

Recent advances in computation, communication, sens-
ing and actuation have stimulated an intensive research in
networked multi-agent systems. In the systems and control
community, this has been translated into how to solve global
control problems, expressed by global objective functions,
by means of local agent actions. More specifically, problems
considered include multi-agent consensus or agreement [5],
[12], [14], [18], [23], [24], coverage control [6], [8], forma-
tion control [9], [28], sensor fusion [32] and game-theoretic
control [1], [27].

In the optimization community, a problem of focus is to
minimize a sum of local objective functions by a group
of agents, where each function depends on a common
global decision vector and is only known to a specific
agent. This problem is motivated by others in distributed
estimation [22] [31], distributed source localization [25], and
network utility maximization [15]. More recently, consensus
techniques have been proposed to address the issues of
switching topologies in networks and non-separability in ob-
jective functions; see for instance [13], [20], [21], [26], [33].
More specifically, the paper [20] presents the first analysis
of an algorithm that combines average consensus schemes
with subgradient methods. Using projection in the algorithm
of [20], the authors in [21] further solve a more general setup
that includes local state constraint sets. Further, in [33] we
develop two distributed primal-dual subgradient algorithms,
which are based on saddle-point theorems, to analyze a
more general situation that incorporates global inequality
and equality constraints. The aforementioned algorithms are
extensions of classic (primal or primal-dual) subgradient
methods which generalize gradient-based methods to mini-
mize non-smooth functions. This requires the optimization
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problems under consideration to be convex in order to
determine a global optimum.

The focus of the current paper is to relax the convexity
assumption in [33]. To achieve this, we will integrate La-
grangian dualization and subgradient schemes to circumvent
the non-convexity property, which have been popular and
efficient approaches to solve large-scale, structured convex
optimization problems, e.g., [3], [4]. In particular, these
two techniques have been successfully utilized to design
decentralized resource allocation algorithms; see [7], [15],
[30], in the networking community. However, subgradient
methods do not automatically generate primal solutions for
nonsmooth convex optimization problems. Numerous ap-
proaches have been designed to construct primal solutions;
e.g., by removing the nonsmoothness [29], by employing
ascent approaches [16], and the generation of ergodic se-
quences [17], [19].

Statement of Contributions. Here, we investigate a multi-
agent optimization problem where agents are trying to
minimize a sum of local objective functions subject to a
global inequality constraint and a global state constraint set.
The objective and constraint functions as well as the state-
constraint set could be non-convex. A distributed approx-
imate dual subgradient algorithm is introduced to find a
pair of approximate primal-dual solutions. Specifically, the
update rule for dual estimates combines an approximate dual
subgradient scheme with average consensus algorithms. To
obtain primal solutions from dual estimates, we propose a
novel recovery scheme: primal estimates are not updated if
the variations induced by dual estimates are smaller than
some predetermined threshold; otherwise, primal estimates
are set to some solutions in dual optimal solution sets. This
algorithm is shown to asymptotically converge to a pair of
approximate primal-dual solutions over a class of switching
network topologies. Convergence is guaranteed under the
Slater’s condition and strong duality property.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider a networked multi-agent system where agents are
labeled by i ∈ V := {1, . . . , N}. The multi-agent system
operates in a synchronous way at time instants k ∈ N∪{0},
and its topology will be represented by a directed weighted
graph G(k) = (V,E(k), A(k)), for k ≥ 0. Here, A(k) :=
[aij(k)] ∈ RN×N is the adjacency matrix, where the scalar
aij(k) ≥ 0 is the weight assigned to the edge (j, i), and
E(k) ⊆ V × V \ diag(V ) is the set of edges with non-
zero weights. The set of in-neighbors of agent i at time k
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is denoted by Ni(k) = {j ∈ V | (j, i) ∈ E(k) and j 6= i}.
Similarly, we define the set of out-neighbors of agent i at
time k as N out

i (k) = {j ∈ V | (i, j) ∈ E(k) and j 6= i}.
We here make the following assumptions on the network
communication graphs:

Assumption 2.1 (Non-degeneracy): There exists a con-
stant α > 0 such that aii(k) ≥ α, and aij(k), for i 6= j,
satisfies aij(k) ∈ {0} ∪ [α, 1], for all k ≥ 0.

Assumption 2.2 (Balanced Communication): 1It holds
that

∑
j∈V a

i
j(k) = 1 for all i ∈ V and k ≥ 0, and∑

i∈V a
i
j(k) = 1 for all j ∈ V and k ≥ 0.

Assumption 2.3 (Periodical Strong Connectivity):
There is a positive integer B such that, for all k0 ≥ 0, the
directed graph (V,

⋃B−1
k=0 E(k0 + k)) is strongly connected.

The above network model is standard in the analysis
of average consensus algorithms; e.g., see [23], [24], and
distributed optimization in [21], [33]. Recently, an algorithm
is given in [10] which allows agents to construct a balanced
graph out of a non-balanced one under certain assumptions.

The objective of the agents is to cooperatively solve the
following primal problem (P ):

min
z∈Rn

∑
i∈V

fi(z),

s.t. g(z) ≤ 0, z ∈ X, (1)

where z ∈ Rn is the global decision vector. The function fi :
Rn → R is only known to agent i, continuous, and referred
to as the objective function of agent i. The set X ⊆ Rn, the
state constraint set, is compact. The function g : Rn → Rm
are continuous, and the inequality g(z) ≤ 0 is understood
component-wise; i.e., g`(z) ≤ 0, for all ` ∈ {1, . . . ,m},
and represents a global inequality constraint. We will denote
f(z) :=

∑
i∈V fi(z) and Y := {z ∈ Rn | g(z) ≤ 0}. We

will assume that the set of feasible points is non-empty; i.e.,
X ∩ Y 6= ∅. Since X is compact and Y is closed, then
we can deduce that X ∩ Y is compact. The continuity of f
follows from that of fi. In this way, the optimal value p∗ of
the problem (P ) is finite and X∗, the set of primal optimal
points, is non-empty. Throughout this paper, we suppose the
following Slater’s condition holds:

Assumption 2.4 (Slater’s Condition): There exists a
vector z̄ ∈ X such that g(z̄) < 0. Such z̄ is referred to as a
Slater vector of the problem (P ).

Remark 2.1: All the agents can agree upon a common
Slater vector z̄ through a maximum-consensus scheme:

Initially, each agent i chooses a Slater vector zi(0) ∈ X
such that g(zi(0)) < 0. At every time k ≥ 0, each agent i
updates its estimates by using the following rule:

zi(k + 1) = max
j∈Ni(k)∪{i}

zj(k). (2)

where we use the following relation for vectors: for a, b ∈
Rn, a < b if and only if there is some ` ∈ {1, . . . , n − 1}
such that aκ = bκ for all κ < ` and a` < b`.

The periodical strong connectivity assumption 2.3 ensures
that after at most (N − 1)B steps, all the agents reach the

1It is also referred to as double stochasticity.

consensus; i.e., zi(k) = maxj∈V zj(0) for all k ≥ (N−1)B.
In the remainder of this paper, we assume that the Slater
vector z̄ is known to all the agents. •

In [33], in order to solve the convex case of the problem
(P ), we propose two distributed primal-dual subgradient
algorithms where primal (resp. dual) estimates move along
subgradients (resp. supgradients) and are projected onto
convex sets. The absence of convexity impedes the use of the
algorithms in [33] since, on the one hand, (primal) gradient-
based algorithms are easily trapped in local minima.; on the
other hand, projection maps may not be well-defined when
(primal) state constraint sets are non-convex. In this paper,
we will employ Lagrangian dualization to circumvent the
challenges caused by non-convexity.

We first construct a directed cyclic graph Gcyc := (V,Ecyc)
where |Ecyc| = N . We assume that each agent has a unique
in-neighbor (and out-neighbor). The out-neighbor (resp. in-
neighbor) of agent i is denoted by iD (resp. iU ). With the
graph Gcyc, we will study the following approximate problem
of problem (P ):

min
(xi)∈RnN

∑
i∈V

fi(xi),

s.t. g(xi) ≤ 0, ,−xi + xiD −∆ ≤ 0

xi − xiD −∆ ≤ 0, xi ∈ X, ∀i ∈ V, (3)

where ∆ := δ1, with δ a small positive scalar, and 1 is the
column vector of n ones. The problem (3) reduces to the
problem (P ) when δ = 0, and will be referred to as problem
(P∆). Its optimal value and the set of optimal solutions will
be denoted by p∗∆ and X∗∆, respectively. Similarly to the
problem (P ), p∗∆ is finite and X∗∆ 6= ∅.

Remark 2.2: The cyclic graph Gcyc can be replaced by
any strongly connected graph. Each agent i is endowed with
two inequality constraints: xi−xj −∆ ≤ 0 and −xi +xj −
∆ ≤ 0, for each out-neighbor j. For notational simplicity,
we will use the cyclic graph Gcyc, which has a minimum
number of constraints, as the initial graph. •

A. Dual problems

Before introducing dual problems, let us denote by Ξi :=
Rm≥0 × RnN≥0 × RnN≥0 , Ξ := RmN≥0 × RnN≥0 × RnN≥0 , ξi :=
(µi, λ, w) ∈ Ξi, ξ := (µ, λ,w) ∈ Ξ and x := (xi) ∈ XN .
The dual problem (D∆) associated with (P∆) is given by

max
µ,λ,w

Q(µ, λ,w), s.t. µ, λ, w ≥ 0, (4)

where µ := (µi) ∈ RmN , λ := (λi) ∈ RnN and w :=
(wi) ∈ RnN . Here, the dual function Q : Ξ→ R is given as

Q(ξ) ≡ Q(µ, λ,w) := inf
x∈XN

L(x, µ, λ, w),

where L : RnN × Ξ→ R is the Lagrangian function

L(x, ξ) ≡ L(x, µ, λ, w) :=
∑
i∈V

(
fi(xi) + 〈µi, g(xi)〉

+ 〈λi,−xi + xiD −∆〉+ 〈wi, xi − xiD −∆〉
)
.
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We denote the dual optimal value of the problem (D∆) by
d∗∆ and the set of dual optimal solutions by D∗∆. In what
follows we will assume that the duality gap is zero.

Assumption 2.5 (Strong duality): For the introduced
problems (P∆) and (D∆), it holds that p∗∆ = d∗∆.

We endow each agent i with the local Lagrangian function
Li : Rn × Ξi → R and the local dual function Qi : Ξi → R
defined by

Li(xi, ξi) := fi(xi) + 〈µi, g(xi)〉+ 〈−λi + λiU , xi〉
+ 〈wi − wiU , xi〉 − 〈λi,∆〉 − 〈wi,∆〉,

Qi(ξi) := inf
xi∈X

Li(xi, ξi).

In the problem (P∆), the introduction of approximate
consensus constraints −∆ ≤ xi − xiD ≤ ∆, i ∈ V , renders
the fi and g separable. As a result, the global dual function
Q can be decomposed into a simple sum of the local dual
functions Qi. More precisely, the following holds:

Q(ξ) = inf
x∈XN

∑
i∈V

(
fi(xi) + 〈µi, g(xi)〉

+ 〈λi,−xi + xiD −∆〉+ 〈wi, xi − xiD −∆〉
)

= inf
x∈XN

∑
i∈V

(
fi(xi) + 〈µi, g(xi)〉

+ 〈−λi + λiU , xi〉+ 〈wi − wiU , xi〉 − 〈λi,∆〉 − 〈wi,∆〉
)

=
∑
i∈V

inf
xi∈X

(
fi(xi) + 〈µi, g(xi)〉

+ 〈−λi + λiU , xi〉+ 〈wi − wiU , xi〉 − 〈λi,∆〉 − 〈wi,∆〉
)

=
∑
i∈V

Qi(ξi). (5)

It is worth mentioning that
∑
i∈V Qi(ξi) is not separable

since Qi depends upon neighbor’s multipliers λiU and wiU .

B. Dual solution sets

The Slater’s condition ensures the boundedness of dual
solution sets for convex optimization; e.g., [11], [19]. We
will shortly see that the Slater’s condition plays the same
role in non-convex optimization. To achieve this, we define
the function Q̂i : Rm≥0 × Rn≥0 × Rn≥0 → R as follows:

Q̂i(µi, λi, wi) = inf
xi∈X,xiD∈X

(
fi(xi) + 〈µi, g(xi)〉

+ 〈λi,−xi + xiD −∆〉+ 〈wi, xi − xiD −∆〉
)
.

Let z̄ be a Slater vector for problem (P ). Then x̄ =
(x̄i) ∈ XN with x̄i = z̄ is a Slater vector of the problem
(P∆). Similarly to (3) and (4) in [33], which make use
of Lemma 3.2 in the same paper, we have that for any
µi, λi, wi ≥ 0, it holds that

max
ξ∈D∗∆

‖ξ‖ ≤ N max
i∈V

fi(z̄)− Q̂i(µi, λi, wi)
β(z̄)

, (6)

where β(z̄) := min{min`∈{1,...,m}−g`(z̄), δ}. Let µi, λi
and wi be zero in (6), and it leads to the following upper
bound on D∗∆:

max
ξ∈D∗∆

‖ξ‖ ≤ N max
i∈V

fi(z̄)− Q̂i(0, 0, 0)

β(z̄)
, (7)

where Q̂i(0, 0, 0) can be computed locally. Since fi and g
are continuous and X is compact, it is known that Qi is
continuous; e.g., see Theorem 1.4.16 in [2]. Similarly, Q is
continuous. Since D∗∆ is also bounded, then we have that
D∗∆ 6= ∅.

Remark 2.3: From the above analysis of D∗∆, it can be
seen that if δ = 0, which corresponds to the exact consensus,
then D∗∆ could be unbounded and empty. •

Denote by Dε
∆ := {ξ ∈ Ξ | Q(ξ) ≥ d∗∆ − Nε}. Similar

to (7), we have the following upper bound on Dε
∆:

max
ξ∈Dε∆

‖ξ‖ ≤ N max
i∈V

fi(z̄)− Q̂i(0, 0, 0) + ε

β(z̄)
. (8)

In the algorithm we will present in the following section,
agents will compute γi(z̄) := fi(z̄)−Q̂i(0,0,0)+ε

β(z̄) .

C. Other notation

Define the set-valued map Ωi : Ξi → 2X in the following
way Ωi(ξi) := argminxi∈XLi(xi, ξi); i.e., given ξi, the set
Ωi(ξi) is the collection of solutions to the following local
optimization problem:

min
xi∈X

Li(xi, ξi). (9)

Here, Ωi is referred to as the marginal map of agent i. Since
X is compact and fi, g are continuous, then Ωi(ξi) 6= ∅ in (9)
for any ξi ∈ Ξi. In the algorithm we will develop in next
section, each agent is required to solve the local optimization
problem (9) at each iterate. We assume that this problem (9)
can be easily solved. This is the case for problems where fi
and g are smooth. For some ε > 0, we define the set-valued
map Ωεi : Ξi → 2X as follows:

Ωεi(ξi) := {xi ∈ X | Li(xi, ξi) ≤ Qi(ξi) + ε},

which is referred to as the approximate marginal map of
agent i ∈ V .

In the space Rn, we define the distance between a point
z ∈ Rn to a set A ⊂ Rn as dist(z,A) := infy∈A ‖z − y‖,
and the Hausdorff distance between two sets A,B ⊂ Rn as
dist(A,B) := max{supz∈A dist(z,B), supy∈B dist(A, y)}.
We denote by BU (A, r) := {u ∈ U | dist(u,A) ≤ r} and
B2U (A, r) := {U ∈ 2U | dist(U,A) ≤ r} where U ⊂ Rn.

III. DISTRIBUTED APPROXIMATE DUAL SUBGRADIENT
ALGORITHM

In this section, we devise a distributed approximate dual
subgradient algorithm which aims to find a pair of ap-
proximate primal-dual solutions to the problem (P∆). Its
convergence properties are also summarized.

For each agent i, let xi(k) ∈ Rn be the estimate of the
primal solution xi to the problem (P∆) at time k ≥ 0,
µi(k) ∈ Rm≥0 be the estimate of the multiplier on the
inequality constraint g(xi) ≤ 0, λi(k) ∈ RnN≥0 (resp. wi(k) ∈
RnN≥0 )2 be the estimate of the multiplier associated with the
collection of the local inequality constraints −xj + xjD −

2We will use the superscript i to indicate that λi(k) and wi(k) are
estimates of some global variables.
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∆ ≤ 0 (resp. xj − xjD − ∆ ≤ 0), for all j ∈ V .
We let ξi(k) := (µi(k)T , λi(k)T , wi(k)T )T , for i ∈ V ,
and vi(k) := (µi(k)T , viλ(k)T , viw(k)T )T where viλ(k) :=∑
j∈V a

i
j(k)λj(k) and viw(k) :=

∑
j∈V a

i
j(k)wj(k).

The Distributed Approximate Dual Subgradient (DADS,
for short) Algorithm is described as follows.

Initially, each agent i chooses a common Slater vector
z̄ and computes γ := N maxi∈V γi(z̄) through a max-
consensus algorithm. After that, each agent i chooses initial
states xi(0) ∈ X and ξi(0) ∈ Ξi.

Agent i updates xi(k) and ξi(k) as follows:
Step 1. For each k ≥ 1, given vi(k), solve the local opti-

mization problem (9), obtain the dual solution set Ωi(vi(k))
and the dual optimal value Qi(vi(k)). Produce the primal
estimate xi(k) as follows: if xi(k − 1) ∈ Ωεi(vi(k)), then
xi(k) = xi(k − 1); otherwise, choose xi(k) ∈ Ωi(vi(k)).

Step 2. For each k ≥ 0, generate the dual estimate ξi(k+
1) according to the following rule:

ξi(k + 1) = PMi
[vi(k) + α(k)Di(k)], (10)

where the scalar α(k) is a step-size. The supgra-
dient vector of agent i is defined as Di(k) :=
(Diµ(k)T ,Diλ(k)T ,Diw(k)T )T , where Diµ(k) := g(xi(k)) ∈
Rm, Diλ(k) has components Diλ(k)i := −∆ − xi(k) ∈ Rn,
Diλ(k)iU := xi(k) ∈ Rn, and Diλ(k)j = 0 ∈ Rn for
j ∈ V \{i, iU}, while the components of Diw(k) are given by:
Diw(k)i := −∆ + xi(k) ∈ Rn, Diw(k)iU := −xi(k) ∈ Rn,
and Diw(k)j = 0 ∈ Rn, for j ∈ V \ {i, iU}. The set Mi in
the projection map, PMi

, above is defined as Mi := {ξi ∈
Ξi | ‖ξi‖ ≤ γ + θ} for some θ > 0.

Remark 3.1: In the initialization of the DADS algorithm,
the quantity γ is an upper bound on Dε

∆. Note that in Step 1,
the check xi(k − 1) ∈ Ωεi(vi(k)) reduces to verifying that
Li(xi(k−1), vi(k)) ≤ Qi(vi(k))+ε. Then, only if Li(xi(k−
1), vi(k)) > Qi(vi(k))+ε, it is necessary to find one solution
in Ωi(vi(k)). That is, it is unnecessary to compute all the
set Ωi(vi(k)). In Step 2, since Mi is closed and convex, the
projection map PMi

is well-defined. •
The primal and dual estimates in the DADS algorithm will

be shown to asymptotically converge to a pair of approximate
primal-dual solutions to the problem (P∆). We formally state
this in the following.

Theorem 3.1: Consider the problem (P∆) and let the
non-degeneracy assumption 2.1, the balanced communication
assumption 2.2 and the periodic strong connectivity assump-
tion 2.3 hold. In addition, suppose the Slater’s condition 2.4
and the strong duality assumption 2.5 hold. Consider the
dual sequences of {µi(k)}, {λi(k)}, {wi(k)} and the primal
sequence of {xi(k)} of the distributed approximate dual
subgradient algorithm with the step-sizes {α(k)} satisfying

lim
k→+∞

α(k) = 0,
+∞∑
k=0

α(k) = +∞, and
+∞∑
k=0

α(k)2 < +∞.

Then, there exists a feasible dual pair ξ̃ := (µ̃, λ̃, w̃) such
that lim

k→+∞
‖µi(k)− µ̃i‖ = 0, lim

k→+∞
‖λi(k)− λ̃‖ = 0, and

lim
k→+∞

‖wi(k)− w̃‖ = 0, for all i ∈ V . Moreover, there

is a feasible primal vector x̃ := (x̃i) ∈ XN such that

lim
k→+∞

‖xi(k)− x̃i‖ = 0, for all i ∈ V . In addition, (x̃, ξ̃) is

a pair of approximate primal-dual solutions in the sense that
d∗∆ −Nε ≤ Q(ξ̃) ≤ d∗∆ = p∗∆ ≤

∑
i∈V fi(x̃i) ≤ p∗∆ +Nε.

The analysis of Theorem 3.1 will be provided in next
section. Before doing that, we would like to discuss several
possible extensions of Theorem 3.1.

Firstly, the step-size scheme in the DADS
algorithm can be slightly generalized to the following:

lim
k→+∞

αi(k) = 0,
+∞∑
k=0

αi(k) = +∞,
+∞∑
k=0

αi(k)2 < +∞,

min
i∈V

αi(k) ≥ Cα max
i∈V

αi(k), where αi(k) is the step-size of

agent i at time k and Cα ∈ (0, 1].
Secondly, the periodic strong connectivity assumption 2.3

can be weakened into the eventual strong connectivity as-
sumption, e.g. Assumption 6.1 in [33], if G(k) is undirected.

Thirdly, each agent can use a different εi in Step 1 of the
DADS algorithm, which would lead to replacing Nε in the
approximate solution by

∑
i∈V εi.

Lastly, each agent i could have different constraint func-
tions gi and constraint sets Xi if a Slater vector is known
to all the agents. For example, consider the case that g is
convex, Xi is convex and potentially different, and there is
a Slater vector z̄ ∈ ∩i∈VXi. Then the solution z̃ to the
following problem is such that g(z̃) ≤ g(z̄) < 0:

min
z∈Rn

Ng(z), s.t. z ∈ Xi, ∀i ∈ V (11)

Through implementing the distributed primal subgradient
algorithm in [33], agents can solve the problem (11) in a
distributed fashion and agree upon the minimizer z̃ which
coincides with a Slater vector. In such a way, Theorem 3.1
still holds and the corresponding proof is a slight variation
of those in next section.

IV. CONVERGENCE ANALYSIS

Recall that g is continuous and X is compact. Then there
are G,H > 0 such that ‖g(z)‖ ≤ G and ‖z‖ ≤ H for all
z ∈ X . We start our analysis of the DADS algorithm from
the computation of supgradients of Qi.

Lemma 4.1 (Approximate supgradient): If x̄i ∈
Ωεi(ξ̄i), then

(
g(x̄i)

T , (−∆ − x̄i)
T , x̄Ti , (x̄i − ∆)T ,−x̄Ti )T

is an approximate supgradient of Qi at ξ̄i; i.e., the following
holds for any ξi ∈ Ξi:

Qi(ξi)−Qi(ξ̄i) ≤ 〈g(x̄i), µi − µ̄i〉+ 〈−∆− x̄i, λi − λ̄i〉
+ 〈x̄i, λiU − λ̄iU 〉+ 〈x̄i −∆, wi − w̄i〉
+ 〈−x̄i, wiU − w̄iU 〉+ ε. (12)

Proof: The proof is analogous to the computation of
dual subgradients, e.g., in [3], [4], and omitted here due to
the space limitation.

Since Ωi(vi(k)) ⊆ Ωεi(vi(k)), it is clear that xi(k) ∈
Ωεi(vi(k)) for all k ≥ 0. A direct result of Lemma 4.1 is
that the vector (g(xi(k))T , (−∆−xi(k))T , xi(k)T , (xi(k)−
∆)T ,−xi(k)T ) is an approximate supgradient of Qi at vi(k);
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i.e., the following approximate supgradient inequality holds
for any ξi ∈ Ξi:

Qi(ξi)−Qi(vi(k)) ≤ 〈g(xi(k)), µi − µi(k)〉
+ 〈−∆− xi(k), λi − viλ(k)i〉
+ 〈xi(k), λiU − viλ(k)iU 〉+ 〈xi(k)−∆, wi − viw(k)i〉
+ 〈−xi(k), wiU − viw(k)iU 〉+ ε. (13)

Now we can see that the update rule of dual estimates in the
DADS algorithm is a combination of an approximate dual
subgradient scheme and average consensus algorithms. The
following establishes that Qi is Lipschitz continuous with
some Lipschitz constant L.

Lemma 4.2 (Lipschitz continuity of Qi): There is a
constant L > 0 such that for any ξi, ξ̄i ∈ Ξi, it holds that

‖Qi(ξi)−Qi(ξ̄i)‖ ≤ L‖ξi − ξ̄i‖.

Proof: Similarly to Lemma 4.1, one can show that
if x̄i ∈ Ωi(ξ̄i), then (g(x̄i)

T , (−∆ − x̄i)
T , x̄Ti , (x̄i −

∆)T ,−x̄Ti )T is a supgradient of Qi at ξ̄i; i.e., the following
holds for any ξi ∈ Ξi:

Qi(ξi)−Qi(ξ̄i) ≤ 〈g(x̄i), µi − µ̄i〉+ 〈−∆− x̄i, λi − λ̄i〉
+ 〈x̄i, λiU − λ̄iU 〉+ 〈x̄i −∆, wi − w̄i〉
+ 〈−x̄i, wiU − w̄iU 〉.

Since ‖g(x̄i)‖ ≤ G and ‖x̄i‖ ≤ H , there is L > 0 such that
Qi(ξi)−Qi(ξ̄i) ≤ L‖ξi − ξ̄i‖. Similarly, Qi(ξ̄i)−Qi(ξi) ≤
L‖ξi − ξ̄i‖. The combination of these two relations renders
the desired result.

In the DADS algorithm, the error induced by the projection
map PMi

is given by:

ei(k) := PMi [vi(k) + α(k)Di(k)]− vi(k).

We next provide a basic iterate relation of dual estimates in
the DADS algorithm.

Lemma 4.3 (Basic iterate relation): Under the assump-
tions in Theorem 3.1, for any ((µi), λ, w) ∈ Ξ with
(µi, λ, w) ∈ Mi for all i ∈ V , the following estimate holds
for all k ≥ 0:∑

i∈V
‖ei(k)− α(k)Di(k)‖2 ≤ α(k)2

∑
i∈V
‖Di(k)‖2

+
∑
i∈V

(‖ξi(k)− ξi‖2 − ‖ξi(k + 1)− ξi‖2)

+ 2α(k)
∑
i∈V
{〈g(xi(k)), µi(k)− µi〉

+ 〈−∆− xi(k), viλ(k)i − λi〉
+ 〈xi(k), viλ(k)iU − λiU 〉+ 〈xi(k)−∆, viw(k)i − wi〉
+ 〈−xi(k), viw(k)iU − wiU 〉}. (14)

Proof: Recall that Mi is closed and convex. The proof
is an application of Lemma 6.1 in the Appendix.

The lemma below shows that dual estimates asymptoti-
cally converge to some approximate dual optimal solution.

Lemma 4.4 (Dual estimate convergence): Under the
assumptions in Theorem 3.1, there exist a feasible dual
pair ξ̃ := ((µ̃i), λ̃, w̃) such that lim

k→+∞
‖µi(k)− µ̃i‖ = 0,

lim
k→+∞

‖λi(k)− λ̃‖ = 0, and lim
k→+∞

‖wi(k)− w̃‖ = 0.

Furthermore, the vector ξ̃ is an approximate dual solution to
the problem (D∆) in the sense that d∗∆−Nε ≤ Q(ξ̃) ≤ d∗∆.

Proof: By the dual decomposition property (5) and the
boundedness of dual optimal solution sets, the dual problem
(D∆) is equivalent to the following:

max
(ξi)

∑
i∈V

Qi(ξi), s.t. ξi ∈Mi. (15)

Note that Qi is affine and Mi is convex, implying that the
problem (15) is a constrained convex programming where
the global objective function is a simple sum of local ones
and the local state constraints are compact.

Since X and Mi are compact, there is some J > 0 which
is an upper bound of the norm of the last sum on the right-
hand side of (14). In this way, inequality (14) leads to:∑

i∈V
‖ξi(K)− ξi‖2 ≤

∑
i∈V
‖ξi(K ′)− ξi‖2

+ α(K ′)2
∑
i∈V
‖Di(K ′)‖2 + 2α(K ′)J, (16)

where K = K ′ + 1. It is not difficult to see that
the sequence of {Di(k)} is uniformly bounded.
Since lim

k→+∞
α(k) = 0, then we take the limits

on K, and K ′ in (16), and it renders that
lim sup
K→+∞

∑
i∈V
‖ξi(K)− ξi‖2 ≤ lim inf

K′→+∞

∑
i∈V
‖ξi(K ′)− ξi‖2.

Therefore, we have lim
k→+∞

∑
i∈V
‖ξi(k)− ξi‖2 exists.

By using this property and taking the limit on
both sides of (14), we then have lim

k→+∞
‖ei(k)‖ = 0.

By using Proposition 6.1 in the Appendix, we con-
clude that the consensus on λ and w is asymp-
totically achieved; i.e., lim

k→+∞
‖λi(k)− λj(k)‖ = 0 and

lim
k→+∞

‖wi(k)− wj(k)‖ = 0 for any i, j ∈ V . Combin-

ing these with the convergence of {
∑
i∈V
‖ξi(k)− ξi‖2}

and the closedness of Mi, we can deduce that there
exist a feasible dual pair ξ̃ := ((µ̃i), λ̃, w̃) such
that lim

k→+∞
‖µi(k)− µ̃i‖ = 0, lim

k→+∞
‖λi(k)− λ̃‖ = 0, and

lim
k→+∞

‖wi(k)− w̃‖ = 0, for all i ∈ V . Furthermore, we

have Q(ξ̃) ≤ d∗∆.
Substitute the approximate supgradient inequality (13)

into (14), rearrange terms, and we have

2α(k)
∑
i∈V

(Qi(ξi)−Qi(vi(k))− ε) ≤
∑
i∈V

α(k)2‖Di(k)‖2

+
∑
i∈V

(‖ξi(k)− ξi‖2 − ‖ξi(k + 1)− ξi‖2). (17)
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Let λ̂(k) := 1
N

∑
i∈V λ

i(k) and ŵ(k) := 1
N

∑
i∈V w

i(k).
By Lipschitz continuity of Qi, it follows from (17) that∑
i∈V

2α(k)(Qi(ξi)−Qi(µi(k), λ̂(k), ŵ(k))− ε)

≤
∑
i∈V

α(k)2‖Di(k)‖2

+
∑
i∈V

(‖ξi(k)− ξi‖2 − ‖ξi(k + 1)− ξi‖2)

+
∑
i∈V

2α(k)L(‖viλ(k)− λ̂(k)‖+ ‖viw(k)− ŵ(k)‖). (18)

Now we follow a contradiction argument, and state
ξ̃ is not approximate dual optimal. That is, assume
that

∑
i∈V Qi(µ̃i, λ̃, w̃) < d∗∆ − Nε. Then ρ :=

−
∑
i∈V Qi(µ̃i, λ̃, w̃)+d∗∆−Nε > 0. Let ξi in (18) be some

dual optimal solution. Since lim
k→+∞

‖viλ(k)− λ̂(k)‖ = 0 and

lim
k→+∞

‖viw(k)− ŵ(k)‖ = 0, there is K ′ ≥ 0 such that for

all k ≥ K ′, there holds
1

2
ρα(k) ≤

∑
i∈V

α(k)2‖Di(k)‖2

+
∑
i∈V

(‖ξi(k)− ξi‖2 − ‖ξi(k + 1)− ξi‖2) (19)

Sum (19) over [K ′,K] and rearrange it. It gives that∑
i∈V
‖ξi(K + 1)− ξi‖2 ≤

K∑
k=K′

∑
i∈V

α(k)2‖Di(k)‖2

− 1

2
ρ

K∑
k=K′

α(k) +
∑
i∈V
‖ξi(K ′)− ξi‖2

Since {ξi(k)} converges, it is uniformly bounded. Recall
that {α(k)} is not summable but square summable. When
K is sufficiently large, the above inequality leads to a
contradiction. Hence, it must be that d∗∆ −Nε ≤ Q(ξ̃).

The remainder of this section is dedicated to characterizing
the convergence properties of primal estimates. Toward this
end, we present the closedness and upper semicontinuity
properties of Ωεi .

Lemma 4.5 (Properties of Ωεi ): The approximate set-
valued marginal map Ωεi is closed. In addition, it is upper
semicontinuous at ξi ∈ Ξi; i.e., for any ε′ > 0, there is
δ > 0 such that for any ξ̃i ∈ BΞi(ξi, δ), it holds that
Ωεi(ξ̃i) ⊂ B2X (Ωεi(ξi), ε

′).
Proof: Consider sequences {xi(k)} and {ξi(k)}

satisfying lim
k→+∞

ξi(k) = ξ̄i, xi(k) ∈ Ωεi(ξi(k)) and

lim
k→+∞

xi(k) = x̄i. Since Li is continuous, then we have

Li(x̄i, ξ̄i) = lim
k→+∞

Li(xi(k), ξi(k))

≤ lim
k→+∞

(Qi(ξi(k)) + ε) = Qi(ξ̄i) + ε,

where in the inequality we use the property of xi(k) ∈
Ωεi(ξi(k)), and in the last equality we use the continuity of
Qi. Then x̄i ∈ Ωεi(ξ̄i) and the closedness of Ωεi follows.

Note that Ωεi(ξi) = Ωεi(ξi) ∩X . Recall that Ωεi is closed
and X is compact. Then it is a result of Theorem 6.1 in the

Appendix that Ωεi(ξi) is upper semicontinuous at ξi ∈ Ξi;
i.e, for any neighborhood U in 2X of Ωεi(ξi), there is δ > 0
such that ∀ξ̃i ∈ BΞi(ξi, δ), it holds that Ωεi(ξ̃i) ⊂ U . Let
U = B2X (Ωεi(ξi), ε

′), and we obtain the property of upper
semicontinuity at ξi.

Upper semicontinuity of Ωεi ensures that each accumula-
tion point of {xi(k)} is a point in the set Ωεi(ξ̃i); i.e., the
convergence of {xi(k)} to the set Ωεi(ξ̃i) can be guaranteed.
In what follows, we further characterize the convergence of
{xi(k)} to a point in Ωεi(ξ̃i) within a finite time.

Lemma 4.6 (Primal estimate convergence): For each
i ∈ V , there are a finite time Ti ≥ 0 and x̃i ∈ Ωεi(ξ̃i) such
that xi(k) = x̃i for all k ≥ Ti + 1.

Proof: Choose ε̄ > 0 and ε̂ > 0 such that 2(G +
4H + 2

√
mδ)ε̄ + 2ε̂ ≤ ε. Since Qi is continuous and

lim
k→+∞

‖vi(k)− ξ̃i‖ = 0, then there is Ki ≥ 0 such that for

all k ≥ Ki, it holds that

‖ξ̃i − vi(k)‖ ≤ ε̄, ‖Qi(ξ̃i)−Qi(vi(k))‖ ≤ ε̂. (20)

The time instant Ti ≥ 0 is defined as follows: if there is
some finite time k ≥ Ki+1 such that Li(xi(k), vi(k+1)) >
Qi(vi(k + 1)) + ε, then Ti is the smallest one among such
k; otherwise, Ti = Ki+ 1. In what follows we prove that Ti
is the time in the statement of the lemma.

Consider the first case of Ti. In this case,
Li(xi(Ti), vi(Ti + 1)) > Qi(vi(Ti + 1)) + ε; i.e.,
xi(Ti) /∈ Ωεi(vi(Ti + 1)). Then xi(Ti + 1) ∈ Ωi(vi(Ti + 1));
i.e., Li(xi(Ti + 1), vi(Ti + 1)) = Qi(vi(Ti + 1)). By using
this property, we have that for any k ≥ Ti + 1, it holds that

‖Li(xi(Ti + 1), vi(k))−Qi(ξ̃i)‖
≤ ‖Li(xi(Ti + 1), vi(k))−Qi(vi(Ti + 1))‖
+ ‖Qi(vi(Ti + 1))−Qi(ξ̃i)‖
= ‖Li(xi(Ti + 1), vi(k))− Li(xi(Ti + 1), vi(Ti + 1))‖
+ ‖Qi(vi(Ti + 1))−Qi(ξ̃i)‖. (21)

Notice that the term ‖Li(xi(Ti + 1), vi(k))−Li(xi(Ti +
1), vi(Ti+1))‖ can be upper bounded in the following way:

‖Li(xi(Ti + 1), vi(k))− Li(xi(Ti + 1), vi(Ti + 1))‖
≤ ‖〈µi(k)− µi(Ti + 1), g(xi(Ti + 1))〉
+ 〈−viλ(k)i + viλ(k)iU + viλ(Ti + 1)i − viλ(Ti + 1)iU ,

xi(Ti + 1)〉+ 〈viw(k)i − viw(k)iU

− viw(Ti + 1)i + viw(Ti + 1)iU , xi(Ti + 1)〉
− 〈viλ(k)i − viλ(Ti + 1)i,∆〉 − 〈viw(k)i − viw(Ti + 1)i,∆〉‖
≤ 2(G+ 4H + 2

√
mδ)ε̄. (22)

Substituting (20) and (22) into (21) gives that

‖Li(xi(Ti + 1), vi(k))−Qi(ξ̃i)‖
≤ 2(G+ 4H + 2

√
mδ)ε̄+ ε̂. (23)

This implies that for any k ≥ Ti + 1, it holds that

0 ≤ Li(xi(Ti + 1), vi(k))−Qi(vi(k))

≤ ‖Li(xi(Ti + 1), vi(k))−Qi(ξ̃i)‖
+ ‖Qi(ξ̃i)−Qi(vi(k))‖
≤ 2(G+ 4H + 2

√
mδ)ε̄+ 2ε̂ ≤ ε.
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Hence, we conclude that xi(Ti + 1) ∈ Ωεi(vi(k)) for all
k ≥ Ti + 1, and thus xi(k) = xi(Ti + 1) for all k ≥ Ti + 1.

We now consider the second possibility for Ti. In this case,
Li(xi(k), vi(k + 1)) ≤ Qi(vi(k + 1)) + ε for all k ≥ Ti =
Ki+1. Therefore, we have xi(Ti+1) ∈ Ωεi(vi(k)) and then
xi(k) = xi(Ti + 1) for all k ≥ Ti + 1.

In both cases, the chosen finite Ti ≥ 0 guarantees that for
all k ≥ Ti+1, xi(k) = xi(Ti+1) and xi(k) ∈ Ωεi(vi(Ti+1)).
Upper semicontinuity of Ωεi ensures xi(Ti + 1) ∈ Ωεi(ξ̃i).

Now we are ready to show the main result of this paper,
Theorem 3.1. In particular, we will show the property of
complementary slackness, primal feasibility of x̃, and char-
acterize its primal suboptimality.

Proof for Theorem 3.1:
Claim 1: 〈−∆−x̃i+x̃iD , λ̃i〉 = 0, 〈−∆+x̃i−x̃iD , w̃i〉 =

0 and 〈g(x̃i), µ̃i〉 = 0.
Proof: Rearranging the terms related to λ in (14) leads

to the following inequality holding for any ((µi), λ, w) ∈ Ξ
with (µi, λ, w) ∈Mi for all i ∈ V :

−
∑
i∈V

2α(k)(〈−∆− xi(k), viλ(k)i − λi〉

+ 〈xiD (k), viDλ (k)i − λi〉) ≤ α(k)2
∑
i∈V
‖Di(k)‖2

+
∑
i∈V

(‖ξi(k)− ξi‖2 − ‖ξi(k + 1)− ξi‖2)

+ 2α(k)
∑
i∈V
{〈−xi(k), viw(k)iU − wiU 〉+ 〈xi(k)−∆,

viw(k)i − wi〉+ 〈g(xi(k)), µi(k)− µi〉}. (24)

Sum (24) over [0,K], divide by s(K) :=
∑K
k=0 α(k), and

we have

1

s(K)

K∑
k=0

α(k)
∑
i∈V

2(〈∆ + xi(k), viλ(k)i − λi〉

+ 〈−xiD (k), viDλ (k)i − λi〉) ≤
1

s(K)

K∑
k=0

α(k)2
∑
i∈V
‖Di(k)‖2

+
1

s(K)
{
∑
i∈V

(‖ξi(0)− ξi‖2 − ‖ξi(K + 1)− ξi‖2)

+

K∑
k=0

2α(k)
∑
i∈V

(〈g(xi(k)), µi(k)− µi〉+ 〈xi(k)−∆,

viw(k)i − wi〉+ 〈−xi(k), viw(k)iU − wiU 〉)}. (25)

We now proceed to show 〈−∆ − x̃i + x̃iD , λ̃i〉 ≥
0 for each i ∈ V . Notice that we have shown that

lim
k→+∞

‖xi(k)− x̃i‖ = 0 for all i ∈ V , and it also holds

that lim
k→+∞

‖ξi(k)− ξ̃i‖ = 0 for all i ∈ V . Let λi = 1
2 λ̃i,

λj = λ̃j for j 6= i and µi = µ̃i, w = w̃ in (25). Recall that
{α(k)} is not summable but square summable, and {Di(k)}
is uniformly bounded. Take K → +∞, and then it follows
from Lemma 6.2 in the Appendix that:

〈∆ + x̃i − x̃iD , λ̃i〉 ≤ 0. (26)

On the other hand, since ξ̃ ∈ Dε
∆, we have ‖ξ̃‖ ≤ γ

by (8). Then we could choose a sufficiently small δ′ > 0

and ξ ∈ Ξ in (25) such that ‖ξ‖ ≤ γ + θ where θ is given
in the definition of Mi and ξ is given by: λi = (1 + δ′)λ̃i,
λj = λ̃j for j 6= i, w = w̃, µ = µ̃. Following the same lines
toward (26), it gives that −δ〈∆ + x̃i− x̃iD , λ̃i〉 ≤ 0. Hence,
it holds that 〈−∆− x̃i + x̃iD , λ̃i〉 = 0. The rest of the proof
is analogous and thus omitted.

Claim 2: x̃ is primal feasible to the problem (P∆).
Proof: We have known that x̃i ∈ X . We proceed to

show −∆− x̃i + x̃iD ≤ 0 by contradiction. Since ‖ξ̃‖ ≤ γ,
we could choose a sufficiently small δ′ > 0 and ξ with
‖ξ‖ ≤ γ+θ in (25) as follows: if (−∆−x̃i+x̃iD )` > 0, then
(λi)` = (λ̃i)` + δ′; otherwise, (λi)` = (λ̃i)`, and w = w̃,
µ = µ̃. The rest of the proofs is analogous to Claim 1.

Similarly, one can show g(x̃i) ≤ 0 and −∆+x̃i−x̃iD ≤ 0
by applying analogous arguments.

Claim 3: It holds that p∗∆ ≤
∑
i∈V fi(x̃i) ≤ p∗∆ +Nε.

Proof: Since x̃ is primal feasible, then
∑
i∈V fi(x̃i) ≥

p∗∆. On the other hand,
∑
i∈V fi(x̃i) =

∑
i∈V Li(x̃i, ξ̃i) ≤∑

i∈V Qi(ξ̃i) +Nε ≤ p∗∆ +Nε.

V. CONCLUSION

We have studied a multi-agent optimization problem where
the goal of agents is to minimize a sum of local objective
functions in the presence of a global inequality constraint and
a global state constraint set. Objective and constraint func-
tions as well as constraint sets are not necessarily convex. We
have presented the distributed approximate dual subgradient
algorithm which allow agents to asymptotically converge to
a pair of approximate primal-dual solutions provided that the
Slater’s condition and strong duality property are satisfied.

VI. APPENDIX

A. Nonexpansion property of projection operators

Lemma 6.1: [4] Let Z be a non-empty, closed and
convex set in Rn. For any z ∈ Rn, the following holds for
any y ∈ Z: ‖PZ [z]− y‖2 ≤ ‖z − y‖2 − ‖PZ [z]− z‖2.

B. A property of weighted sequence

Lemma 6.2: [33] Consider the sequence {δ(k)} defined
by δ(k) :=

∑k−1
τ=0 α(τ)ρ(τ)∑k−1
τ=0 α(τ)

, where ρ(k) ∈ Rn, α(k) >

0, and
∑+∞
k=0 α(k) = +∞. If lim

k→+∞
ρ(k) = ρ∗, then

lim
k→+∞

δ(k) = ρ∗.

C. Background on set-valued maps

We let X and Y denote Hausdorff topological spaces. A
set-valued map Ω : X→ Y is a map that associates with any
x ∈ X a subset Ω(x) of Y. The following definitions and
theorem are adopted from [2].

Definition 6.1: The set-valued map Ω is closed at a
point x ∈ X if {x(k)} ⊂ X, lim

k→+∞
dist(x(k), x) = 0,

y(k) ∈ Ω(x(k)), and lim
k→+∞

dist(y(k), y) = 0 implies that

y ∈ Ω(x).
Definition 6.2: The set-valued map Ω is called upper

semicontinuous at x ∈ X if and only if any neighborhood
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U of Ω(x), there is η > 0 such that ∀x′ ∈ B(x, η), it holds
that Ω(x′) ⊂ U .

Theorem 6.1: Let Ω and Π be two set-valued maps from
X to Y. Assume that Ω is closed, Π(x) is compact and Π
is upper semicontinuous at x ∈ X. Then Ω ∩ Π is upper
semicontinuous at x.

D. Dynamic average consensus algorithms

The following is the vector version of the first-order
dynamic average consensus algorithm proposed in [34]:

xi(k + 1) =

N∑
j=1

aij(k)xj(k) + ηi(k), (27)

where xi(k), ηi(k) ∈ Rn. Denote ∆η`(k) :=
maxi∈V η

i
`(k)−mini∈V η

i
`(k) for 1 ≤ ` ≤ n.

Proposition 6.1: [34] Let the periodic strong connectiv-
ity assumption 2.3, the non-degeneracy assumption 2.1 and
the balanced communication assumption 2.2 hold. Assume
that lim

k→+∞
∆η`(k) = 0 for all 1 ≤ ` ≤ n and all k ≥ 0. Then

the implementation of Algorithm (27) achieves consensus,
i.e., lim

k→+∞
‖xi(k)− xj(k)‖ = 0 for all i, j ∈ V .
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[14] A. Kashyap, T. Başar, and R. Srikant. Quantized consensus. Automat-
ica, 43(7):1192–1203, 2007.

[15] F. P. Kelly, A. Maulloo, and D. Tan. Rate control in communication
networks: Shadow prices, proportional fairness and stability. Journal
of the Operational Research Society, 49(3):237–252, 1998.

[16] K.C. Kiwiel. Approximations in bundle methods and decompostion of
convex programs. Journal of Optimization Theory and Applications,
84:529–548, 1995.

[17] T. Larsson, M. Patriksson, and A. Strömberg. Ergodic primal
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