
A distributed joint-learning and auction algorithm for target assignment

Teymur Sadikhov Minghui Zhu Sonia Martı́nez

Abstract— We consider an agent-target assignment problem
in an unknown environment modeled as an undirected graph.
Agents do not know this graph or the locations of the targets
on it. However, they can obtain local information about these
by local sensing and communicating with other agents within
a limited range. To solve this problem, we come up with a
new distributed algorithm that integrates Q-Learning and a
distributed auctions. The Q-Learning part helps estimate the
assignment benefits for each agent-target pair, while the auction
part takes care of assigning agents to targets in a distributed
and almost optimal fashion. The algorithms are shown to
terminate with a near-optimal assignment in a finite time.

I. I NTRODUCTION

Recent technological advances are making possible the
deployment of large groups of autonomous agents to accom-
plish different missions. Examples include distributed search
and rescue operations, surveillance, and exploration tasks.
These missions could be risky, expensive, or just hard to
accomplish with the use of single agents. On the other hand,
a group of less sophisticated agents could provide not only
much more flexibility but also robustness to failure. This has
sparked much interest in multi-agent systems and cooperative
control algorithms, where the agents aim to accomplish a
global goal through local interactions.

The problem we consider here is mainly motivated by
pick-up and delivery transportation problems or routing
problems, where the information about the environment
cannot be obtained by satellites or aerial reconnaissance
due to bad coverage or weather conditions. In particular,
we consider a target assignment problem, where the exact
locations of the targets may be unknowna priori and weather
conditions can dramatically affect the optimality of different
routes. A solution will necessarily require the vehicles to
explore the environment in order to be matched to the
targets producing the greatest assignment benefit. Moreover,
since we are looking for a distributed solution, the vehicles
should communicate during the assignment phase so that
maximization of the total assignment benefit is achieved.

In our approach, we represent the environment by an
undirected graph but the number of vertices, edges of the
graph and the locations of the targets on it are unknown to
the agents. In order to learn its surroundings and establisha
good assignment, agents will gain rewards traveling along the
edges of the graph. The agents should then estimate target-
assignment benefits from the rewards and target locations.
To solve the target-assignment problem in a distributed way,
we adapt the algorithm in [15], and for the exploration of

The authors are with Department of Mechanical and Aerospace Engineer-
ing, University of California, San Diego, 9500 Gilman Dr., LaJolla CA,
92093,{tsadikho, mizhu, soniamd}@ucsd.edu

the environment we use the Q-Learning algorithm introduced
in [12]. We consider the cases where agents or targets can be
added to or removed from the system, and the cases where
future rewards can be undiscounted or discounted.

Literature review. Different techniques have been proposed
to solve assignment problems due to its practical and theo-
retical significance [1], [3], [8]. One of the most widely-
used assignment algorithms is the auction algorithm first
introduced by Bertsekas in [4], which guarantees a near-
optimal assignment provided that a feasible one exists. More
recently, a distributed version was proposed in [15], with the
requirement that the network of agents be jointly connected
sufficiently often over time.

Distributed target assignment problems for multi-agent
systems were recently studied in [11]. In this paper, the
authors propose monotonic algorithms to solve target as-
signment problems. Under one set of assumptions, agents
have limited sensing to detect unknown target locations.
However, in this case the authors do not consider the cost or
reward to travel different paths in the environment. In [14],
the authors develop distributed multi-destination potential
fields to dynamically assign destinations to agents where the
positions of destinations are availablea priori to all agents.
In [7], the distributed sequential augmenting path algorithm
is employed to solve assignment problems.

As mentioned earlier, Q-Learning algorithm was first in-
troduced in [12], and its convergence properties can be found
in [13], [6], [10]. More recently, a distributed Q-Learning
algorithm is proposed in [9] to solve cooperative multi-agent-
decision-processes where reward functions depend upon the
strategies of all agents and identical for all agents.

Statement of contributions. In this paper, we address a
problem of target assignment and vehicle routing in unknown
environments by efficiently combining distributed auction
strategies with a Q-learning process. In this way, we propose
the distributed Joint Learning and Assignment (JOLEAS)
algorithm, and its variation, the AJOLEAS algorithm. By in-
troducing suitable leading roles among vehicles, the schemes
can make assignments when the number of vehicles is
less than or exceeds the number of targets. Moreover, the
algorithms can deal with changing number of targets and
agents including the leader. In order to keep the assignment
running properly, in the first algorithm initially virtual targets
are introduced and later deleted as the real targets are found,
whereas, in the second one virtual agents are introduced by
the leader as the real targets are found. As opposed to the
algorithm given in [15], the algorithms do not require agents
to havea priori information about the assignment benefits
associated with given targets; moreover, these benefits may

change with time. The algorithms are analyzed and proved to
work under both discounted and undiscounted rewards cases.

Organization of the paper. The remainder of the paper is
organized as follows. In Section II, we introduce notation
that will be used throughout the paper and statement of the
problem that we investigate. In Section III, we briefly present
some preliminaries on Q-Learning and Auction algorithms.
In Section IV, we present the main contribution of the
paper, the JOLEAS and AJOLEAS algorithms. Section V
includes convergence analysis for the algorithms for both
undiscounted and discounted rewards cases. Finally, Sec-
tion VI includes some concluding remarks.

II. PROBLEM FORMULATION AND NOTATION

In this section, we introduce the notation that will be used
throughout the paper and state the problem that we address.

Consider a 2-D bounded environmentQ ⊆ R
2 on which

a group ofn agents is deployed. The environment is dis-
cretized into a grid that we identify with an undirected
graphG = (S,A). The finite set of vertices is enumerated
as S = {s1, . . . , sM}, while the edge setA satisfiesA ⊆
S×S\diag(S). In what follows, we will refer to the vertices
of the graphG as states that an agent can reach by moving
along the graph edges.

Consider that there arem static targets, labeled byj ∈
T = {1, . . . ,m}, located at the special statesstj

∈ ST ⊆ S.
The targets are to be found by then agents, labeled byi ∈
V = {1, . . . , n}. Each agenti is initially at the source state
s0i. Agents travel along the edges of the graph by choosing
actions or feasible edges connecting their current state with
another one. The set of feasible actions at states ∈ S is
denoted asA(s) = {a ∈ S×S|a = (s, s′) ∈ A}. Denote the
set of possible paths froms0i to targetj asΠij . A pathπij ∈
Πij has length|πij | if it can be expressed as the chain of
statesπij = s0is1 . . . s|πij |−1stj

∈ Πij , where(sd, sd+1) ∈
A, for d ∈ {0, . . . , |πij | − 1}.

The agents do not havea priori information about the
number of graph states, the reward that is incurred while
traveling from one state to another, or the location of targets.
However, the agents have a limited sensing and communi-
cation rangeR. Therefore, they can obtain local information
about the edges in the graph, and can communicate with oth-
ers within rangeR. We define the set of neighbors of agent
i at time t, by Ni(t) = {j ∈ V|j is within distance R of i}.

As a consequence of taking certain actions, agents will
incur cost or reward. To quantify the possible cost/reward,we
define a functionr : S×A → R. Each edge(sk, sl) ∈ A(sk),
with sl ∈ S \ ST , is associated with a bounded negative
cost −∞ < r(sk, (sk, sl)) < 0. The bounded cost can
be thought of as traveling time in our routing problem.
We would like to minimize the traveling time, which is
equivalent to minimizing the total cost sum in the problem
that we consider. On the other hand, each edge(sm, stj

),
stj
∈ ST , satisfies0 < r(sm, (sm, stj

)) < +∞.
The benefit for agenti to follow πij and reach the targetj

is given byc(πij) =
∑|πij |−1

l=0 γlr(sl, al), where0 ≤ γ ≤ 1
is a discount factor. We consider two cases: undiscounted

and discounted rewards cases. In the first case, the rewards
of the edges that will be traveled in the future have the same
weight as the rewards from the present edges; i.e.,γ = 1.
In the second case, the future rewards matter less than the
present ones; i.e.,γ < 1.

Denote byβij = supπij∈Πij
c(πij) the benefit of assigning

the destinationj to agenti. Observe thatβij is unknown and
equal to certainc(πij) for a pathπij with no loops. Thus,βij

is bounded, sincer is bounded and there is a finite number
of paths without loops fromi to j.

Consider extended lists̄V = T̄ = {1, . . . ,max{n,m}},
so thatV ⊂ V̄ and T ⊂ T̄ . The extended lists will serve
to introduce labels for virtual agents and virtual targets
that can help balance the agent/target lists. An assignment
map at timet ≥ 0 is defined asαt : V̄ → T̄ such that
αt(i) ≡ αi(t) = j if and only if targetj has been assigned
to agenti at timet. With a slight abuse of notation, we will
drop the subindext from αt and denoteα = (αi) to represent
a generic bijection between̄V and T̄ at a given time. The
problem that we would like to solve is how to match then
agents to them targets in a distributed way. In other words,
we would like to find a bijectionατ : V̄ → T̄ , ατ ≡ (αi(τ))
at some terminal timeτ , so that the total assignment benefit∑min{m,n}

i=1 βiαi(τ) is as close as possible to the optimal
benefitA∗ = sup{α |α bijection overV̄}

∑min{m,n}
i=1 βiαi

, where
i ∈ V andαi ∈ T . To solve this problem we will design a
distributed algorithm that, on the one hand, estimatesβij ,
with j ∈ T , and, on the other hand, assigns agents to
targets in an estimated optimal way. Our algorithm will make
use of Q-Learning and distributed auction algorithms, as we
describe in the following sections.

III. PRELIMINARIES

This section summarizes the main elements of the Q-
Learning method and auction algorithms. For additional
information on Q-Learning see [10]. Our exposition on the
auction algorithm follows [2] and [15].

A. Q-Learning

The main ingredients of the Q-learning algorithm are
described next. We define the so-calledvalue function,
V σ

γ : S → R, as V σ
γ (s0) =

∑∞
k=0 γkr(sk, ak), where γ

is a discount factor,0 ≤ γ ≤ 1, and σ is the policy,
or the sequence of actions{ak}k≥0, that defines the state
sequence{sk}k≥1 starting froms0. In other words,V σ

γ (s0)
is the sum of future rewards over the infinite future starting
at states0 and following the policyσ. Then, theoptimal
value function is given byV ∗

γ (s0) = supσ V σ
γ (s0). Denote

by δ : S×A → S, thestate transition function, which defines
the state that is reached if actiona is taken at states. Now
define theevaluation function, Q : S ×A → R, as:

Q(s, a) = r(s, a) + γV ∗
γ (δ(s, a)). (1)

The second term is the value discounted byγ if the optimal
policy is pursued beginning at stateδ(s, a).

Combining (1) with the following property (see [10]):

V ∗
γ (s) = max

a∈A(s)
Q(s, a),

one can obtain the following equation:

Q(s, a) = r(s, a) + γ max
a′∈A(δ(s,a))

Q(δ(s, a), a′).

This equation is used to define the Q-Learning recursion to
update aQ-Table with entriesQ̂(s, a) as follows:

Q̂(s, a)← r̂(s, a) + γ max
a′∈A(s′)

Q̂(s′, a′).

Here, s′ is the new state that is observed after executing
actiona at s and computing the immediate rewardr̂(s, a).

For the discounted rewards case, it is shown that the
Q-Table values; that is,{Q̂(s, a) | (s, a) ∈ S×A}, converge
to the true optimal valuesQ∗(s, a) = supa∈A(s) Q(s, a) for
everys anda provided that all state-action pairs are visited
infinitely often and that̂r(s, a) = r(s, a), ∀ (s, a) ∈ S ×A.

For notational simplicity, in the rest of this paper we
will identify Q̂(s, a) and r̂(s, a) with Q(s, a) and r(s, a),
respectively, since we will just make use of these estimates.

B. The auction algorithm

The auction algorithm aims to solve the classical assign-
ment problem wheren agents are matched ton objects to
maximize the total assignment benefit. Initially, the algorithm
requires the prices, assignments, if any, and benefits for each
agent-object pair. Then, the algorithm regulates a pricing
mechanism in which agents can bid for their desired targets.

More precisely, in the distributed auction algorithm [15],
suppose agenti believes that matching with objectj has the
price pij(t). This is the price that agenti thinks it needs to
pay in order to be assigned to objectj. The agenti also
receives pricing and bidding information for each objectj
from its neighborsk ∈ Ni(t) at time t. Then the agent
updates its own information for each objectj at every time
stept as follows:

p′ij(t) := max
k∈Ni(t)

{pij(t), pkj(t)},

b′ij(t) := max
k∈argmaxz∈Ni(t){pij(t),pzj(t)}

{bkj(t)};

where bij is the largest index bidder for objectj that is
known to the agenti. If αi(t) is the object that agenti
chooses at timet, (αi(0) can take a random value), and
piαi(t)(t) ≤ p′iαi(t)

(t) or b′iαi(t)
(t) 6= i, then agenti will up-

date its assignment byαi(t + 1) ∈ argmaxk∈{1,...,m}{βik −
p′ik(t)}, where βik is the assignment benefit that agenti
would obtain by associating itself with objectk. Then agent
i will set itself as the highest index bidder for objectαi(t+1),
and increase the price of this object:piαi(t+1)(t + 1) =
p′iαi(t+1)(t) + γi(t). Hereγi(t) is given as follows:

γi(t) , vi(t)− wi(t) + ǫ,

vi(t) , max
j∈{1,...,m}

{βij − p′ij(t)},

wi(t) , max
j 6=αi(t+1)

{βij − p′ij(t)};

whereǫ is a small positive constant andvi(t) andwi(t) are
the best and second best net values, respectively, available
to agenti at time t.

Since agenti does not directly communicate with all other
agents at each time step, the real price for agentj could
be outdated and actually much higher thanpij(t). However,
under the assumption that the multi-agent network is jointly
connected over time sufficiently often, the correct pricing
information will be ultimately available to each agent. The
net value of objectj for agenti is βij−pij(t). Each agenti
would like to be assigned to the objectj with maximal net
value:

βij − pij(t) = max
k∈{1,...,m}

{βik − pik(t)}. (2)

If (2) is satisfied for all agents, then the assignment and
the set of prices are atequilibrium. However, it can happen
that several agents try to be assigned to a smaller number
of equally desirable objects without raising the prices of the
objects. This will lead to cycles in the algorithm preventing
convergence to an equilibrium. Thus, we will consider an
almost equilibrium assignment which occurs when

βij − pij(t) ≥ max
k∈{1,...,m}

{βik − pik(t)} − ǫ,

for all i ∈ {1, . . . , n} and for a given smallǫ > 0. This is
known asǫ-Complementary Slackness (ǫ− CS) condition.

IV. A SSIGNMENT ALGORITHMS

In this section, we present the JOLEAS (Joint Learning
and Assignment) and AJOLEAS (Alternative Joint Learning
and Assignment) algorithms.

A. JOLEAS Algorithm

The JOLEAS algorithm is a synchronous algorithm ex-
ecuted by multiple agents, who communicate locally upon
encountering each other in the environment.

The simplest case is that ofn agents andm targets
with n = m. Through the JOLEAS, every agenti stores
information about targetsj it finds and how to reach them
in Q-Tables, Qij . The target-assignment decision making
is based on a distributed auction process. Thus, when two
agents find each other, they will interchange the information
about the targets they found, the prices of known targets,
highest bidder information, leader information, the lowest
assignment benefit they have and available agents. This
allows each agent to recompute the assignment benefits,
update the target prices and establish an assignment.

Notice that, the real targets can be labeled by using their
locations on the grid. Then, upon encountering a new real
target, sayk, agenti will store the temporaryQ-Table entries
of the path leading to that target in tableQik. This can be
accomplished by assigning zero rewards to all the edges that
lead to the targets other thank. Observe that, if the agent
has not found any real targets yet, it will remain assigned to
the virtual target.

To deal with case ofm < n, a virtual target idea is
introduced. In this way,n − m agents will be assigned

to virtual targets and the algorithm will terminate with a
“virtual” one-to-one assignment. Each agent will need to
store price and highest bidder information, updated using
the same procedure used as for real targets. In fact, our
algorithm starts by assuming that only virtual targets are
available, and these are replaced when real targets are found.
Each agent updates the virtual targets’ assignment benefitsby
making them equal to a large negative multiple of the largest
absolute value of assignment benefits among its neighbors.
As a result, the replacement of virtual targets by real ones is
guaranteed, since all the virtual target benefits will eventually
be smaller than any real target benefit. Agents keep track of
the replacements by updating lists of virtual (respectively
real) targets,T i

d (t) (respectivelyF i(t)).
To deal with the casem > n, a leader agent generates

virtual m− n agents and places bids on their behalf. These
virtual agents are generated as extra targets are found.
Similarly as before, the leader will adjust the virtual agents’
assignment benefits by making them equal to a large negative
multiple of the largest absolute value of assignment benefits
among its neighbors. In this way, we can guarantee the
algorithm will find a suboptimal assignment that favors the
matching of real agents with real targets and theǫ − CS
condition will be satisfied.

Finally, to make the algorithm robust with respect to the
leader, a leader-election routine is introduced to check from
time to time that the leader is active.

In what follows, we describe the algorithm in a more
formal way by making use of a pseudocode language.
Algorithm Requirements:

1 Each agent should know the total number of agents in
the group; i.e.,n.

2 Agents possess a unique identifierUID ∈ {1, . . . , n},
which they know.

3 Agents can sense the edges adjacent to the state they
are located at. They can communicate with others in
Ni(t), and can locally move to adjacent graph states.

4 We assume there is a global time schedule that syn-
chronizes the motion, communication and actions of the
agents at every timet ∈ {0, 1, 2, . . . }.

Initialization:

• Introducen virtual targets labeled bydj ∈ T
i

d (0) =
{d1, . . . , dn}. Here, T i

d (t) is a set of virtual targets
that agenti updates at everyt. Setβidj

(0) to arbitrary
negative number for alli ∈ {1, . . . , n} anddj ∈ T

i
d (0).

The labels of the virtual targets should be known to all
agents. Moreover, denote byF i(t) the set of the real
targets found by agenti by the timet. We also define the
list of targets for each agenti asT i(t) := T i

d (t)∪F i(t).
• Introduce a list Li(0) = {1, . . . , n} for all i ∈
{1, . . . , n}. Here,Li(t) is the list of the available agents
known to each agenti at time t.

• Arbitrarily assign each agent to one of the virtual
targets; e.g.,αi(0) = di for all i ∈ {1, . . . , n}.

• Set the temporaryQ-Table for each agent,Qi(s, a)(0),
equal to zero.

• Setleadi(0) = 1, ∀i ∈ {1, . . . , n}. Here,leadi(t) is the
UID of the agent thati considers to be the leader att.
The setΛi(t) is generated by the leader agenti at time
t and consists of labels for virtual agents.

Execution for Agent i at time t + 1 ≥ 1:
1 Process messagesT k(t), Lk(t), pkj(t), bkj(t), Bk(t) ,

minj∈T k(t) βkj(t) and leadk(t), with j ∈ T k(t), re-
ceived fromk ∈ Ni(t).

2 Delete fromT i(t) andLi(t), the virtual targets which
are not in{T k(t)}k∈Ni(t), and the real agents which
are not in{Lk(t)}k∈Ni(t), respectively.

3 Update the virtual target assignment benefits by:

βidr
(t + 1) = −C max

k∈Ni(t)
{|Bk(t)|, |Bi(t)|}|,

with a constantC ≫ 1, for all dr ∈ T
i

d (t).
4 if leadi(t) = i, then:
5 Update virtual agent assignment benefits by:

βϑlj(t + 1) = βϑldr
(t + 1) = −C max

k∈Ni(t)
{|Bk(t)|, |Bi(t)|},

for all ϑl ∈ Λi(t), j ∈ F i(t) anddr ∈ T
i

d (t).
6 if |F i(t)| − |Li(t)| − |Λi(t)| > 0, then:
7 Generate new virtual agentsϑl ∈ Λi(t + 1),

with βϑlj(t + 1) = βϑldr
(t + 1) =

−C maxk∈Ni(t){|Bk(t)|, |Bi(t)|}, for all l ∈
{|Λi(t)| + 1, . . . , |F i(t)| − |Li(t)|}, j ∈ F i(t)
and dr ∈ T

i
d (t), and carry out the bidding process on

their behalf.
8 end if.
9 end if.

10 Choosea ∈ A(s) and move tos′ = δ(s, a).
11 if the real targetk is newly found,then:
12 updateT i(t) to T i(t + 1) by deleting the virtual target

dk from T i
d (t) and adding the real target toF i(t + 1).

13 resetr(s, a) = 0 if s′ ∈ SFi(t), whereSFi(t) :=
⋃

j stj

with j ∈ F i(t).
14 Recalculate theQi(s, a)(t) table as

Qi(s, a)(t) = r(s, a) + γ max
a′∈A(s′)

Qi(s
′, a′)(t). (3)

and store it inQik(s, a)(t) = Qi(s, a)(t).
15 Calculate the assignment benefit:

βik(t) = max
a∈A(si0)

Qik(si0, a)(t). (4)

16 else:
17 for each targetl ∈ F i(t), resetr(s, a) = 0 if s′ ∈
SFi(t) \ {stl

}.
18 Recalculate theQi(s, a)(t) table as in (3), and store it

in Qil(s, a)(t) = Qi(s, a)(t).
19 Calculate the assignment benefit:

βil(t) = max
a∈A(si0)

Qil(si0, a)(t).

20 end if.
21 if αi(t) /∈ T i(t), then:
22 αi(t) = ∅1.

1In other words, remain unassigned

23 end if.
24 Update the prices of all targetsj ∈ T i(t) and the

corresponding highest bidders by:

p′ij(t) := max
k∈Ni(t)

{pij(t), pkj(t)},

b′ij(t) := max
k∈argmaxz∈Ni(t){pij(t),pzj(t)}

{bkj(t)}.

25 if αi(t) = ∅, or piαi(t)(t) ≤ p′iαi(t)
(t), or b′iαi(t)

(t) 6= i
or agenti does not satisfy theǫ− CS condition:

βij(t)− pij(t) ≥ max
k∈T i(t)

{βik(t)− pik(t)} − ǫ,

then:
26 Update the assignment by

αi(t + 1) ∈ argmaxk∈T i(t){βik(t)− p′ik(t)}.

27 Setbiαi(t+1)(t + 1) := i and raise the price for target
αi(t + 1) to piαi(t+1)(t + 1) := p′iαi(t+1)(t) + γi(t),
where

γi(t) , vi(t)− wi(t) + ǫ1, (5)

vi(t) , max
j∈T i(t)

{βij(t)− p′ij(t)}, (6)

wi(t) , max
j∈T i(t)\{αi(t+1)}

{βij(t)− p′ij(t)}. (7)

vi and wi are the best and the second best net values
available to agenti, respectively, andǫ > ǫ1 > 0 is a
minimum bid increment.

28 elseαi(t + 1) := αi(t).
29 end if.
30 if received the information that the agent withUID = b

is no longer active,then:
31 Update the list of the available agents by:

Li(t + 1) = Li(t)\{b}.

32 end if.
33 if received the information that the leader (suppose with

UID = a) is no longer active,then:
34 Update the leader information by:

leadi(t) = a + 1.

35 end if.
36 Update the leader information by:

leadi(t + 1) = max
k∈{i}∪Ni(t)

leadk(t).

37 if leadi(t + 1) = i, then:
38 Announce itself as the leader.
39 end if.
40 CommunicateT i(t+1), Li(t+1), pij(t+1), bij(t+1),

Bi(t) andleadi(t+1), with j ∈ T i(t+1), to all agents
k such thatk ∈ Ni(t).

Remark 1: The main difference between the auction al-
gorithm part in the description above (Steps 24-29) and
the distributed auction algorithm presented in [15] is the
following. Here, we need to introduceǫ 6= ǫ1 to deal with the
time-varyingβij(t) due to the learning process. In this way

the ǫ− CS condition can be satisfied. Another consequence
of the time-varying bids is that, in addition to checking
for the highest-bidder and price increase of the assigned
target, every agent should also check whether the current
assignment still satisfies theǫ − CS condition. Moreover,
the real agents that become unassigned due to the deletion
of the virtual targets should also perform assignment update
given at step 26. Furthermore, the JOLEAS algorithm can
deal with the problem ofn 6= m. All in all, our algorithm
extends the distributed auction algorithm presented in [15]
in that we make it robust to agent failure, and capable of
dealing with unknown environments. •

As it will be clear in the next section, we need the fol-
lowing conditions to guarantee that the algorithm terminates
with a near optimal assignment:

Assumption 1: The agents must communicate with each
other over infinitely many time indicest.

Assumption 2: All agents will visit each state-action pair
infinitely often.

Remark 2: Notice that, due to the introduction of the
virtual targets and agents, we can guarantee that there exists
at least one feasible (one-to-one) assignment. •

Observe that, due to the nature of the Q-Learning iteration,
the JOLEAS algorithm is greedy; i.e. only the actions that
resulted in maximizingQ(s, a) values in early stages will be
favored. Therefore, it may not be possible to satisfy Assump-
tion 2. This can be resolved by executing a random action
with probability µ and executing the greedy action with
probability1−µ, whereµ is a small positive parameter [6].

B. Alternative JOLEAS (AJOLEAS) Algorithm

As an alternative algorithm we can make the following
changes to the JOLEAS algorithm. Steps 6-8 can be replaced
by the following steps:

1 if |F i(t)| > 0 and |Λi(t)| < |F
i(t)| < |Li(t)|, then:

2 Generate virtual agentsϑl ∈ Λi(t+1) with βϑlj(t+1) =
βϑldr

(t+1) = −C maxk∈Ni(t){|Bk(t)|, |Bi(t)|}, for all
l ∈ {|Λi(t)| + 1, . . . , |F i(t)|}, j ∈ F i(t), dr ∈ T

i
d (t),

and carry out the following bidding process on their
behalf.

3 else if |F i(t)| − |Li(t)| − |Λi(t)| > 0, then:
4 Generate virtual agentsϑl ∈ Λi(t+1) with βϑlj(t+1) =

βϑldr
(t + 1) = −C maxk∈Ni(t){|Bk(t)|, |Bi(t)|}, for

all l ∈ {|Λi(t)| + 1, . . . , |F i(t)| − |Li(t)|}, j ∈ F i(t),
dr ∈ T

i
d (t), and carry out the following bidding process

on their behalf.
5 end if.
In this way, the leader generates virtual agents as soon

as it finds a new real target. Therefore, there is no need for
the deletion of the virtual targets at the next steps of the
JOLEAS algorithm. Using this algorithm, upon termination
the number of both targets and agents, as well as the number
of assignments will bem + mink∈{1,...,n},t{|Lk(t)|}.

Let q1 = max{m,n}, q2 = m + n and q = min{m,n}.
Then, we have:

Proposition 3: (Convergence Results for the JOLEAS al-
gorithm). Suppose that Assumptions 1 and 2 hold. Then there

exists a finite timeT such thatαi(t) = ᾱi andβiαi
(t) = β̄iᾱi

for all i ∈ {1, . . . , q1} and for all t ≥ T . Furthermore,
the final assignment obtained from the Joint Learning and
Assignment algorithm is

(i) within q1ǫ1 of the optimal assignment; i.e.A∗−q1ǫ1 ≤∑q
i=1 β̄iᾱi

≤ A∗, for undiscounted rewards case;
(ii) within q1ǫ2 of the optimal assignment; i.e.A∗−q1ǫ2 ≤∑q

i=1 β̄iᾱi
≤ A∗, for discounted rewards case provided

that ǫ2 > ǫ1.
Proposition 4: (Convergence Results for the AJOLEAS al-

gorithm). Suppose that Assumptions 1 and 2 hold. Then there
exists a finite timeT such thatαi(t) = ᾱi andβiαi

(t) = β̄iᾱi

for all i ∈ {1, . . . , q2} and for all t ≥ T . Furthermore, the
final assignment obtained from the Alternative Joint Learning
and Assignment algorithm is

(i) within q2ǫ1 of the optimal assignment; i.e.A∗−q2ǫ1 ≤∑q
i=1 β̄iᾱi

≤ A∗, for undiscounted rewards case;
(ii) within q2ǫ2 of the optimal assignment; i.e.A∗−q2ǫ2 ≤∑q

i=1 β̄iᾱi
≤ A∗, for discounted rewards case provided

that ǫ2 > ǫ1.

V. CONVERGENCE ANALYSIS

We include here the convergence proofs of Proposition 3
and 4 of the previous section.

A. Undiscounted Rewards Case

In this subsection, we present the claims and correspond-
ing proofs for the undiscounted rewards case. In order to
prove the convergence of the entire algorithm, first we need
to show the convergence of the assignment benefits, since
due to the learning action they are changing with time. We
will follow the ideas of [2] to prove some of the claims.

Claim 1.1: There exists a finite timeT1 such thatβij(t) =
β̄ij for all i, j ∈ {1, . . . , q1} and∀t ≥ T1, for someβ̄ij ∈ R.

Proof: Suppose first thatm = n. Define the error
of Q(s, a)(t) update bye(s, a)(t) = Q∗(s, a) − Q(s, a)(t),
whereQ∗(s, a) is the true value associated with(s, a), and
Q(s, a)(t) is the Q-Table updated at timet by any agent
using the Q-Learning recursion. For simplicity, assume that
we initialize all Q-Table entries to zero. We also consider
that Qi(stj

, a)(t) = 0, ∀a ∈ A(stj
) and ∀t ≥ 0, sincestj

are absorbing states for allj.
We will make use of induction over the state-action pairs

that lead to the target to prove the claim. First, suppose that
action al ≡ a1 executed at statesl ≡ s1 leads to statestj

.
Then, we obtain for all timet ≥ 0:

Q(s1, a1)(t) = r(s1, a1) + max
a′∈A(stj

)
Q(stj

, a′)(t)

= r(s1, a1) = Q∗(s1, a1) =⇒ e(s1, a1)(t) = 0.

Now by induction, supposee(sk, ak)(ta) = 0 for some
finite time ta. In particular, this implies thatQ(sk, ak)(t) =
Q∗(sk, ak) for all t ≥ ta. By Assumption 2 we know that
there exists a timetb > ta such that at timetb actionak+1

executed at statesk+1 will lead to statesk. Suppose also
that Q(sk, ak)(tb) = maxa′∈A(sk) Q(sk, a′)(tb). Then:

Q(sk+1, ak+1)(tb)

= r(sk+1, ak+1) + max
a′∈A(sk)

Q(sk, a′)(tb)

= r(sk+1, ak+1) + Q∗(sk, ak) = Q∗(sk+1, ak+1)(tb)

=⇒ e(sk+1, ak+1)(tb) = 0.

Thus, by induction on(sk, ak) after finite number of iter-
ations,e(sk, ak)(t) = 0 for all k and ∀t > T1, whereT1

is some finite time. Sinceβij(t) is calculated by (4), after
finite number of iterations it will converge tōβij , where
β̄ij = maxa∈A(si0) Q∗

ij(si0, a), for all i and j.
Now suppose thatm 6= n (virtual targets and/or agents).

Convergence of the virtual agents’ and virtual targets’ ben-
efits also holds since 1) they are set to be proportional to
some real agent benefits and 2) these values will reach every
agent in the network because of Assumption 1. Also notice
that, all the benefits associated with the virtual entities will
converge to the same value, sayβ̃.

Claim 1.2: The JOLEAS algorithm will terminate with a
feasible assignment.

Proof: The proof for the (centralized) auction algorithm
in [5], can be used in this context. We reproduce it here
for the sake of completeness. Suppose that the algorithm
does not terminate. Then, there are targets (resp. agents) that
receive (resp. make) an infinite number of bids. Define by
T ∞ ⊆ T (resp.V∞ ⊆ V) the set of the targets that receive
(resp. that make) an infinite number of bids. Since each bid
increases the price of a target byǫ1, the prices of targets
j ∈ T ∞ are increased to infinity. It is clear from (??) that
the best net value available to agenti ∈ V∞; i.e., vi, will
decrease to negative infinity.

For theǫ− CS condition to hold it is obvious that target
j ∈ T ∞ can only be assigned to agenti ∈ V∞. However, at
least one agent inV∞ will be unassigned at the beginning
of each auction iteration after finite time, since the algorithm
does not terminate. Thus, since the number of agents inV∞

will be more than the number of targets inT ∞, there does
not exist a feasible assignment. This contradicts the statement
in Remark 2. Thus, auction iteration part of the JOLEAS
algorithm must terminate in finite time. Combining this result
with Claim 1.1, we conclude that the JOLEAS algorithm will
terminate with a feasible assignment.
Note that, since the algorithm terminates in finite time, and
communication with connected graphs is enabled, each agent
belief of the target prices will eventually converge to the
same fixed values; i.e.,pij(t)→ pj for all i, j ∈ {1, . . . , q1}
for all t > T2 > T1, for some timeT2 < +∞. Now we
prove that under Claim 1.1, after timeT1 the algorithm will
eventually converge to a feasible assignment.

Claim 1.3: There exists a finite timeT ≥ T1 such that
αi(t) = ᾱi for all i ∈ {1, . . . , q1} and t ≥ T .

Proof: Suppose that targetji ≡ j is assigned to agent
i after the assignment phase at timeτiji

≡ τ ≥ T1; i.e.,

αi(τ) = j∗. Then:

pij∗(τ + 1) = p′ij∗(τ) + vi(τ)− wi(τ) + ǫ1

= βij∗(τ)− wi(τ) + ǫ1. (8)

Using this relationship, Claim 1.1 and (7), we obtain:

βij∗(τ + 1)− pij∗(τ + 1) = βij∗(τ)− pij∗(τ + 1)

= max
j 6=j∗
{βij(τ)− pij(τ)} − ǫ1.

Now considering the fact that the prices are nondecreasing,
we get the following relationship:

βij∗(τ + 1)− pij∗(τ + 1)

≥ max
k∈{1,...,q1}

{βik(τ + 1)− pik(τ + 1)} − ǫ1.

Thus, we have shown thatǫ−CS condition is satisfied with
ǫ = ǫ1 for agenti and targetji for all t ≥ τiji

. Consequently,
there exists finite timeτ∗ = maxi τiji

such that all agent-
target pairs will satisfyǫ− CS condition∀t ≥ τ∗.

Moreover, it is clear from the algorithm that if all the
agents and targets satisfyǫ − CS condition ∀t ≥ τ∗, then
agents have no incentive to bid for other targets different
from the ones they are assigned to. Thus, choosingT = τ∗

completes the proof.
Now we present the result on the optimality of the final

assignment; i.e., the assignment obtained at timeT .
Claim 1.4: The final total benefit of the assignment ob-

tained from the JOLEAS algorithm is withinq1ǫ1 of the
optimal one.

Proof: Recall that the final assignment to agenti is
denoted byᾱi and β̄ij denotes the assignment benefit of
i if it was matched withj at the termination time. The
total assignment benefit (including the benefits of the virtual
entities) is given as:

q1∑

i=1

β̄iᾱi
=

q1∑

i=1

β̄iᾱi
+

q1∑

j=1

pj −

q1∑

j=1

pj

≤

q1∑

j=1

pj +

q1∑

i=1

max
k∈{1,...,q1}

{β̄ik − pk}. (9)

Recall that the optimal assignment benefit is defined by:

A∗ = max
(αi) | (αi) bijection

q∑

i=1

β̄iαi
,

wherei ∈ V andαi ∈ T . Now define the optimal assignment
benefit which includes the benefits of the virtual entities:

Ã = max
(αi) | (αi) bijection

q1∑

i=1

β̄iαi
.

Also define the optimal dual cost (see [2]):

D̃ , min
p1,...,pq1

{

q1∑

j=1

pj +

q1∑

i=1

max
j∈{1,...,q1}

{β̄ij − pj}}.

Then, from equation (9) one can see thatÃ ≤ D̃. From the
ǫ−CS condition and the result of Claim 1.3, we haveβ̄iᾱi

−

pᾱi
≥ maxj∈{1,...,q1}{β̄ij−pj}−ǫ1. Using this together with

the previous relationships we obtain:

D̃ ≤

q1∑

i=1

(pᾱi
+ max

j∈{1,...,q1}
{β̄ij − pj})

≤

q1∑

i=1

β̄iᾱi
+ q1ǫ1 ≤ Ã + q1ǫ1.

SinceÃ ≤ D̃, we obtain:

Ã− q1ǫ1 ≤

q1∑

i=1

β̄iᾱi
≤ Ã.

Now recall that the benefits of all the virtual entities will
have the same value,̃β, eventually. Subtracting(q1 − q)β̃
from the above inequality we get:

A∗ − q1ǫ1 ≤

q∑

i=1

β̄iᾱi
≤ A∗.

Thus, the total assignment benefit obtained upon termi-
nation of the algorithm is withinq1ǫ1 of the optimal one.

Remark 5: Notice that in the casesm < n (virtual
targets) (resp.n < m (virtual agents)) the virtual target-
real agent benefits are much lower than the real target-real
agent benefits (resp. real target-virtual agent benefit willbe
lower than the real target-real agent benefit) because of the
constraints imposed on them. In this way, the algorithm will
favor real target/real agent matchings. At termination time,
any real agent or target assigned to a virtual entity will be
actually unassigned. •
Combining proofs for Claims 1.1- 1.4, we obtain the proof
of Proposition 3 for the undiscounted rewards case. The
proof of Proposition 4 for the undiscounted rewards case is
analogous. The only modification to the claims is to change
q1 to q2, since the total number of final assignments are
different in two algorithms. As a result, upon termination
of the AJOLEAS algorithm, the total assignment benefit is
within q2ǫ1 of the optimal one.

B. Discounted Rewards

Here we include the proofs for discounted rewards cases.
Claim 2.1: Let ∆ to be any positive real number. Then

there exists a timeT∆ < +∞ such that|βij(τ + 1) −
βij(τ)| ≤ ∆ for all i, j ∈ {1, . . . , q1} and∀τ ≥ T∆.

Proof: The convergence of Q-Learning algorithm for
the discounted rewards case is guaranteed under Assump-
tion 2 and can be found as the proof of Theorem 13.1
in [10]. Consequently, sincēβij = maxa∈A(si0) Q∗

ij(si0, a),
the proof of the claim is trivial.

Remark 6: Notice that Claim 1.1 is satisfied for virtual
agents, since their assignment benefits will converge to the
fixed value given that Assumption 1 holds. •

Claim 2.2: The JOLEAS algorithm will terminate with a
feasible assignment.

Proof: The proof follows along the same lines of the
proof of Claim 1.2.

Under Claim 2.1 and as proven in the following, the algo-
rithm will converge to a feasible assignment in finite time.

Claim 2.3: There exists a finite timeT ≥ T∆ such that
αi(t) = ᾱi for all i ∈ {1, . . . , q1} and∀t ≥ T .

Proof: Suppose thatαi(τ) = j∗ after the assignment
phase at timeτ ≥ T∆. Then using (8) together with (7) we
obtain:

βij∗(τ + 1)− pij∗(τ + 1)

= βij∗(τ)− pij∗(τ + 1) + (βij∗(τ + 1)− βij∗(τ))

= max
j 6=j∗
{βij(τ)− pij(τ)} − ǫ1 + (βij∗(τ + 1)− βij∗(τ)).

By Claim 2.1, and because prices are nondecreasing:

βij(τ)− pij(τ) ≥ βij(τ + 1)−∆− pij(τ + 1),

which implies

max
j 6=j∗
{βij(τ)− pij(τ)} ≥ βij(τ + 1)− pij(τ + 1)−∆,

for all j ∈ {1, . . . , q1} \ {j
∗}. Putting this together with the

above equation forβij∗(τ + 1)− pij∗(τ + 1), we obtain:

βij∗(τ + 1)− pij∗(τ + 1) ≥

βij(τ + 1)− pij(τ + 1)− ǫ1 − 2∆, ∀j ∈ {1, . . . , q1} \ {j
∗}.

Since the above inequality holds trivially forj∗, and taking
∆ ≤ ǫ1−ǫ2

2 , we have that:

βij∗(τ + 1)− pij∗(τ + 1)

≥ max
k∈{1,...,q1}

{βik(τ + 1)− pik(τ + 1)} − ǫ1 − 2∆

≥ max
k∈{1,...,q1}

{βik(τ + 1)− pik(τ + 1)} − ǫ2.

Thus, we have shown that theǫ−CS condition is satisfied
with ǫ = ǫ2 for agenti and targetj∗ for all t ≥ τ . Repeating
this for each agent, one can clearly find some finite time
τ∗ such that all the agent-target pairs will satisfyǫ − CS
condition ∀t ≥ τ∗. Following the same reasoning as in
Claim 1.3, all the agents will remain assigned to their targets
∀t ≥ τ∗. ChoosingT = τ∗ completes the proof.

Claim 2.4: The final total benefit of the assignment ob-
tained from the JOLEAS algorithm is withinq1ǫ2 of the
optimal total assignment benefit.

Proof: By using that theǫ − CS condition holds with
ǫ = ǫ2 we can follow along the same lines of the proof of
Claim 1.4 to conclude the result.

The proofs of Claims 1.1-1.4 provide the proof of Propo-
sition 3 (ii) for the discounted rewards case. The proof
of Proposition 4 (ii) parallels the proof for Proposition 3
(ii). The only difference is that, upon termination of the
AJOLEAS algorithm, the total assignment benefit is within
q2ǫ2 of the optimal one.

We can restate an observation made in [2] as a remark for
both Propositions 3 and 4.

Remark 7: The total assignment benefit will be integer
if all the benefits are integers. Consequently, if allβ̄ij are
integers and any one of the following conditions is true:

(i) ǫ1 < 1/q1 for the undiscounted rewards case of the
JOLEAS algorithm,

(ii) ǫ2 < 1/q1 for the discounted rewards case of the
JOLEAS algorithm,

(iii) ǫ1 < 1/q2 for the undiscounted rewards case of the
AJOLEAS algorithm,

(iv) ǫ2 < 1/q2 for the discounted rewards case of the
AJOLEAS algorithm,

then the agent-target assignment upon termination of the
algorithm is optimal. •

VI. CONCLUSION

In this paper, we considered agent-target assignment in an
unknown environment which is represented as an undirected
graph and the locations of the targets are unknown to the
agents. Furthermore, the number of agents and targets can be
arbitrary. To deal with this challenge we proposed the Joint
Learning and Assignment algorithm, as well as its alternative
version, and analyzed their convergence properties. The
algorithm was designed as an integration of the Q-Learning
algorithm and the distributed auction algorithm presented
in [15]. The algorithms can also accommodate to the addition
and deletion of targets and agents including the leader.

REFERENCES

[1] M. L. Balinski. Signature methods for the assignment problem.
Journal on Operations Research, 33:527–537, 1985.

[2] D. Bertsekas.Linear Network Optimization: Algorithms and Codes.
The MIT Press, 1991.

[3] D. P. Bertsekas. A new algorithm for assignment problem.Mathe-
matical Programming, 21(1):152–171, 1981.

[4] D. P. Bertsekas. The auction algorithm: a distributed relaxation method
for the assignment problem.Annals of Operations Research, 14:105–
123, 1988.

[5] D. P. Bertsekas. Auction algorithms for network flow problems: A
tutorial introduction. Computational Optimization and Applications,
1:7–66, 1992.

[6] D. P. Bertsekas and J. Tsitsiklis.Neuro-Dynamic Programming.
Athena Scientific, 1996.

[7] D. A. Castãnón and C. Wu. Distributed algorithms for dynamic
reassignment. InIEEE Conf. on Decision and Control, pages 13–18,
Maui, HI, December 2003.

[8] H. W. Kuhn. The Hungarian method for the assignment problem.
Naval Research Logistics, 2:83–97, 1955.

[9] M. Lauer and M. Riedmiller. An algorithm for distributed reinforce-
ment learning in cooperative multi-agent systems. InProceedings of
the Seventeenth International Conference on Machine Learning, pages
535–542, 2000.

[10] T. M. Mitchell. Machine learning. McGraw-Hill, 1997.
[11] S. L. Smith and F. Bullo. Monotonic target assignment for robotic

networks.IEEE Transactions on Automatic Control, 54(10), 2009. To
appear.

[12] C. J. C. H. Watkins. Learning from delayed rewards. PhD thesis,
University of Cambridge, 1989.

[13] C. J. C. H. Watkins and P. Dayan. Technical note: Q-learning. Machine
Learning, 8(3-4):279–292, May 1992.

[14] M. M. Zavlanos and G. J. Pappas. Dynamic assignment in distributed
motion planning with local coordination. IEEE Transactions on
Robotics, 24(1):232–242, 2008.

[15] M. M. Zavlanos, L. Spesivtsev, and G. J. Pappas. A distributed auction
algorithm for the assignment problem. InProceedings of 47th IEEE
Conference on Decision and Control, pages 1212–1217, December
2008.

