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Abstract— We consider an agent-target assignment problem the environment we use the Q-Learning algorithm introduced
in an unknown environment modeled as an undirected graph. in [12]. We consider the cases where agents or targets can be
Agents do not know this graph or the locations of the targets  aqqed to or removed from the system, and the cases where
on it. However, they can obtal_n Io_cal |n_format|0n about th_es_e future rewards can be undiscounted or discounted
by local sensing and communicating with other agents within ) . : . ’
a limited range. To solve this problem, we come up with a  Literaturereview. Different techniques have been proposed
new distributed algorithm that integrates Q-Learning and a  to solve assignment problems due to its practical and theo-
distributed auctions. The Q-Learning part helps estimate the retical significance [1], [3], [8]. One of the most widely-
assignrllwent benef;ts for each agentt-tatrge;t pairt, while tg_eta_t;cttlog used assignment algorithms is the auction algorithm first
ot L e oSSR Sgenl 1 srdels 1 2 USRI voguced by Bertsekas in (4], which guarantees a near-
terminate with a near-optimal assignment in a finite time. optimal assignment provided that a feasible one existseMor

recently, a distributed version was proposed in [15], whth t
. INTRODUCTION requirement that the network of agents be jointly connected

Recent technological advances are making possible tkefficiently often over time.
deployment of large groups of autonomous agents to accom-Distributed target assignment problems for multi-agent
plish different missions. Examples include distributedrsh  systems were recently studied in [11]. In this paper, the
and rescue operations, surveillance, and exploratiorstaslauthors propose monotonic algorithms to solve target as-
These missions could be risky, expensive, or just hard &ignment problems. Under one set of assumptions, agents
accomplish with the use of single agents. On the other hanldave limited sensing to detect unknown target locations.
a group of less sophisticated agents could provide not oniowever, in this case the authors do not consider the cost or
much more flexibility but also robustness to failure. This hareward to travel different paths in the environment. In [14]
sparked much interest in multi-agent systems and cooperatithe authors develop distributed multi-destination pastnt
control algorithms, where the agents aim to accomplish féelds to dynamically assign destinations to agents wheze th
global goal through local interactions. positions of destinations are availatdepriori to all agents.

The problem we consider here is mainly motivated byn [7], the distributed sequential augmenting path aldonit
pick-up and delivery transportation problems or routings employed to solve assignment problems.
problems, where the information about the environment As mentioned earlier, Q-Learning algorithm was first in-
cannot be obtained by satellites or aerial reconnaissangeduced in [12], and its convergence properties can bedfoun
due to bad coverage or weather conditions. In particulaif [13], [6], [10]. More recently, a distributed Q-Learning
we consider a target assignment problem, where the exagdtorithm is proposed in [9] to solve cooperative multi-aige
locations of the targets may be unknowpriori and weather decision-processes where reward functions depend upon the
conditions can dramatically affect the optimality of difi@t  strategies of all agents and identical for all agents.
routes. A solution will necessarily require the vehicles to Statement of contributions. In this paper, we address a
explore the environment in order to be matched to thproblem of target assignment and vehicle routing in unknown
targets producing the greatest assignment benefit. Moreovenvironments by efficiently combining distributed auction
since we are looking for a distributed solution, the vetsclestrategies with a Q-learning process. In this way, we prepos
should communicate during the assignment phase so thae distributed Joint Learning and Assignment (JOLEAS)
maximization of the total assignment benefit is achieved. algorithm, and its variation, the AJOLEAS algorithm. By in-

In our approach, we represent the environment by amoducing suitable leading roles among vehicles, the selsem
undirected graph but the number of vertices, edges of tlan make assignments when the number of vehicles is
graph and the locations of the targets on it are unknown iess than or exceeds the number of targets. Moreover, the
the agents. In order to learn its surroundings and estaélishalgorithms can deal with changing number of targets and
good assignment, agents will gain rewards traveling albeg t agents including the leader. In order to keep the assignment
edges of the graph. The agents should then estimate targetnning properly, in the first algorithm initially virtuahtgets
assignment benefits from the rewards and target locatiorsre introduced and later deleted as the real targets arel foun
To solve the target-assignment problem in a distributed wawhereas, in the second one virtual agents are introduced by
we adapt the algorithm in [15], and for the exploration othe leader as the real targets are found. As opposed to the
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change with time. The algorithms are analyzed and proved &md discounted rewards cases. In the first case, the rewards

work under both discounted and undiscounted rewards casefthe edges that will be traveled in the future have the same
Organization of the paper. The remainder of the paper is weight as the rewards from the present edges; 4.e5 1.

organized as follows. In Section II, we introduce notatiorin the second case, the future rewards matter less than the

that will be used throughout the paper and statement of thgesent ones; i.ey < 1.

problem that we investigate. In Section Ill, we briefly préise  Denote bys;; = SUpP,, e, ¢(7i;) the benefit of assigning

some preliminaries on Q-Learning and Auction algorithmsthe destinatiory to agenti. Observe thap;; is unknown and

In Section IV, we present the main contribution of theequal to certair(m;;) for a pathr;; with no loops. Thus;;

paper, the JOLEAS and AJOLEAS algorithms. Section \s bounded, since is bounded and there is a finite number

includes convergence analysis for the algorithms for botbf paths without loops fromi to ;.

undiscounted and discounted rewards cases. Finally, SecConsider extended list8 = 7 = {1,...,max{n,m}},

tion VI includes some concluding remarks. so thatY ¢ V and7 c 7. The extended lists will serve

to introduce labels for virtual agents and virtual targets

) i . ] ) that can help balance the agent/target lists. An assignment
In this section, we introduce the notation that will be use¢hap at timet > 0 is defined asa; : V — 7 such that

throughput the paper and state Fhe problem t2hat we gddreg&w = o,(t) = j if and only if targetj has been assigned
Consider a 2-D bounded environmegtC R* on which g agent; at timet. With a slight abuse of notation, we will
a group ofn agents is deployed. The environment is dISdrOp the subindexfrom a; and denotex = («;) to represent
cretized into a grid that we identify with an undirectedy generic bijection betweel and 7 at a given time. The
graphg = (S,.A). The finite set of vertices is enumeratedyrohlem that we would like to solve is how to match the
asS = {s1,...,sum}, while the edge seid satisfiesA C  agents to then targets in a distributed way. In other words,
S xS\ diag(S). In what follows, we will refer to the vertices \ye would like to find a bijectiony, : V — T, a; = (ai(7))
of the graphG asstates that an agent can reach by movingat some terminal time;, so that the total assignment benefit
along the graph edges. _ yomin{mon} Bia:(r) IS a@s close as possible to the optimal
Consider that there are static targets, labeled by; € behefitA* o sﬁp B Emin{m,n} B0, Where
_ : - {a | « bijection overV} Zsi=1 Qi
'7I'—h_ t{L : t ym}, :ocgte;j at éhg theeclal sttateigt)e ISQ %_S' i €V anda; € 7. To solve this problem we will design a
€ targets are fo be oun' Oy theagents, 1abeled by € yistributed algorithm that, on the one hand, estimaigs
V ={1,...,n}. Each agent is initially at the source state | ith j € T, and, on the other hand, assigns agents to
50’{ Agentfs tri\)’f} : :(;ong the ed?_es (t)r: t_he grapht bi’ fhoo_;:r}grgets in an estimated optimal way. Our algorithm will make
actions or feasble edges connecting their current state With oo ¢ Q-Learning and distributed auction algorithms, as we
another one. The set of feasible actions at state S is

describe in the following sections.
denoted asA(s) = {a € SxSla = (s,s’) € A}. Denote the g
set of possible paths from, to targetj asll;;. A pathz;; €
II;; has length|z;;| if it can be expressed as the chain of
statesm;; = 051 - - S|r,;|—15t; € lij, where(sa, sqt1) € This section summarizes the main elements of the Q-
A, ford e {0,...,|m;| —1}. Learning method and auction algorithms. For additional
The agents do not hava priori information about the information on Q-Learning see [10]. Our exposition on the
number of graph states, the reward that is incurred whilauction algorithm follows [2] and [15].
traveling from one state to another, or the location of terge
However, the agents have a limited sensing and commumi: Q-Learning
cation rangeRR. Therefore, they can obtain local information o . . .
. . . The main ingredients of the Q-learning algorithm are
about the edges in the graph, and can communicate with oth- """~ . :
o ) . described next. We define the so-callediue function,
ers within rangeR. We define the set of neighbors of agentv o~k
. . . T T . 7: 8 = R, asV7(so) = > p_o7"r(sk,ar), Where~
i at timet, by N;(t) = {j € V|j iswithin distance R of i}. . v " B = X X
: ) . s a discount factor0 < 4 < 1, and o is the policy,
As a consequence of taking certain actions, agents wi

incur cost or reward. To quantify the possible cost/rewar, the sequence of actioniz }i»o, that defines the state

define a function : Sx.A — R. Each edgés;, s;) € A(sy), Sequence sy jy>1 starting fromso. In other words,V7 (so)

with s; € S\ Sp, is associated with a bounded negative's the sum of future rewards over the infinite future starting

Cost —oo < r(sp. (sk,s1)) < 0. The bounded cost can at statesolanc_i foI_Iowmg th*e policycs. Then, theoptimal
. . . . value function is given by V*(sg) = sup, V% (so). Denote
be thought of as traveling time in our routing problem YA oy A\ .
. L . . o byd: Sx A — S, thedtate transition function, which defines
We would like to minimize the traveling time, which is

equivalent to minimizing the total cost sum in the problemthe state that is reached if actiaris taken at state. Now
define theevaluation function, @: S x A — R, as:

that we consider. On the other hand, each e@gg, s;,),

Il. PROBLEM FORMULATION AND NOTATION

IIl. PRELIMINARIES

5¢; € St, satisfies) < r(sm, (Sm,5¢,;)) < +00. s.a) = r(s.a) + ~V*(8(s.a)). 1
The benefit for agentto follow ;; and reach the targgt Qs,a) = r(s,a) + V5 (3(s,0)) @
is given byc(m;;) = i’;}-‘;‘_l y'r(s;,a;), where0 < v <1  The second term is the value discountedbif the optimal

is a discount factor. We consider two cases: undiscountgablicy is pursued beginning at stadés, a).



Combining (1) with the following property (see [10]):  wheree is a small positive constant and(t) andw;(t) are
. the best and second best net values, respectively, awilabl
Vi(s) = max Q(s,a), 0 a . .
aCA(s) genti at timet.
Since agent does not directly communicate with all other
agents at each time step, the real price for agewbuld
Q(s,a) =7r(s,a) +v max Q(i(s,a),a’). be outdated and actually much higher thap(t). However,
o/ €A3(sa)) under the assumption that the multi-agent network is jpintl
This equation is used to define the Q-Learning recursion nnected over time sufficiently often, the correct pricing
update aQ-Table with entriesQ(s,a) as follows: information will be ultimately available to each agent. The
O(s,a) — #(s,a) +~ max O(s',a'). net valqe of objecy fqr agenti is 3;; fpij('t). Each agent
a’€A(s") would like to be assigned to the objectwith maximal net
Here, s’ is the new state that is observed after executin@!Ue:
actiona at s and computing the immediate rewai(s, a). () — .

For the discounted rewards case, it is showd; tr)1at the By = pi(t) = ke{mlﬁ}fm}{ﬁm P (B)}- @)
Q-Table values; that is{Q)(s, a) [ (s,a) € S x A}, converge |t (2) is satisfied for all agents, then the assignment and
to the true optimal value® (s, a) = sup,e a(s) Q(s, @) for  the set of prices are @tuilibrium. However, it can happen
every s anda provided that all state-action pairs are visiteQpat several agents try to be assigned to a smaller number
infinitely often and that' (s, a) = r(s,a), V(s,a) € S x A.  f equally desirable objects without raising the pricesh t

For notational simplicity, in the rest of this paper wegpjects. This will lead to cycles in the algorithm prevegtin

will identify Q(s,a) and 7 (s,a) with Q(s,a) andr(s,a), convergence to an equilibrium. Thus, we will consider an
respectively, since we will just make use of these estimateg|most equilibrium assignment which occurs when

B. The auctl-on algorl.thm . | - By —pi;(t) > max  {Bix — pin(t)} — e,
The auction algorithm aims to solve the classical assign- k€{L,...,m}

ment problem where: agents are matched to objects t0  for all i € {1,...,n} and for a given smalt > 0. This is

maximize the total assignment benefit. Initially, the aition  known ase-Complementary Sackness (¢ — CS) condition.

requires the prices, assignments, if any, and benefits fir ea

agent-object pair. Then, the algorithm regulates a pricing IV. A SSIGNMENT ALGORITHMS

mechanism in which agents can bid for their desired targets. In this section, we present the JOLEAS (Joint Learning
More precisely, in the distributed auction algorithm [15],and Assignment) and AJOLEAS (Alternative Joint Learning

suppose ageritbelieves that matching with objegthas the and Assignment) algorithms.

price p;;(t). This is the price that ageritthinks it needs to _

pay in order to be assigned to object The agent also A JOLEAS Algorithm

receives pricing and bidding information for each objgct = The JOLEAS algorithm is a synchronous algorithm ex-

from its neighborsk € N;(t) at time ¢. Then the agent ecuted by multiple agents, who communicate locally upon

updates its own information for each objegchat every time encountering each other in the environment.

stept as follows: The simplest case is that of agents andm targets

p;j(t) _ max){pij(t),pkj(t)}, with n = m. Through the JOLEAS, every agentstores

one can obtain the following equation:

KEN (¢ information about targetg it finds and how to reach them
b(t) = max {b; ()} in Q-Tables, @Q;;. The target-assignment decision making
" keargmax_ ¢ nr, (1) {pi; (1) P25 (1)} ! is based on a distributed auction process. Thus, when two

where b;; is the largest index bidder for objegt that is agents find each other, they will interghange the infornmatio
known to the agent. If ai(t) is the object that agent about the targets they found, the prices of known targets,
chooses at time, (a;(0) can take a random value) anghighest bidder information, leader information, the lotves
Py () < 1 ’(t) (Z)r b (t) # 1, then agent will u’p- assignment benefit they have and available agents. This
date its agsié(lffi”(rizant m{_(fi?) € argmax; (Bir — allows each agent to recompute the assignment benefits,
4 1,....m 7 . . .
P, ()}, where 3, is the assignment been{eﬁt th}at agent Update the target prices and establish an assignment.
would obtain by associating itself with objekt Then agent Notice that, the real targets can be labeled by using their

i will set itself as the highest index bidder for objegt¢+1), ocations on the 9”9'" The”'h“pon encountering a new real
and increase the price of this Obje@Iéai(tH)(t +1) = target, sayk, agent; will store the temporar{)-Table entries

P () +~i(1). Herex,(t) is given as follows: of the path leading to that target in taldg. This can be
dei(t+1) accomplished by assigning zero rewards to all the edges that

7i(t) 2 vi(t) — w;(t) + e, lead to the targets other than Observe that, if the agent
vi() 2 ma (), has not found any real targets yet, it will remain assigned to
() je{l,fvn}{ﬂj Py (1)} the virtual target.
wi(t) £ max {8 —pi;(t)}; To deal with case ofn < n, a virtual target idea is
e (t+1) ' introduced. In this wayn — m agents will be assigned



to virtual targets and the algorithm will terminate with a « Setlead;(0) =1, Vi € {1,...,n}. Here,lead,(t) is the
“virtual” one-to-one assignment. Each agent will need to  UID of the agent that considers to be the leader at
store price and highest bidder information, updated using The setA;(t) is generated by the leader agérst time
the same procedure used as for real targets. In fact, our t and consists of labels for virtual agents.
algorithm starts by assuming that only virtual targets argxecution for Agent i at time ¢ +1 > 1:
available, and these are r_eplaced when real targets ard.fpun 1 Process messag@s (t), Ly (1), pr;(t), br; (1), Br(t) £
Each agent updates the virtual targets’ assignment behgfits min;cre(y Be; () and leady (), with j € T*(t), re-
making them equal to a large negative multiple of the largest  cejved fromk € A (¢).
absolute value of assignment benefits among its neighbors. pelete from7(¢) and £;(t), the virtual targets which
As a result, the replacement of virtual targets by real osesi  gre not in{7"(t)}xen. 1), and the real agents which
guaranteed, since all the virtual target benefits will evalty are not in{Ly(t)}ken; (1), respectively.
be smaller than any real target benefit. Agents keep track of3 ypdate the virtual target assignment benefits by:
the replacements by updating lists of virtual (respedfivel
real) targets 7 (t) (respectivelyF?(t)). Bia, (t+1) = —Ckg}\%t)ﬂBk(f)L |Bi(t) [},

To deal with the casen > n, a leader agent generates . l ,
virtual m — n agents and places bids on their behalf. These With @ constant’' > 1, for all d,. € Z;(t).
virtual agents are generated as extra targets are found? if leadi(t) =1, then: _ _
Similarly as before, the leader will adjust the virtual agen ~ ° Update virtual agent assignment benefits by:
assignment benefits by making them equal to a large negative 3, . (¢t + 1) = 8,4, (t + 1) = —C' max {|By(t)|,|B;(*)|},
multiple of the largest absolute value of assignment benefit kEN:(t)
among its neighbors. In this way, we can guarantee the for all ¥, € Ai(t), j € Fi(t) andd, € Tj(t).
algorithm will find a suboptimal assignment that favors the 6 if |Fi()| — [£;(t)| — |As(t)| > 0, then:

matching of real agents with real targets and the CS 7 Generate new virtual agent®; < A (t + 1),
condition will be satisfied. with By, i(t + 1) = Bo,a.(t + 1) =
Finally, to make the algorithm robust with respect to the  —C'maxyep, ) {|Bi(t)|, |Bi(t)[}, for all 1 €
leader, a leader-election routine is introduced to checknfr (A + 1, | F @) — L))}, 7 € Fit)
time to time that the leader is active. andd, € T}(t), and carry out the bidding process on
In what follows, we describe the algorithm in a more their behalf.
formal way by making use of a pseudocode language. 8 end if.
Algorithm Requirements: 9 end if.
1 Each agent should know the total number of agents int0 Choose: € A(s) and move tos’ = §(s, a).
the group; i.e.p. 11 if the real target: is newly found,.then: '
2 Agents possess a unique identifiéfD € {1,...,n}, 12 updateT'(¢) to 7*(¢ + 1) by deleting the virtual target
which they know. dy from 7;(t) and adding the real target 18" (¢ + 1).

3 Agents can sense the edges adjacent to the state théy re.setr_*(s,a) = 01if 5" € Sri(r), whereSzi ) := U s,
are located at. They can communicate with others in ~ With j € F'(¢).
N;(t), and can locally move to adjacent graph states. 14 Recalculate the);(s, a)(t) table as

4 We assume there is a global time schedule that syn- Qi(s,a)(t) = 7(s,a) +7 max Qi(s,d)®). (3)
chronizes the motion, communication and actions of the a’€A(s')
agents at every timec {0,1,2,...}. and store it inQqx (s, a)(t) = Qi(s, a)(?).
Initialization: 15 Calculate the assignment benefit:
« Introducen virtual targets labeled byl; € 7(0) = Bie(t) = max Qik(sio,a)(t). 4)
{dy,...,d,}. Here, Tj(t) is a set of virtual targets a€A(sio)

that agenti updates at every. Setf;q, (0) to arbitrary 16 else:

negative number for all € {1,...,n} andd; € 7;(0). 17 for each target € F'(t), resetr(s,a) = 0 if s’ €
The labels of the virtual targets should be known to all Sz \ {s4, }.

agents. Moreover, denote ¥’ (¢) the set of the real 18 Recalculate thé);(s,a)(t) table as in (3), and store it

targets found by agentby the timet. We also define the in Qi(s,a)(t) = Qi(s,a)(t).
list of targets for each agents7(¢) := 7] (t)UF'(t). 19 Calculate the assignment benefit:
o Introduce a list£;(0) = {1,...,n} for all i € B
{1,...,n}. Here,L;(t) is the list of the available agents Bult) = e ino) Qu(sio, a)(?).
known to each agentat timet. 20 end if.
o Arbitrarily assign each agent to one of the virtual 21 if ay(t) ¢ T'(t), then:
targets; e.g.¢v;(0) = d; for all i € {1,...,n}. 22 ay(t) = 0L,

« Set the temporar@-Table for each agenty); (s, a)(0),
equal to zero. 1in other words, remain unassigned



23 end if. the e — CS condition can be satisfied. Another consequence
24 Update the prices of all targets € 7°(t) and the of the time-varying bids is that, in addition to checking

corresponding highest bidders by: for the highest-bidder and price increase of the assigned
, o target, every agent should also check whether the current
pij(t) := kénj\%ﬁ){pij(t)vpkj@)}v assignment still satisfies the— CS condition. Moreover,
b;j(t) — max {bi; (1)} the real_ agents that become unassigned dut_e to the deletion
k€argmax_ ¢ 7, (1) {Pij (t),p25 (£)} of the virtual targets should also perform assignment wgpdat

given at step 26. Furthermore, the JOLEAS algorithm can
deal with the problem of. # m. All in all, our algorithm
extends the distributed auction algorithm presented i} [15

25 if ai(t) = 0, OF Pia, 1) (t) < Djy, (1) (£), OV ], 1y (2) #
or agent; does not satisfy the — CS condition:

Bij(t) — pij(t) > max {Biu(t) — pix(t)} — €, in that we make it robust to agent failure, and capable of
RETH(?) dealing with unknown environments. .
then: As it will be clear in the next section, we need the fol-
26 Update the assignment by lowing conditions to guarantee that the algorithm ternenat
, with a near optimal assignment:
ai(t +1) € argmaxye: ) {Bin(t) — piy(8)}- Assumption 1: The agents must communicate with each
27 Setbiy,141)(t + 1) := i and raise the price for target Other over infinitely many time indices . .
it + 1) 10 pia, 1) (t + 1) = Py on)(®) + %(t), Assumption 2: All agents will visit each state-action pair
where infinitely often.
Remark 2: Notice that, due to the introduction of the
i(t) £ vi(t) — wi(t) + e, (5) virtual targets and agents, we can guarantee that thers exis
vi(t) & ‘max {8 (t) — p;j 1)}, (6) at least one feasible (one-to-one) assignment. °
JET(1) Observe that, due to the nature of the Q-Learning iteration,
wi(t) & ‘GT,v(t?\l{aX(tﬁ»l)}{ﬁij(t) —pi;(t)}.  (7) the JOLEAS algorithm is greedy; i.e. only the actions that
JET! ;i

resulted in maximizingy(s, a) values in early stages will be
v; andw; are the best and the second best net valugavored. Therefore, it may not be possible to satisfy Assump
available to agent, respectively, and > ¢; > 0 is a tion 2. This can be resolved by executing a random action

minimum bid increment. with probability 4 and executing the greedy action with
28 elseq;(t + 1) := ay(t). probability 1 — i, wherey is a small positive parameter [6].
29 end if. . .
30 if received the information that the agent withD = b B. Alternative JOLEAS (AJOLEAS) Algorithm
is no longer activethen: As an alternative algorithm we can make the following
31 Update the list of the available agents by: changes to the JOLEAS algorithm. Steps 6-8 can be replaced
by the following steps:
Li(t+1) = Li(t)\{b}. 1 [Fi(t)] > 0 and |A; ()] < | Fi(t)| < |L:(t)], then:
32 end if. 2 Generate virtual agents € A;(t+1) with Sy, ; (t4+1) =
33 if received the information that the leader (suppose with ~ Bv,d, (t+1) = —C maxyen; 1) {| B (t)|, [Bi(t)[}, for all
UID = a) is no longer activethen: e {JA)]+ 1, |7 @)} 7 € F' (1), dr € Ty(1),
34 Update the leader information by: and carry out the following bidding process on their
behalf.
lead;(t) = a + 1. 3 else if | Fi(t)| — |£s(t)| — |As(t)] > 0, then:
35 end if. 4 Generate virtual agents € A,(t+1) with 8y, ;(t+1) =
36 Update the leader information by: Boa, (t +1) = —Cmaxpen;»{1Br(t)], [Bi(1)]}, for
all 7 e {|A@)| +1,...,|F @) — |L:(t)]}, 5 € Fit),
lead;(t+1) = max leady(t). d, € T}(t), and carry out the following bidding process
ke{i}UN;(t) -
on their behalf.
37 if lead;(t + 1) = i, then: 5 end if.
38 Announce itself as the leader. In this way, the leader generates virtual agents as soon
39 end if. as it finds a new real target. Therefore, there is no need for

40 Communicatd *(t+1), L£;(t+1), pi;(t+1), bi;(t+1),  the deletion of the virtual targets at the next steps of the
B;(t) andlead; (¢t +1), with j € T*(t+1), to all agents  JOLEAS algorithm. Using this algorithm, upon termination
k such thatk € N;(t). the number of both targets and agents, as well as the number
Remark 1: The main difference between the auction alof assignments will ben + mingcsy . ny ¢ {[Lr ()]}

gorithm part in the description above (Steps 24-29) and Let ¢g; = max{m,n}, ¢ = m +n andq = min{m, n}.

the distributed auction algorithm presented in [15] is th@hen, we have:

following. Here, we need to introduee# ¢, to deal with the Proposition 3: (Convergence Results for the JOLEAS al-

time-varying3;;(t) due to the learning process. In this waygorithm). Suppose that Assumptions 1 and 2 hold. Then there



exists a finite timeé” such thaty; (t) = @; andfi,, (t) = Bia, €executed at statgy,; will lead to states;. Suppose also
forall i € {1,...,q:} and for allt > T. Furthermore, thatQ(sy,ax)(t;) = max, ca(s,) Q(sk,a’)(ty). Then:
the final assignment obtained from the Joint Learning and

Assignment algorithm is Q(Ska1,any1)(ty)
(i) within g1, of the optimal assignment; i.el* —qie; < = 7(Skr1,ak41) + max  Q(sk,a’)(ty)
¢ 7 * ; . a’€A(sk)
i1 Bia; < A*, for undiscounted rewards case, - . o
(ii) within gy, of the optimal assignment; i.el* — gy, < = 1(Skt1s A1) + Q7 (5w ak) = Q7 (Sk+1, ak1) ()
9 Bia; < A*, for discounted rewards case provided = €(Sk41, ar+1)(tp) = 0.
thates > €.

Proposition 4: (Convergence Results for the AJOLEAS al- Thus, by induction on(s, ay) after finite number of iter-
gorithm). Suppose that Assumptions 1 and 2 hold. Then the@ions, e(sy, ax)(t) = 0 for all k andvt > T, whereT}
exists a finite ime” such thaty; (t) = a; andBia, (t) = Fia, is some finite time. Sincg;;(¢) is calculated by (4), after
for all i € {1,...,¢2} and for allt > T. Furthermore, the flnite number of iterations it will converge t@;;, where
final assignment obtained from the Alternative Joint Leagni 5ij = MaXae A(s;0) @15 (si0, @), for all i and j.
and Assignment algorithm is Now suppose thatn # n (virtual targets and/or agents).
Convergence of the virtual agents’ and virtual targets’-ben
efits also holds since 1) they are set to be proportional to
some real agent benefits and 2) these values will reach every

gent in the network because of Assumption 1. Also notice
hat, all the benefits associated with the virtual entitié$ w
converge to the same value, say [ ]

Claim 1.2: The JOLEAS algorithm will terminate with a
feasible assignment.

We include here the convergence proofs of Proposition 3  Proof: The proof for the (centralized) auction algorithm

(i) within go¢€; of the optimal assignment; i.el* — gae; <
?_| Bia, < A*, for undiscounted rewards case;
(i) within g2¢-2 of the optimal assignment; i.el* —gqoes <
1| Bia;, < A*, for discounted rewards case provide
that €2 > €71.

V. CONVERGENCE ANALYSIS

and 4 of the previous section. in [5], can be used in this context. We reproduce it here
for the sake of completeness. Suppose that the algorithm
A. Undiscounted Rewards Case does not terminate. Then, there are targets (resp. agbats) t

i i ) receive (resp. make) an infinite number of bids. Define by
In this subsection, we present the claims and correspong- ~ T (resp.V> C V) the set of the targets that receive

ing proofs for the undiscounted rewards case. In order Y?esp. that make) an infinite number of bids. Since each bid

prove the convergence of the entire algorithm, first we negfl.aases the price of a target by, the prices of targets
to show the convergence of the assignment benefits, since. o o0 increased to infinity. It is clear fron?7) that

due to the learning action they are changing with time. W o oot net value available to agent V>°: i.e., v;, will
will follow the ideas of 2] to prove some of the claims.  yecrease to negative infinity o

_ Claim 1'_1:, There exists a finite timé, such thapd,; (t) = For thee — CS condition to hold it is obvious that target
i for all _Z’J €{1,... ’q.l} andve > Ty, for SQmeﬁij €R. j € T°° can only be assigned to agent V>°. However, at
Proof. Suppose first thatn = n. Define the eror joast gne agent iv> will be unassigned at the beginning
of Q(S’a*)(t) update bye(s, a)(t) = Q"(s,a) — Q(s,a)(t),  of each auction iteration after finite time, since the aloni
whereQ" (s, a) is the true value associated witk, a), and  yqeq not terminate. Thus, since the number of agentsin
Q(s,a)(?) is the Q-Table updated at time by any agent i he more than the number of targets #¥°, there does
usm_g.t_he. Q-Learning recurs.|on. For simplicity, assum“,‘ th€?1ot exist a feasible assignment. This contradicts therstte
we initialize all Q-Table entries to zero. We also conS|derin Remark 2. Thus, auction iteration part of the JOLEAS
that Q;(s;,,a)(t) = 0, Ya € A(s;;) and vt > 0, sinces;;  gigorithm must terminate in finite time. Combining this fésu

are absprbing states fo_r gll _ ) _with Claim 1.1, we conclude that the JOLEAS algorithm will
We will make use of induction over the state-action pairgsrminate with a feasible assignment. =

that lead to the target to prove the claim. First, suppose
actiona; = a; executed at state; = s; leads to state,.
Then, we obtain for all time > 0:

thﬁote that, since the algorithm terminates in finite time, and
communication with connected graphs is enabled, each agent
belief of the target prices will eventually converge to the

. / same fixed values; i.ep;;(t) — p; foralli,7 € {1,...,q1

Qs1,01)(t) = 7(51, 1) +a/g4?ij>Q(st”a )(®) forall t > T, > T, fojr(s)ome JtimeTz < —l—oi. Now w}e

prove that under Claim 1.1, after tin¥§ the algorithm will

eventually converge to a feasible assignment.

Now by induction, suppose(sy,ar)(t,) = 0 for some Claim 1.3: There exists a finite timg" > T; such that

finite time ¢,. In particular, this implies tha@(sx, ax)(t) = «ai(t) =a; forallie {1,...,¢:} andt > T.

Q*(sk,ax) for all t > t,. By Assumption 2 we know that Proof: Suppose that target = j is assigned to agent

there exists a time, > ¢, such that at tim&;, actiona,; ¢ after the assignment phase at timg, = = > 11, i.e.,

=r(sy,a1) =Q"(s1,a1) = e(s1,a1)(t)=0.



a;(7) = j*. Then: Pa, = maxjeq1,..q1{0i;—p;}—e1. Using this together with
the previous relationships we obtain:
P (T +1) = Py (1) + 0i(7) —wi(7) + &1 )
1

= Bige (1) —wil(m) + 1. ® D <Y (pa+ _max {fi—ps})
. EREERLA
Using this relationship, Claim 1.1 and (7), we obtain: ql’zl
Bige (7 + 1) = pige (7 + 1) = By (7) = pige (T + 1) <) Batma<dtae.
= max{0;; (1) — pi; (1)} — 1. . =
3# Since A < D, we obtain:
Now considering the fact that the prices are nondecreasing, @
we get the following relationship: A—qea < Z@a, < A.
Bije (T +1) = pij- (7 + 1) o | o
> max {Bu(r+1) —pu(r +1)} —e Now recall that the benefits of all the virtual entities will
= he{loay P ik 1' have the same value}, eventually. Subtractindg; — ¢)f3

Thus, we have shown that- CS condition is satisfied with from the above inequality we get:

e = ¢; for agent; and targey; for all ¢ > 7;;,. Consequently, i
there exists finite time* = max; 7;;, such that all agent- —qier = Z
target pairs will satisfye — CS conditionVt > 7*. i=1
Moreover, it is clear from the algorithm that if all the Thus, the total assignment benefit obtained upon termi-
agents and targets satisfy— CS conditionvVt > 7*, then nation of the algorithm is withing;e; of the optimal one.
agents have no incentive to bid for other targets different |
from the ones they are assigned to. Thus, choo%ing 7* Remark 5: Notice that in the casesn < n (virtual
completes the proof. m targets) (respn < m (virtual agents)) the virtual target-
Now we present the result on the optimality of the finareal agent benefits are much lower than the real target-real
assignment; i.e., the assignment obtained at fime agent benefits (resp. real target-virtual agent benefit bveill
Claim 1.4: The final total benefit of the assignment ob-ower than the real target-real agent benefit) because of the
tained from the JOLEAS algorithm is withip,e; of the constraints imposed on them. In this way, the algorithm will

optimal one. favor real target/real agent matchings. At terminationetim
Proof: Recall that the final assignment to agenis any real agent or target assigned to a virtual entity will be
denoted bya; and §;; denotes the assignment benefit ofactually unassigned. °

i if it was matched withj at the termination time. The Combining proofs for Claims 1.1- 1.4, we obtain the proof
total assignment benefit (including the benefits of the wirtu of Proposition 3 for the undiscounted rewards case. The

entities) is given as: proof of Proposition 4 for the undiscounted rewards case is
« « « @« analogous. The only modification to the claims is to change
Zﬁm- = Z@a. + ij — ij q1 to ¢o, since the total number of final assignments are

different in two algorithms. As a result, upon termination
of the AJOLEAS algorithm, the total assignment benefit is

< ij ke max {Bir — pr}- (9) within g2¢; of the optimal one.

B. Discounted Rewards

Recall that the opt|mal assignment benefit is defined by: Here we include the proofs for discounted rewards cases.

I Claim 2.1: Let A to be any positive real number. Then
= (%)‘&%ijecmnz Bicvi there exists a timel'a < +oo such that|s;;(7 + 1) —

i=1 Bi(r)| < Aforalli,je{l,...,q1} andVr > Ta.
wherei € V anda; € 7. Now define the optimal assignment Proof: The convergence of Q-Learning algorithm for
benefit which includes the benefits of the virtual entities: the discounted rewards case is guaranteed under Assump-

*

} o tion 2 and can be found as the proof of Theorem 13.1
A= max Y B, in [10]. Consequently, SiNCE;; = max,ec 4(s,0) @} (Si0, @),
(@) [ (o) bijection S the proof of the claim is trivial. [ ]
Also define the optimal dual cost (see [2]): Remark 6: Notice that Claim 1.1 is satisfied for virtual
agents, since their assignment benefits will converge to the
~ fixed value given that Assumption 1 holds. °
D2 . . : . .
i 1qu{2p, * Z o {ﬁ” pit} Claim 2.2: The JOLEAS algorithm will terminate with a
B feasible assignment.
Then, from equation (9) one can see that D. From the Proof: The proof follows along the same lines of the

e—CS condition and the result of Claim 1.3, we ha¥g,, —  proof of Claim 1.2. [ |



Under Claim 2.1 and as proven in the following, the algo- (i) e < 1/¢; for the discounted rewards case of the

rithm will converge to a feasible assignment in finite time. JOLEAS algorithm,
Claim 2.3: There exists a finite timg > T such that (i) e, < 1/g» for the undiscounted rewards case of the
a;(t)=a; forallie {1,...,q1} andVt > T. AJOLEAS algorithm,

Proof: Suppose thaty;(7) = j* after the assignment (iv) e < 1/¢» for the discounted rewards case of the
phase at time- > TA. Then using (8) together with (7) we AJOLEAS algorithm,

obtain: then the agent-target assignment upon termination of the
Bije (T +1) = pije (T + 1) algorithm is optimal. o
= Bij= (1) — pij (T + 1) + (Bij= (T + 1) — Bij= (1)) VI. CONCLUSION
= r&ax{ﬂij(T) —pij(T)} — €1 4+ (Bij= (T + 1) — Bij= (7). In this paper, we considered agent-target assignment in an
p

_ . _ unknown environment which is represented as an undirected
By Claim 2.1, and because prices are nondecreasing:  graph and the locations of the targets are unknown to the

() = pii(T) > Bii(T 4+ 1) — A — pis( + 1), agents. Furthermore, the number of agents and targets can be
_ ﬂ.]( ) pis(7) = Big ) Pis ) arbitrary. To deal with this challenge we proposed the Joint
which implies Learning and Assignment algorithm, as well as its alteveati
() — pis > B, (7 4+ 1) — pi; 1) — A, version, and analyzed their convergence properties. The
m%}*({ﬁj(ﬂ pi(r)} 2 B(r 1) = pis(7 + 1) algorithm was designed as an integration of the Q-Learning

forall j € {1,...,q:}\ {j*}. Putting this together with the @lgorithm and the distributed auction algorithm presented
above equation fop;;- (7 + 1) — p;;- (7 + 1), we obtain: in [15]. The algorithms can also accommodate to the addition

B ) ( ) and deletion of targets and agents including the leader.
ij* T+1 — Dij~ T+1)>
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