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Abstract

We consider a multi-agent optimization problem where agesunbject to local, intermittent inter-
actions aim to minimize a sum of local objective function®jeat to a global inequality constraint
and a global state constraint set. In contrast to previoukwwe do not require that the objective,
constraint functions, and state constraint sets to be ormeorder to deal with time-varying network
topologies satisfying a standard connectivity assumptias resort to consensus algorithm techniques
and the Lagrangian duality method. We slightly relax theunemment of exact consensus, and propose
a distributed approximate dual subgradient algorithm tabém agents to asymptotically converge to a
pair of primal-dual solutions to an approximate problemgliarantee convergence, we assume that the
Slater’s condition is satisfied and the optimal solutiondfethe dual limit is singleton. We implement

our algorithm over a source localization problem and complae performance with existing algorithms.

I. INTRODUCTION

Recent advances in computation, communication, sensingaetuétion have stimulated an
intensive research in networked multi-agent systems. énsystems and control community,
this has been translated into how to solve global contrdbleras, expressed by global objective
functions, by means of local agent actions. More specificatioblems considered include multi-
agent consensus or agreement [6], [15], [17], [19], [293] [2overage control [7], [10], formation

control [11], [31] and sensor fusion [34].
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The seminal work [3] provides a framework to tackle optimgia global objective function
among different processors where each processor knowddhal @bjective function. In multi-
agent environments, a problem of focus is to minimize a suhoad! objective functions by a
group of agents, where each function depends on a commoalglebision vector and is only
known to a specific agent. This problem is motivated by otivedsstributed estimation [23] [33],
distributed source localization [29], and network utilityaximization [18]. More recently, con-
sensus techniques have been proposed to address the isswéslong topologies, asynchronous
computation and coupling in objective functions; see fatance [16], [21], [22], [30], [36].
More specifically, the paper [21] presents the first analgben algorithm that combines average
consensus schemes with subgradient methods. Using poojgot the algorithm of [21], the
authors in [22] further address a more general scenariotttkats local state constraint sets
into account. Further, in [36] we develop two distributednal-dual subgradient algorithms,
which are based on saddle-point theorems, to analyze a neolexa situation that incorporates
global inequality and equality constraints. The aforenoer®d algorithms are extensions of
classic (primal or primal-dual) subgradient methods wigeheralize gradient-based methods to
minimize non-smooth functions. This requires the optirm@aproblems under consideration to
be convex in order to determine a global optimum.

The focus of the current paper is to relax the convexity agsiam in [36]. In order to
deal with all aspects of our multi-agent setting, our methddgrates Lagrangian dualization,
subgradient schemes, and average consensus algorithstisbided function computation by a
group of anonymous agents interacting intermittently cambne via agreement algorithms [7].
However, agreement algorithms are essentially convexsande are led to the investigation of
nonconvex optimization solutions via dualization. Thehteiques of dualization and subgradient
schemes have been popular and efficient approaches to smivednvex programs (e.g., in [4],
[5]) and nonconvex programs (e.g., in [8], [9]).

Statement of Contributiongdere, we investigate a multi-agent optimization problemereh
agents desire to agree upon a global decision vector mimgithe sum of local objective
functions in the presence of a global inequality constraimt a global state constraint set. Agent
interactions are changing with time. The objective, caistrfunctions, as well as the state-
constraint set, can be nonconvex. To deal with both noncaiyvand time-varying interactions,

we first define an approximated problem where the exact censeas slightly relaxed. We then
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propose a distributed dual subgradient algorithm to sdlwehere the update rule for local dual
estimates combines a dual subgradient scheme with avemggemrsus algorithms, and local
primal estimates are generated from local dual optimalt®wisets. This algorithm is shown to
asymptotically converge to a pair of primal-dual solutiddshe approximate problem under the
following assumptions: firstly, the Slater's condition @tisfied; secondly, the optimal solution
set of the dual limit is singleton; thirdly, dynamically afging network topologies satisfy some
standard connectivity condition.

A conference version of this manuscript was published in].[B&ain differences are the
following: (i) by assuming that the optimal solution set detdual limit is a singleton, and
changing the update rule in the dual estimates, we are ablietermine a global solution in
contrast to an approximate solution in [35]; (ii) we presardgimple criterion to check the new
sufficient condition for nonconvex quadratic programmifiig); we present new simulation results
of our algorithm on a source localization example and compar performance with existing

algorithms.

Il. PROBLEM FORMULATION AND PRELIMINARIES

Consider a networked multi-agent system where agents aetethbyi € V := {1,..., N}.
The multi-agent system operates in a synchronous way atitistantsk € N U {0}, and its
topology will be represented by a directed weighted grgph) = (V, E(k), A(k)), for k& > 0.
Here, A(k) := [a}(k)] € R"*" is the adjacency matrix, where the scalafk) > 0 is the weight
assigned to the edgg,:) pointing from agentj to agenti, and E(k) C V x V' \ diag(V) is
the set of edges with non-zero weights. The set of in-neighbbagent; at time % is denoted
by Ni(k) ={j € V| (j,i) € E(k) andj # i}. Similarly, we define the set of out-neighbors of
agenti at timek asN™ (k) ={j € V| (i,5) € E(k) andj # i}. We here make the following
assumptions on network communication graphs:

Assumption 2.1 (Non-degeneracy)There exists a constant > 0 such thata!(k) > «, and
a’(k), for i # j, satisfiesa)(k) € {0} U [a, 1], for all k> 0.

Assumption 2.2 (Balanced Communication):*It holds that}~ ., a’(k) = 1 for all i € V
andk >0,and> . . a'(k)=1forall j € V andk > 0.

eV J

It is also referred to as double stochasticity of the adjacency matfkx).
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Assumption 2.3 (Periodical Strong Connectivity): There is a positive intege8 such that,
for all k, > 0, the directed graphiV, | J.—) E(k, + k)) is strongly connected.

The above network model is standard to characterize a nkeddamulti-agent system, and
has been widely used in the analysis of average consensmstlahgs; e.g., see [25], [26], and
distributed optimization in [22], [36]. Recently, an algbm is given in [13] which allows agents
to construct a balanced graph out of a non-balanced one wed&in assumptions.

The objective of the agents is to cooperatively solve thieafohg primal problem pP):

mian,—(z% st. g(z) <0, z€X, (1)

=Y
where z € R" is the global decision vector. The functiofy : R” — R is only known to
agenti, continuous, and referred to as the objective function @nag The setX C R”, the
state constraint set, is compact. The functionR" — R™ are continuous, and the inequality
g(z) < 0 is understood component-wise; i.g:«(z) < 0, for all £ € {1,...,m}, and represents a
global inequality constraint. We will denot&z) := > .., fi(z) andY := {z € R" | g(2) < 0}.
We will assume that the set of feasible points is non-empgy, X NY # (). SinceX is compact
andY is closed, then we can deduce thath Y is compact. The continuity of follows from
that of f;. In this way, the optimal valug* of the problem P) is finite and X*, the set of
primal optimal points, is non-empty. Throughout this papee suppose the following Slater’s
condition holds:

Assumption 2.4 (Slater's Condition): There exists a vectar € X such thaty(z) < 0. Such
z is referred to as a Slater vector of the probleR).(

Remark 2.1: All the agents can agree upon a common Slater vectbrough a maximum-
consensus scheme. This can be easily implemented as partimtialization step, and thus the
assumption that the Slater vector is known to all agents doédimit the applicability of our
algorithm. Specifically, the maximum-consensus algoriterdescribed as follows:

Initially, each agent chooses a Slater vectoy(0) € X such thaty(z;(0)) < 0. At every time
k > 0, each agent updates its estimates by using the rulezgk + 1) = max;cy;myug 25(k),
where we use the following relation for vectors: fah € R", a < b if and only if there is some
¢e{l,...,n—1} such thata, = b, for all kK < ¢ anda, < by.

The periodical strong connectivity assumption 2.3 enstirasafter at most/N — 1) B steps,

all the agents reach the consensus; k%) = max;cy 2,;(0) for all k& > (N — 1)B. In the
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remainder of this paper, we assume that the Slater vect®known to all the agents. °

In [36], in order to solve the convex case of the problém (.e.; f; andg are convex functions
and X is a convex set), we propose two distributed primal-dualgsadhient algorithms where
primal (resp. dual) estimates move along subgradientp.(segergradients) and are projected
onto convex sets. The absence of convexity impedes the ufieedadlgorithms in [36] since,
on the one hand, (primal) gradient-based algorithms ardye@aapped in local minima.; on
the other hand, projection maps may not be well-defined wipgimél) state constraint sets
are nonconvex. In the sequel, we will employ Lagrangian idatibn, subgradient methods and
average consensus schemes to design a distributed afgaviiich is able to find an approximate
solution to the problemZP).

Towards this end, we construct a directed cyclic grégh:= (V, E¢,c) Where|Eqy| = N. We
assume that each agent has a unique in-neighbor (and gitbog). The out-neighbor (resp.
in-neighbor) of agent is denoted byip (resp.iy). With the graphGe., we will study the

following approximate problem of problenPy:

st og(x) <0, —zi4x, —A<L0, x—x;, —A<0, z,€X, VieV, (2)

where A := §1, with 4 a small positive scalar, antl is the column vector of. ones. The
problem (2) provides an approximation of the probleR),(and will be referred to as problem
(Pa). In particular, the approximate problem (2) reduces topheblem () whené = 0. Its
optimal value and the set of optimal solutions will be dedoby p} and X3, respectively.
Similarly to the problem P), p4 is finite and X% # (.

Remark 2.2: The cyclic graphfe, can be replaced by any strongly connected giGpGiven
g, each agentis endowed with two inequality constraints—z; —A < 0 and—xz;+xz;—A <0,
for each out-neighboy. This set of inequalities implies that any feasible solutio= (z;);cy of
problem (PA) satisfies the approximate consensus; irew; jev ||x; —z;|| < Nd. For notational
simplicity, we will use the cyclic graplgc,c, which has a minimum number of constraints, as

the initial graph. °
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A. Dual problems

Before introducing dual problems, let us denotedy.= RZ; x R”O X R>0, == Rg‘év X
Ry x RLY, & = (i, A\, w) € =, & == (u, A\, w) € Z andz := (xi) € X". The dual problem
(Da) associated with{ PA) is given by

mex@(m/\,w), st. p, A w >0, 3)
AW

where i := (p;) € R™V, X = (\;) € R™Y andw := (w;) € R*M. Here, the dual function

Q: = — Ris given asQ(¢) = Q(pu, A\, w) = inf,exn L(x, u, A\, w), whereL : R"™N x = — R

is the Lagrangian function

L(x,8) =Lz, \w) = (filas) + (a, g(x:)) + Moy =2 + 21, — A) + (wy, 25 — 27, — A)).
eV

We denote the dual optimal value of the problema( by d, and the set of dual optimal

solutions byD’. We endow each agentwith the local Lagrangian functioff; : R” x = — R

and the local dual functio®); : = — R defined by
Li(wi, &) = filws) + (i, g(20)) + (=i + Ny, ) + (Wi — wig, 23) — (Niy A) — (wi, A),
In the approximate problem™,), the introduction of-A < z; —z;, < A, i € V, renders

the f; andg separable. As a result, the global dual functi@rtan be decomposed into a simple

sum of the local dual functiong,. More precisely, the following holds:

Q(¢) = inf (filws) + (ui g(@a)) + (i, =i + 23, — A) + (W, 25 — 23, — A)).
eV

Notice that in the sum o} ., (\;, —z; + z;, — A), eachz; for anyi € V appears in two
terms: one is\;, —z; +z;,, — A), and the other ig)\;,, —x;, +x; — A). With this observation,
we regroup the terms in the summation in termscgfand have the following:

Q(§) = inf (fims) + (i, 9(@2)) 4+ (=i + Nig, 23) + (wi — wiy, 25) — (N, A) = (wi, A))

exnN
* eV

= legf Filws) + (i () + (=Xi + Xy, i) + (wi — wiy, 25) — (A, A) — (wi, A))

eV

= Qil&). (4)
eV
It is worth mentioning thab _,_,, Q;(&) is not separable sinc®; depends upon neighbor’s

multipliers \;, andw;,, .
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B. Dual solution sets

The Slater’s condition ensures the boundedness of duai@olsets for convex optimization;
e.g., [14], [20]. We will shortly see that the Slater’s cdrah plays the same role in nonconvex

optimization. To achieve this, we define the function: RZ, x RY, x RY, — R as follows:

Qz‘(ﬂz‘a iy W) = xie)ggifDGX (fz(xz) + (i, g(20)) + (Ni, =23 + 25, — A) + (wy, 5 — x5, — A>)
Let z be a Slater vector for problenPj. Thenz = (z;) € X" with z; = z is a Slater vector
of the problem £4). Similarly to (3) and (4) in [36], which make use of Lemma 32the
same paper, we have that for apy \;, w; > 0, it holds that
fi(2) — Qilpi, i, w;)
B(z)

) (5)

max [|£]| < N max
¢eDy ieV

.....

following upper bound oD} :

fi(2) — Q:(0,0,0)

<
nax ¢l = N max 5 : (6)
where;(0,0,0) = inf,.cx fi(z;) and it can be computed locally. We denote
(2) — Q:(0,0,0
%@::f() Q4(0,0,0) )

B(2)
Since f; and g are continuous and’ is compact, it is known tha®); is continuous; e.g., see
Theorem 1.4.16 in [2]. SimilarlyQ) is continuous. Sincé’, is also bounded, then we have that

D # 0.

Remark 2.3: The requirement of exact agreement om the problemP is slightly relaxed
in the problemP, by introducing a small positive scalar In this way, on the one hand, the
global dual function? is a sum of the local dual functior@;, as in (4); on the other hand}}
is non-empty and uniformly bounded. These two properti@y phportant roles in the devise

of our subsequent algorithm. °

C. Other notation

Define the set-valued map; : =" — 2% asQ;(&;) := argmin, .y L;(z;,&); i.e., giveng;, the

set;(&;) is the collection of solutions to the following local optimaition problem:

r,€X
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Here, Q; is referred to as thenarginal mapof agent:. Since X is compact andf;, g are
continuous, therf);(&;) # 0 in (8) for any¢; € Z'. In the algorithm we will develop in next
section, each agent is required to obtane(globally) optimal solution and the optimal value the
local optimization problem (8) at each iterate. We assuraettiis can be easily solved, and this
is the case for problems of = 1, or f; and g being smooth (the extremum candidates are the
critical points of the objective function and isolated cens of the boundaries of the constraint
regions) or having some specific structure which allows the af global optimization methods
such as branch and bound algorithms.

In the spaceR”, we define the distance between a pointe R™ to a setA C R" as
dist(z, A) := infyec4 ||z — y|, and the Hausdorff distance between two sé&tf3 C R" as
dist(A, B) := max{sup,, dist(z, B),sup,.p dist(A,y)}. We denote byBy,(A,r) := {u €
U | dist(u, A) < r} and By (A, 7) := {U € 24 | dist(U, A) < r} whereld C R™.

I11. DISTRIBUTED APPROXIMATE DUAL SUBGRADIENT ALGORITHM

In this section, we devise a distributed approximate dubgsadient algorithm which aims to
find a pair of primal-dual solutions to the approximate peobl(P,). Its convergence properties
are also summarized.

For each agent, let z;(k) € R™ be the estimate of the primal solution to the approximate
problem (») at time k > 0, (k) € RZ, be the estimate of the multiplier on the inequality
constraintg(z;) < 0, Xi(k) € R (resp.w'(k) € R%{)? be the estimate of the multiplier
associated with the collection of the local inequality domists —z; + z;, — A < 0 (resp.
zj—x;,—A <0), forall j € V. We let&;(k) := (ui(k)", N(k)",w'(k)")T € =/, fori € V to be
the collection of dual estimates of agentAnd denotev;(k) := (u;(k)T, vi (k)T v, (k)T € =2
where vi (k) := >_. .y aj(k)N (k) € RLY and vy, (k) := 3,y aj(k)w! (k) € RLY are convex
combinations of dual estimates of agérdnd its neighbors at timé.

At time k, we associate each agend supergradient vectdp;(k) defined as
Di(k) == (D;,(k)", Dy (k)", D;,(k)")", whereD;, (k) := g(x;(k)) € R™, Dj(k) has components
Di(k); = —A—xi(k) € R™, Di(k)i, := x;(k) € R*, andDi(k); =0 € R™ for j € V\ {4, ir},
while the components oD! (k) are given by:D! (k); := —A + z;(k) € R", D (k);, =

2We will use the superscriptto indicate that\’(k) andw’ (k) are estimates of some global variables.
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—z;(k) € R*, andDi (k); = 0 € R, for j € V' \ {4,iy}. For each agent, we define the set
M; = {& € Z' | ||&]| < v+ 0;} for somed; > 0 wherey := N max;ey v;(Z). Let Py, to be
the projection onto the set/;. It is easy to check that/; is closed and convex, and thus the
projection mapP,,, is well-defined.

The Distributed Approximate Dual Subgradie(@ADS, for short) Algorithm is described in
Table 1.

Algorithm 1 The Distributed Approximate Dual Subgradient Algorithm
Initialization: Initially, all the agents agree upon somie> 0 in the approximate problem

(Pa). Each agenti chooses a common Slater vectar computes;(z) and obtainsy =
N max;cy 7v;(2) through a max-consensus algorithm whergz) is given in (7). After that,
each agent chooses initial states;(0) € X and¢;(0) € ='.
Iteration: At each timek, each agent executes the following steps:
1: For eachk > 1, given v;(k), solve the local optimization problem (8), obtain a solatio
z;(k) € Q;(v;(k)) and the dual optimal valu€;(v;(k)).

2. For eachk > 0, generate the dual estimaggk + 1) according to the following rule:
ik + 1) = Pag,[vi(k) + (k) Dy (k)] 9)

where the scalan(k) > 0 is a step-size.
3: Repeat fork = k + 1.

Remark 3.1: The DADS algorithm is an extension of the classical dual @llgm, e.g., in [28]
and [4] to the multi-agent setting and nonconvex case. limitialization of the DADS algorithm,
the valuey serves as an upper bound @é¥,. In Step1, one solutionin Q;(v;(k)) is needed,
and it is unnecessary to compute the whole(sgb;(k)). 3

In order to assure the primal convergence, we will assumetltiegadual estimates converge
to the set where each has a single optimal solution.

Definition 3.1 (Singleton optimal dual solution set): The set of D C R™*2WN s the
collection of¢ such that the se®;(&;) is a singleton, wher€; = (u;, A\, w) for eachi € V. e

The primal and dual estimates in the DADS algorithm will beowsh to asymptotically

converge to a pair of primal-dual solutions to the approxenproblem £,). We formally
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10

state this in the following theorem:

Theorem 3.1 (Convergence properties of the DADS algorithm)Consider the problemR)
and the corresponding approximate problefia  with someéd > 0. We let the non-degeneracy
assumption 2.1, the balanced communication assumptican?l 2he periodic strong connectivity
assumption 2.3 hold. In addition, suppose the Slater’s itond2.4 holds for the problemKH).
Consider the dual sequences{ef (k)}, {\'(k)}, {w'(k)} and the primal sequence f;(k)} of
the distributed approximate dual subgradient algorithrh Wix(%) } satisfyingkgrfoo alk) =0,

Za = +00, ¥ a(k)? < +o0.

k=0
1) (Dual estimate convergence) There exists a dual solgtien D% whereé* := (u*, \*, w*)

and u* := (uf) such that the following holds for all€ V:

lim (k) = i =0, Tim [IN(E) = X =0, Tim (k) - w] =0.

k—+
2) (Primal estimate convergence) If the dual solution vesifi € D7, i.e.Q;(¢) is a singleton
for all i € V, then there ise* € X} with z* := (z}) such that the following holds for all
1 eV

i i(k) — ]| = 0.

IV. DISCUSSION

Before proceeding with the technical proofs for Theorem #é&,would like to make the
following observations. First, our methodology is mote@iy the need of solving a nonconvex
problem in a distributed way by a group of agents whose iotenas change with time. This
places a number of restrictions on the type of solutions dhatcan find. Time-varying interac-
tions of anonymous agents can be currently solved via agreeatgorithms; however these are
inherently convex operations, which does not work well imeanvex settings. To overcome this,
one can resort to dualization. Admittedly, zero duality gaps not hold in general for nonconvex
problems. A possibility would be to resort to nonlinear aegiwed Lagrangians, for which strong
duality holds in a broad class of programs [8], [9], [32]. Ha&r, we find here another problem,
as a distributed solution using agreement requires seipgradis the one ensured by the linear
Lagrangians we use here. Thus, we have looked for alteenaggumptions that can be easier

to check and allow the dualization approach to work.
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More precisely, Theorem 3.1 shows that dual estimates alwayverge to a dual optimal
solution. The convergence of primal estimates requiresdalitianal assumption that the dual
limit has a single optimal solution. Let us refer to this amsption asthe singleton dual optimal
solution set(SD for short). This assumption may not be easy to chegkiori, however it is
of similar nature as existing algorithms for nonconvex mation. In [8] and [9], subgradient
methods are defined in terms of (nonlinear) augmented Lggmas, and it is shown that every
accumulation point of the primal sequence is a primal sotuprovided that the dual function
is required to be differentiable at the dual limit. An operesiion is how to resolve the above
issues imposed by the multi-agent setting with less stnhgenditions on the nature of the
nonconvex optimization problem.

In the following, we study a class of nonconvex quadraticgpams for which a sufficient
condition guarantees that the SD assumption holds. Noresoguadratic programs hold great
importance from both theoretic and practical aspects. hegd, nonconvex quadratic programs
are NP-hard, and please refer to [27] for detailed discusslitne aforementioned sufficient
condition only requires checking the positive definitenesa matrix.

Consider the following nonconvex quadratic program:

min_ f(z) = Zfz(z) = Z (HZ”% + 2<Qi>z>)>

#ENiev Xi iev iev
s.t. HZHiL[ +_2<btﬁvz>ﬁ_0@& <0, Eizzl,---,7n“ (10)

where||z||% , £ 2T A;,2 and 4;,, are real and symmetric matrices. The approximate problem

of P, is given by

min Y file) =Y (lellh, + 2(an ),

vER2N 7 iV
st Nzilld,, +2(bie, xi) +cig, <0, =1, my,
—xi+z,-A<0, z—-2,-A<0, X, eV (11)

We introduce the dual multiplier§:, A\, w) as before. The local Lagrangian functidh can

be written as follows:

£ 6) 2 1ol g, + (G070
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where the term independent of is dropped and; is a linear function of; = (u;, A\, w). The
dual function and dual problem can be defined as before. Canaigy dual optimal solution
&olfforall i e V:

(P1) P+ 37" piy, Aiy, is positive definite;

(P2)x; = (P S0, il Aie) G € X
then the SD assumption holds. The properties (P1) and (R2¢asy to verify in a distributed
way once obtaining a dual solutigfi. We would like to remark that (P1) is used in [12] to
determine the unique global optimal solution via canondality when the constraint séf is

absent.

V. CONVERGENCE ANALYSIS

This section provides the complete analysis of TheoremRBetall thatg is continuous and
X is compact. Then there afé H > 0 such that||g(x)|| < G and||z|| < H for all z € X. We
start our analysis from the computation of supergradienitQ,o

Lemma 5.1 (Supergradient computation): If z; € Q;(§;), then(g(z,)", (-A—z,)T, 27, (z,—

AT, —z1)T is a supergradient af); at &; i.e., the following holds for any; € ="

Qi(&) — Qi(&) < (g(Ts), s — ) + (A =T, N — \y)

+(Ti, Ny — Nig) + (T — A wy — W) + (—T, wy, — Wiy ). (12)

Proof: The proof is based on the computation of dual subgradieris,ia [4],[5]. =
A direct result of Lemma 5.1 is that the vectar(x;(k))T, (—=A — x;(k)T, z; (k)T (x;(k) —
AT —x;(k)T) is a supergradient ap; atv;(k); i.e., the following supergradient inequality holds

for any ¢ € ="
Qi(&) — Qi(vi(k)) < (g(wi(k)), pi — pa(k)) + (—A — a3 (k), Ai — vi(k))
+(i(k), Ay — 03 (K)i) + (i(k) — A w; — v, (k)i) + (—2i(k), wi, — vl (K)iy)- (13)

Now we can see that the update rule (9) of dual estimates inDBBS algorithm is a
combination of a dual subgradient scheme and average carseigorithms. The following

establishes thap); is Lipschitz continuous with some Lipschitz constdnt
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Lemma 5.2 (Lipschitz continuity of @;): There is a constart > 0 such that for any;, §; €
=, it holds that||Q;(&) — Qi(&)|l < LlI& — &ll-
Proof: Similarly to Lemma 5.1, one can show thataif € Q;(&;), then (g(z;)", (—A —

)7, 2l (z,—A)T, —2T)T is a supergradient af; at&;; i.e., the following holds for any; € ="

Qi(&) — Qil&) < (9(Z), i — i) + (—A = Ti, i — A
+(Ti, Ny — i) (T — A w; — w;) + (—Tg, wiy, — Wiy, )
Since||g(z;)|| < G and||z;|]| < H, there isL > 0 such thatQ; (&) — Q;(&) < L||& — &

Similarly, Q;(&) — Q:(&) < L||& — &l|. We then reach the desired result. |
In the DADS algorithm, the error induced by the projectionpnid,, is given by:

e;(k) := P, [vi(k) + a(k)D;(k)] — vi(k).

We next provide a basic iterate relation of dual estimatethénDADS algorithm.
Lemma 5.3 (Basic iterate relation): Under the assumptions in Theorem 3.1, for &y ), A\, w) €

= with (u;, A\, w) € M; for all i € V, the following estimate holds for alt > 0:

> llesk) = a(k)Di(k)|* < a(k)? Y DRI+ D (I€i(k) — &Gl — l1&(k + 1) — &)

eV % eV
+ 2a(k Z{ (zi(k)), pi(k) = i) + (=A — 25(k), v}y (k)i — \i)
+ (zi(k), vy (k)i — Aig) + (@i(k) — A vy, (k)i — wi) + (—xi(k), vy, (k)iy, — wi,)}- (14)

Proof: Recall that)/; is closed and convex. The proof is a combination of the noaesion
property of projection operators in [5] and the property afamced graphs. [ |
The lemma below shows the asymptotic convergence of duiahasts.
Lemma 5.4 (Dual estimate convergence)Under the assumptions in Theorem 3.1, there ex-
ists a dual optimal solutiot* := ((u}), \*,w*) € D% such thatklirf i (k) — wil] =0,
—+o0
lim ||A‘(k) — \*|| =0, and lim |jw'(k) —w*|| = 0.
k—+o00 k—+o00
Proof: By the dual decomposition property (4) and the boundednedsaidfoptimal solution

sets, the dual problerfiD,) is equivalent to the following:

r?sgc;@i(@), st. &€ M, (15)
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Note that(); is affine and)M; is convex, implying that the problem (15) is a constrainedvea
programming where the global objective function is a simglen of local ones and the local
state constraints are convex and compact. The rest of trefspoan be finished by following
similar lines in [36], and thus omitted. [ |

The remainder of this section is dedicated to characteyitive convergence properties of
primal estimates. Toward this end, we present some pregeofi();.

Lemma 5.5 (Properties of marginal maps): The set-valued marginal m&p; is closed. In
addition, it is upper semicontinuous gte =’; i.e., for anye’ > 0, there isd’ > 0 such that for
any¢; € Bz(&,0), it holds thatQ;(&;) C Bayx (4(&), €).

Proof: Consider sequencés;(k)} and{¢;(k)} satisfyingkl_igoo Eilk) = &, x;(k) € Qi(&(k))
and kglfoo x;(k) = z;. SinceL; is continuous, then we have
Li(%:,&) = Lm Li(xi(k), &i(k)) < kggloo(@i(fi(k))) = Qi(&),
where in the inequality we use the propertyftk) € Q,(&(k)), and in the last equality we
use the continuity of);. Thenz; € Q;(&;) and the closedness 6f; follows.

Note that(2;(&;) = ©,;(&)NX. Recall that?; is closed andX is compact. Then it is a result of
Proposition 1.4.9 in [2] tha®;(&;) is upper semicontinuous &t € =’; i.e, for any neighborhood
U in 2% of Q;(&), there isd’ > 0 such thatvé; € Bz/(¢;,d), it holds thatQ;(¢;)  U. Let
U = Byx(Q;(&;),€), and we obtain upper semicontinuity &t [ |

With the above results, we are ready to show the convergeinpgnoal estimates.

Lemma 5.6 (Primal estimate convergence)Under the assumptions in Theorem 3.1, for
each: € V, it holds thatkiiinoo z;(k) = &; wherez; = Q;(&)).

*

Proof: The combination of upper semicontinuity Qf in Lemma 5.6 an%ETm &i(k) =¢

with & given in Lemma 5.4 ensures that each accumulation poidtegf)} is a point in the

set();(&)); i.e., the convergence dfr;(k)} to the set;(£) can be guaranteed. Sin€g(&;) is

singleton, thent; = Q,;(&). We arrive in the desired result. [
Now we are ready to show the main result of this paper, The@dmin particular, we will

show complementary slackness, primal feasibilityzp@and its primal optimality, respectively.
Proof for Theorem 3.1:

Claim 1: (A —Z; + Z;,,A\f) =0, (-A 4+ &; — Z;,,w}) = 0 and (g(z;), i) = 0.
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Proof: Rearranging the terms related Xan (14) leads to the following inequality holding
for any ((u;), A\, w) € E with (u;, \,w) € M for all i € V:
- Z 20(k)((=A = a;(k), 03 (k)s = Ai) + (i, (), 032 (k)i — As))
Y IDiRIP + Y (k) = &7 = &k +1) = &%)

eV eV
+2a(k) Y {{=2i(k), vl (k)i — wi) + (wi(k) = A, 0}, (k)i = wi) + (g(xa()), (k) — )}

eV

(16)

Sum (16) over|0, K], divide by s(K) := >~ a(k), and we have

Za ) D 20+ i), v (k) = Aa) + (i (k) 037 (B); = A9)

gs(l)za IDi(k ||2+—{Z I€:(0) = &P — l&(K +1) = &P)

+ Y 2a(k) Y ({g(za(k)), mak) = i) + {@i(k) = A0}, (k) — wi) + (—i(k), vy, (k)i — wi)}-

k=0 1%
(17)
We now proceed to shoy-A —z; +;,, Af) > 0 for eachi € V. Notice that we have shown
that lim ||z;(k) — ;|| =0 for all : € V, and it also holds thatlim |[|&;(k) —&|| = 0 for all
k—4o0 k—+o00
ieV.Leth =3\, A\ = X for j #iandy,; = pf, w=w* in (17). Recall tha{«(k)} is not

summable but square summable, g (k)} is uniformly bounded. Také{ — +oc, and then
it follows from Lemma 5.1 in [36] that:

(A+; —3;,,A]) <0, (18)

On the other hand, singg € D}, we have||¢*|| < v given the fact thaty is an upper bound

of Di. Let{ := (u, A\, w) where¢; := (u;, A,w). Then we could choose a sufficiently small

I

d > 0and¢ € = in (17) such that|&;|| < v+ 6, whered; is given in the definition of\/; and
§is given by:\; = (1 +d")A;, \j = Aj for j # 4, w = w*, p = p*. Following the same lines
toward (18), it gives that-0(A+; —Z;,, Af) < 0. Hence, it holds that—A — 7, +7;,,, \}) = 0.
The rest of the proof is analogous and thus omitted. [ |

Claim 2: 7 is primal feasible to the approximate problefh(.
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We have known that;; € X. We proceed to show-A — z; + z;, < 0 by

contradiction. Sincé|(*|| < v, we could choose a sufficiently small > 0 and ¢ = (u, A\, w)

where¢; =

(i, A, w) and ||&] < v+ 6; in (17) as follows: if (—A — &; + Z;,)¢ > 0, then

(A)e = (M) + &; otherwise,(\;), = (A)e, andw = w*, p = p*. The rest of the proofs is

analogous to Claim 1.

Similarly, one can show(z;) < 0 and—A +z; — z;,, < 0 by applying analogous arguments.

We conclude thaf is primal feasible to the approximate probleh|.

Claim 3: 7 is a primal solution to the problemP{).

Proof: Sincez is primal feasible to the approximate problefnj, then . ., fi(Z;) > pi.

On the other hand, it follows from Claim 1 that

Y filE) =D Li#,6) <D Qi€ < ph.

i€V

eV

%

We then conclude that_,_,, fi(#;) = pi. In conjunction with the feasibility oft, this further

ensures that is primal optimal to the problemH{). This completes the proofs for Theorem 3.1.

VI. SIMULATIONS

In this section, we examine several numerical exampleslustibte the performance of our

algorithm.

A. Robust source localization

We consider a robust source localization problem where thjective function is adopted

from [1], [24]. In particular, consider a network of four ageV = {1,--- ,4}. The objective

functions of agents are piecewise linear and giverffoy) = |||z — a;|| —r|. The local inequality

functions are given by:

9(2) =

Zl—-8

-—21—-8

22_‘8

__22_8_

)

92(2) =

Zl—-9
——Zl—-g

ZQ—‘9

__Z2_9_

g93(2) =

i ——22'—'8.5 |

Zl—-8.5
——Zl——8.5
22—-85

Y

94(2) =

_'—22—-9f3_

Zl—-9.5
——Zl—-9.5
ZQ__£l5
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and, the local constraint sets are given by
X;={zeR*| —10< 2 <10, —10 < 2, < 10},
Xo={2€R?*| —105< 2 <105, —10.5 < 2z, < 10.5},
Xs={2€R*| —9<2 <9, —10 < 2z <10},
Xy={zeR?*| —11 <z <11, —9< 2 <9}

In the simulation, we choose the paramefer 0.1. The local Lagrangian function can be
written as’;(x;, &) = fi(z;) + (¢;, x;) by dropping the terms independentofand(; is linear
in & Figure 3 shows the sectional plot 6fz) = >°,_,, f:(z) alongz;-axle, demonstrating that
f is nonconvex and has local minima.

The inter-agent topologie§(k) are given by:G(k) is 1 «<» 2 +» 3 <» 4 whenk is odd, and
Gk)is1l—2+ 3+ 4—1whenk is even. It is easy to see th@tk) satisfies the periodical
strong connectivity assumption 2.3.

1) Simulation 1; the assumption of SD is satisfi€ar this numerical simulation, we consider
the set of parameters = 0.75, a; = [0 0]7, a; = [0 1%, a3 = [1 0T anday = [1 1]T.
Figure 1 shows the surface of the global objective functidm) = »"._,, f;(x). The contour,
Figure 2, indicates that the set of optimal solutions is doreground[0.5 0.5]7. Figure 4 is
the sectional plot off; along z;-axle.

From Figures 5-8, one can see thidk) converges to some poiid, 0.05] x (0,0.05]. Hence,
¢ e D, l.e., the assumption of SD is satisfied.

The simulation results are shown in Figures 9 to 10. In paldic Figure 9 (resp. Figure 10)
shows the evolution of primal estimates of the primal soluti*(1) (resp.z*(2)). After about
25 iterates, the primal estimates oscillate within a veralsmegion and eventually agree upon
the point[0.4697 0.472]7 which coincides with a global optimal solution.

2) Simulation 2; the assumption of SD is violateg@onsider the same problem as Simulation
1 with r = 0.75 anda; = [0 0]” for i € V. From Figures 11 and 12, one can see thét)
converges td0 0]7. Hence,&* ¢ D: and the assumption of SD is not satisfied. Figures 13
and 14 confirms that primal estimates fail to converge in taise.

3) Simulation 3; comparison with gradient-based algorithr@®nsider the same set of param-

eters as in Simulation 1 without including the inequalityswaints. The multi-agent interaction
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topologies are the same. We implement the diffusion gradikgorithm in [22] for this problem.
Figures 15 and 16 show that the primal estimates reach theensns value df-0.65 —0.38]7
after 40000 iterates. From Figure 2, it is clear that0.65 — 0.38]” is not a global optimum.
By comparing Figures 9, 10, 15 and 16, one can see that ouritAlgois much faster than
the diffusion gradient method at the expense of solving daloptimization problem at each
iterate.

We also implement the incremental gradient algorithm in f88 the same set of parameters
in Simulation 1 without including inequality constraini&gure 17 demonstrates that the perfor-
mance of the incremental gradient method is analogous tdiffusion gradient algorithm; i.e.,
the estimates are trapped in some local minimum, and theecgerce rate is slower than our

algorithm.

B. Nonconvex quadratic programming

Consider a network of four agents where the topologies aresdinee as before. The local

objective function isf;(z) = ||z

2+ (g;, z) and the local constraint function is(z) = ||z||4. +

(bi, z) + ¢; < 0. In particular, we use the following parameters:

01 01
P=P =P = , Py=
11 10
18 0
A=Ay = , bi=b=[20, a=cu=-1,
0 8
13 -2
A2: s 62: [0 4], Cy = —1,
-2 8
5 =5
A3: s 63:[10 10], C3:—1.
-5 5

And the local constraint sets are_given by
X;={z€eR*| —10< 2 <10, —10 < 2, <10},
Xo={2€R?*| —105< 2 <105, —10.5 < 2z < 10.5},
Xs={2€R?*| —9<2 <9, —10 < 2z <10},

Xy={z€R?*| —11 <2z <11, —9< 2 <9}
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One can see that the sum Bf is

4
P=> P =
=1

which is indefinite. We choosé& = 0.3 for the simulation.

4 3

The dual estimates associated with the inequality comsgr@onverge tqu; = 0.5027, u3 =
3.1061, pf = 1.8792 and u; = 2.2910 in Figure 20. One can verify that properties P1 and P2
hold in this case:

P+ A >0, (P+piA) ' eX, ieV.

The primal estimates converge t60.1933 — 0.3005]%, [-0.2621 — 0.5360]7, [-0.1013 —
0.0116]" and [-0.2144 — 0.2667]7 in Figures 18 and 19, and the collection of these points
consists of a global optimal solution to the approximatebfam.

VII. CONCLUSIONS

We have studied a distributed dual algorithm for a class dfiragent nonconvex optimization
problems. The convergence of the algorithm has been provderuhe assumptions that (i) the
Slater’'s condition holds; (ii) the optimal solution set dfetdual limit is singleton; (iii) the
network topologies are strongly connected over any givambed period. An open question is

how to address the shortcomings imposed by nonconvexityranttagent interactions settings.
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Fig. 1. The3 — D plot of the global objective function

3

Fig. 2. The contour of the global objective function
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Fig. 3. The sectional plot of the global objective function alengaxle
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Fig. 4. The sectional plot of; along z;-axle
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Fig. 11. The evolution of; ;
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Fig. 13. The primal estimates af* (1)
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Fig. 14. The primal estimates of*(2)
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Fig. 15. The primal estimates aof*(1) of the diffusion gradient method
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Fig. 16. The primal estimates of*(2) of the diffusion gradient method
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Fig. 17. The primal estimates of*(1) of the incremental gradient method
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Fig. 18. The primal estimates af* (1) of quadratic programming
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Fig. 20. The dual estimates @f of quadratic programming
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