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An approximate dual subgradient algorithm for

multi-agent non-convex optimization

Minghui Zhu and Sonia Martı́nez

Abstract

We consider a multi-agent optimization problem where agents subject to local, intermittent inter-

actions aim to minimize a sum of local objective functions subject to a global inequality constraint

and a global state constraint set. In contrast to previous work, we do not require that the objective,

constraint functions, and state constraint sets to be convex. In order to deal with time-varying network

topologies satisfying a standard connectivity assumption, we resort to consensus algorithm techniques

and the Lagrangian duality method. We slightly relax the requirement of exact consensus, and propose

a distributed approximate dual subgradient algorithm to enable agents to asymptotically converge to a

pair of primal-dual solutions to an approximate problem. Toguarantee convergence, we assume that the

Slater’s condition is satisfied and the optimal solution setof the dual limit is singleton. We implement

our algorithm over a source localization problem and compare the performance with existing algorithms.

I. I NTRODUCTION

Recent advances in computation, communication, sensing andactuation have stimulated an

intensive research in networked multi-agent systems. In the systems and control community,

this has been translated into how to solve global control problems, expressed by global objective

functions, by means of local agent actions. More specifically, problems considered include multi-

agent consensus or agreement [6], [15], [17], [19], [25], [26], coverage control [7], [10], formation

control [11], [31] and sensor fusion [34].
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The seminal work [3] provides a framework to tackle optimizing a global objective function

among different processors where each processor knows the global objective function. In multi-

agent environments, a problem of focus is to minimize a sum oflocal objective functions by a

group of agents, where each function depends on a common global decision vector and is only

known to a specific agent. This problem is motivated by othersin distributed estimation [23] [33],

distributed source localization [29], and network utilitymaximization [18]. More recently, con-

sensus techniques have been proposed to address the issues of switching topologies, asynchronous

computation and coupling in objective functions; see for instance [16], [21], [22], [30], [36].

More specifically, the paper [21] presents the first analysisof an algorithm that combines average

consensus schemes with subgradient methods. Using projection in the algorithm of [21], the

authors in [22] further address a more general scenario thattakes local state constraint sets

into account. Further, in [36] we develop two distributed primal-dual subgradient algorithms,

which are based on saddle-point theorems, to analyze a more general situation that incorporates

global inequality and equality constraints. The aforementioned algorithms are extensions of

classic (primal or primal-dual) subgradient methods whichgeneralize gradient-based methods to

minimize non-smooth functions. This requires the optimization problems under consideration to

be convex in order to determine a global optimum.

The focus of the current paper is to relax the convexity assumption in [36]. In order to

deal with all aspects of our multi-agent setting, our methodintegrates Lagrangian dualization,

subgradient schemes, and average consensus algorithms. Distributed function computation by a

group of anonymous agents interacting intermittently can be done via agreement algorithms [7].

However, agreement algorithms are essentially convex, andso we are led to the investigation of

nonconvex optimization solutions via dualization. The techniques of dualization and subgradient

schemes have been popular and efficient approaches to solve both convex programs (e.g., in [4],

[5]) and nonconvex programs (e.g., in [8], [9]).

Statement of Contributions.Here, we investigate a multi-agent optimization problem where

agents desire to agree upon a global decision vector minimizing the sum of local objective

functions in the presence of a global inequality constraintand a global state constraint set. Agent

interactions are changing with time. The objective, constraint functions, as well as the state-

constraint set, can be nonconvex. To deal with both nonconvexity and time-varying interactions,

we first define an approximated problem where the exact consensus is slightly relaxed. We then
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propose a distributed dual subgradient algorithm to solve it, where the update rule for local dual

estimates combines a dual subgradient scheme with average consensus algorithms, and local

primal estimates are generated from local dual optimal solution sets. This algorithm is shown to

asymptotically converge to a pair of primal-dual solutionsto the approximate problem under the

following assumptions: firstly, the Slater’s condition is satisfied; secondly, the optimal solution

set of the dual limit is singleton; thirdly, dynamically changing network topologies satisfy some

standard connectivity condition.

A conference version of this manuscript was published in [35]. Main differences are the

following: (i) by assuming that the optimal solution set of the dual limit is a singleton, and

changing the update rule in the dual estimates, we are able todetermine a global solution in

contrast to an approximate solution in [35]; (ii) we presenta simple criterion to check the new

sufficient condition for nonconvex quadratic programming;(iii) we present new simulation results

of our algorithm on a source localization example and compare its performance with existing

algorithms.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider a networked multi-agent system where agents are labeled byi ∈ V := {1, . . . , N}.

The multi-agent system operates in a synchronous way at timeinstantsk ∈ N ∪ {0}, and its

topology will be represented by a directed weighted graphG(k) = (V,E(k), A(k)), for k ≥ 0.

Here,A(k) := [aij(k)] ∈ R
N×N is the adjacency matrix, where the scalaraij(k) ≥ 0 is the weight

assigned to the edge(j, i) pointing from agentj to agenti, andE(k) ⊆ V × V \ diag(V ) is

the set of edges with non-zero weights. The set of in-neighbors of agenti at timek is denoted

by Ni(k) = {j ∈ V | (j, i) ∈ E(k) and j 6= i}. Similarly, we define the set of out-neighbors of

agenti at timek asN out
i (k) = {j ∈ V | (i, j) ∈ E(k) and j 6= i}. We here make the following

assumptions on network communication graphs:

Assumption 2.1 (Non-degeneracy):There exists a constantα > 0 such thataii(k) ≥ α, and

aij(k), for i 6= j, satisfiesaij(k) ∈ {0} ∪ [α, 1], for all k ≥ 0.

Assumption 2.2 (Balanced Communication):1It holds that
∑

j∈V aij(k) = 1 for all i ∈ V

andk ≥ 0, and
∑

i∈V aij(k) = 1 for all j ∈ V andk ≥ 0.

1It is also referred to as double stochasticity of the adjacency matrixA(k).
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Assumption 2.3 (Periodical Strong Connectivity): There is a positive integerB such that,

for all k0 ≥ 0, the directed graph(V,
⋃B−1

k=0 E(k0 + k)) is strongly connected.

The above network model is standard to characterize a networked multi-agent system, and

has been widely used in the analysis of average consensus algorithms; e.g., see [25], [26], and

distributed optimization in [22], [36]. Recently, an algorithm is given in [13] which allows agents

to construct a balanced graph out of a non-balanced one undercertain assumptions.

The objective of the agents is to cooperatively solve the following primal problem (P ):

min
z∈Rn

∑

i∈V

fi(z), s.t. g(z) ≤ 0, z ∈ X, (1)

where z ∈ R
n is the global decision vector. The functionfi : R

n → R is only known to

agenti, continuous, and referred to as the objective function of agent i. The setX ⊆ R
n, the

state constraint set, is compact. The functiong : Rn → R
m are continuous, and the inequality

g(z) ≤ 0 is understood component-wise; i.e.,gℓ(z) ≤ 0, for all ℓ ∈ {1, . . . ,m}, and represents a

global inequality constraint. We will denotef(z) :=
∑

i∈V fi(z) andY := {z ∈ R
n | g(z) ≤ 0}.

We will assume that the set of feasible points is non-empty; i.e.,X∩Y 6= ∅. SinceX is compact

andY is closed, then we can deduce thatX ∩ Y is compact. The continuity off follows from

that of fi. In this way, the optimal valuep∗ of the problem (P ) is finite andX∗, the set of

primal optimal points, is non-empty. Throughout this paper, we suppose the following Slater’s

condition holds:

Assumption 2.4 (Slater’s Condition): There exists a vector̄z ∈ X such thatg(z̄) < 0. Such

z̄ is referred to as a Slater vector of the problem (P ).

Remark 2.1: All the agents can agree upon a common Slater vectorz̄ through a maximum-

consensus scheme. This can be easily implemented as part of an initialization step, and thus the

assumption that the Slater vector is known to all agents doesnot limit the applicability of our

algorithm. Specifically, the maximum-consensus algorithmis described as follows:

Initially, each agenti chooses a Slater vectorzi(0) ∈ X such thatg(zi(0)) < 0. At every time

k ≥ 0, each agenti updates its estimates by using the rule ofzi(k + 1) = maxj∈Ni(k)∪{i} zj(k),

where we use the following relation for vectors: fora, b ∈ R
n, a < b if and only if there is some

ℓ ∈ {1, . . . , n− 1} such thataκ = bκ for all κ < ℓ andaℓ < bℓ.

The periodical strong connectivity assumption 2.3 ensuresthat after at most(N − 1)B steps,

all the agents reach the consensus; i.e.,zi(k) = maxj∈V zj(0) for all k ≥ (N − 1)B. In the
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remainder of this paper, we assume that the Slater vectorz̄ is known to all the agents. •

In [36], in order to solve the convex case of the problem (P ) (i.e.;fi andg are convex functions

andX is a convex set), we propose two distributed primal-dual subgradient algorithms where

primal (resp. dual) estimates move along subgradients (resp. supergradients) and are projected

onto convex sets. The absence of convexity impedes the use ofthe algorithms in [36] since,

on the one hand, (primal) gradient-based algorithms are easily trapped in local minima.; on

the other hand, projection maps may not be well-defined when (primal) state constraint sets

are nonconvex. In the sequel, we will employ Lagrangian dualization, subgradient methods and

average consensus schemes to design a distributed algorithm which is able to find an approximate

solution to the problem (P ).

Towards this end, we construct a directed cyclic graphGcyc := (V,Ecyc) where|Ecyc| = N . We

assume that each agent has a unique in-neighbor (and out-neighbor). The out-neighbor (resp.

in-neighbor) of agenti is denoted byiD (resp. iU ). With the graphGcyc, we will study the

following approximate problem of problem (P ):

min
(xi)∈RnN

∑

i∈V

fi(xi),

s.t. g(xi) ≤ 0, −xi + xiD −∆ ≤ 0, xi − xiD −∆ ≤ 0, xi ∈ X, ∀i ∈ V, (2)

where∆ := δ1, with δ a small positive scalar, and1 is the column vector ofn ones. The

problem (2) provides an approximation of the problem (P ), and will be referred to as problem

(P∆). In particular, the approximate problem (2) reduces to theproblem (P ) when δ = 0. Its

optimal value and the set of optimal solutions will be denoted by p∗∆ and X∗
∆, respectively.

Similarly to the problem (P ), p∗∆ is finite andX∗
∆ 6= ∅.

Remark 2.2: The cyclic graphGcyc can be replaced by any strongly connected graphG. Given

G, each agenti is endowed with two inequality constraints:xi−xj−∆ ≤ 0 and−xi+xj−∆ ≤ 0,

for each out-neighborj. This set of inequalities implies that any feasible solution x = (xi)i∈V of

problem (P∆) satisfies the approximate consensus; i.e.,maxi,j∈V ‖xi−xj‖ ≤ Nδ. For notational

simplicity, we will use the cyclic graphGcyc, which has a minimum number of constraints, as

the initial graph. •
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A. Dual problems

Before introducing dual problems, let us denote byΞ′ := R
m
≥0 × R

nN
≥0 × R

nN
≥0 , Ξ := R

mN
≥0 ×

R
nN
≥0 × R

nN
≥0 , ξi := (µi, λ, w) ∈ Ξ′, ξ := (µ, λ, w) ∈ Ξ andx := (xi) ∈ XN . The dual problem

(D∆) associated with(P∆) is given by

max
µ,λ,w

Q(µ, λ, w), s.t. µ, λ, w ≥ 0, (3)

whereµ := (µi) ∈ R
mN , λ := (λi) ∈ R

nN and w := (wi) ∈ R
nN . Here, the dual function

Q : Ξ → R is given asQ(ξ) ≡ Q(µ, λ, w) := infx∈XN L(x, µ, λ, w), whereL : RnN × Ξ → R

is the Lagrangian function

L(x, ξ) ≡ L(x, µ, λ, w) :=
∑

i∈V

(

fi(xi) + 〈µi, g(xi)〉+ 〈λi,−xi + xiD −∆〉+ 〈wi, xi − xiD −∆〉
)

.

We denote the dual optimal value of the problem (D∆) by d∗∆ and the set of dual optimal

solutions byD∗
∆. We endow each agenti with the local Lagrangian functionLi : R

n × Ξ′ → R

and the local dual functionQi : Ξ
′ → R defined by

Li(xi, ξi) := fi(xi) + 〈µi, g(xi)〉+ 〈−λi + λiU , xi〉+ 〈wi − wiU , xi〉 − 〈λi,∆〉 − 〈wi,∆〉,

Qi(ξi) := inf
xi∈X
Li(xi, ξi).

In the approximate problem (P∆), the introduction of−∆ ≤ xi − xiD ≤ ∆, i ∈ V , renders

thefi andg separable. As a result, the global dual functionQ can be decomposed into a simple

sum of the local dual functionsQi. More precisely, the following holds:

Q(ξ) = inf
x∈XN

∑

i∈V

(

fi(xi) + 〈µi, g(xi)〉+ 〈λi,−xi + xiD −∆〉+ 〈wi, xi − xiD −∆〉
)

.

Notice that in the sum of
∑

i∈V 〈λi,−xi + xiD − ∆〉, eachxi for any i ∈ V appears in two

terms: one is〈λi,−xi + xiD −∆〉, and the other is〈λiU ,−xiU + xi−∆〉. With this observation,

we regroup the terms in the summation in terms ofxi, and have the following:

Q(ξ) = inf
x∈XN

∑

i∈V

(

fi(xi) + 〈µi, g(xi)〉+ 〈−λi + λiU , xi〉+ 〈wi − wiU , xi〉 − 〈λi,∆〉 − 〈wi,∆〉
)

=
∑

i∈V

inf
xi∈X

(

fi(xi) + 〈µi, g(xi)〉+ 〈−λi + λiU , xi〉+ 〈wi − wiU , xi〉 − 〈λi,∆〉 − 〈wi,∆〉
)

=
∑

i∈V

Qi(ξi). (4)

It is worth mentioning that
∑

i∈V Qi(ξi) is not separable sinceQi depends upon neighbor’s

multipliers λiU andwiU .
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B. Dual solution sets

The Slater’s condition ensures the boundedness of dual solution sets for convex optimization;

e.g., [14], [20]. We will shortly see that the Slater’s condition plays the same role in nonconvex

optimization. To achieve this, we define the functionQ̂i : R
m
≥0 × R

n
≥0 × R

n
≥0 → R as follows:

Q̂i(µi, λi, wi) = inf
xi∈X,xiD

∈X

(

fi(xi) + 〈µi, g(xi)〉+ 〈λi,−xi + xiD −∆〉+ 〈wi, xi − xiD −∆〉
)

.

Let z̄ be a Slater vector for problem (P ). Thenx̄ = (x̄i) ∈ XN with x̄i = z̄ is a Slater vector

of the problem (P∆). Similarly to (3) and (4) in [36], which make use of Lemma 3.2in the

same paper, we have that for anyµi, λi, wi ≥ 0, it holds that

max
ξ∈D∗

∆

‖ξ‖ ≤ N max
i∈V

fi(z̄)− Q̂i(µi, λi, wi)

β(z̄)
, (5)

whereβ(z̄) := min{minℓ∈{1,...,m}−gℓ(z̄), δ}. Let µi, λi andwi be zero in (5), and it leads to the

following upper bound onD∗
∆:

max
ξ∈D∗

∆

‖ξ‖ ≤ N max
i∈V

fi(z̄)− Q̂i(0, 0, 0)

β(z̄)
, (6)

whereQ̂i(0, 0, 0) = infxi∈X fi(xi) and it can be computed locally. We denote

γi(z̄) :=
fi(z̄)− Q̂i(0, 0, 0)

β(z̄)
. (7)

Sincefi andg are continuous andX is compact, it is known thatQi is continuous; e.g., see

Theorem 1.4.16 in [2]. Similarly,Q is continuous. SinceD∗
∆ is also bounded, then we have that

D∗
∆ 6= ∅.

Remark 2.3: The requirement of exact agreement onz in the problemP is slightly relaxed

in the problemP∆ by introducing a small positive scalarδ. In this way, on the one hand, the

global dual functionQ is a sum of the local dual functionsQi, as in (4); on the other hand,D∗
∆

is non-empty and uniformly bounded. These two properties play important roles in the devise

of our subsequent algorithm. •

C. Other notation

Define the set-valued mapΩi : Ξ
′ → 2X asΩi(ξi) := argminxi∈XLi(xi, ξi); i.e., givenξi, the

setΩi(ξi) is the collection of solutions to the following local optimization problem:

min
xi∈X
Li(xi, ξi). (8)
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Here, Ωi is referred to as themarginal mapof agent i. SinceX is compact andfi, g are

continuous, thenΩi(ξi) 6= ∅ in (8) for any ξi ∈ Ξ′. In the algorithm we will develop in next

section, each agent is required to obtainone(globally) optimal solution and the optimal value the

local optimization problem (8) at each iterate. We assume that this can be easily solved, and this

is the case for problems ofn = 1, or fi andg being smooth (the extremum candidates are the

critical points of the objective function and isolated corners of the boundaries of the constraint

regions) or having some specific structure which allows the use of global optimization methods

such as branch and bound algorithms.

In the spaceRn, we define the distance between a pointz ∈ R
n to a setA ⊂ R

n as

dist(z, A) := infy∈A ‖z − y‖, and the Hausdorff distance between two setsA,B ⊂ R
n as

dist(A,B) := max{supz∈A dist(z, B), supy∈B dist(A, y)}. We denote byBU(A, r) := {u ∈

U | dist(u,A) ≤ r} andB2U (A, r) := {U ∈ 2U | dist(U,A) ≤ r} whereU ⊂ R
n.

III. D ISTRIBUTED APPROXIMATE DUAL SUBGRADIENT ALGORITHM

In this section, we devise a distributed approximate dual subgradient algorithm which aims to

find a pair of primal-dual solutions to the approximate problem (P∆). Its convergence properties

are also summarized.

For each agenti, let xi(k) ∈ R
n be the estimate of the primal solutionxi to the approximate

problem (P∆) at time k ≥ 0, µi(k) ∈ R
m
≥0 be the estimate of the multiplier on the inequality

constraintg(xi) ≤ 0, λi(k) ∈ R
nN
≥0 (resp.wi(k) ∈ R

nN
≥0 )2 be the estimate of the multiplier

associated with the collection of the local inequality constraints −xj + xjD − ∆ ≤ 0 (resp.

xj−xjD−∆ ≤ 0), for all j ∈ V . We letξi(k) := (µi(k)
T , λi(k)T , wi(k)T )T ∈ Ξ′, for i ∈ V to be

the collection of dual estimates of agenti. And denotevi(k) := (µi(k)
T , viλ(k)

T , viw(k)
T )T ∈ Ξ′

whereviλ(k) :=
∑

j∈V aij(k)λ
j(k) ∈ R

nN
≥0 and viw(k) :=

∑

j∈V aij(k)w
j(k) ∈ R

nN
≥0 are convex

combinations of dual estimates of agenti and its neighbors at timek.

At time k, we associate each agenti a supergradient vectorDi(k) defined as

Di(k) := (Di
µ(k)

T ,Di
λ(k)

T ,Di
w(k)

T )T , whereDi
µ(k) := g(xi(k)) ∈ R

m, Di
λ(k) has components

Di
λ(k)i := −∆−xi(k) ∈ R

n, Di
λ(k)iU := xi(k) ∈ R

n, andDi
λ(k)j = 0 ∈ R

n for j ∈ V \ {i, iU},

while the components ofDi
w(k) are given by:Di

w(k)i := −∆ + xi(k) ∈ R
n, Di

w(k)iU :=

2We will use the superscripti to indicate thatλi(k) andwi(k) are estimates of some global variables.
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−xi(k) ∈ R
n, andDi

w(k)j = 0 ∈ R
n, for j ∈ V \ {i, iU}. For each agenti, we define the set

Mi := {ξi ∈ Ξ′ | ‖ξi‖ ≤ γ + θi} for someθi > 0 whereγ := N maxi∈V γi(z̄). Let PMi
to be

the projection onto the setMi. It is easy to check thatMi is closed and convex, and thus the

projection mapPMi
is well-defined.

The Distributed Approximate Dual Subgradient(DADS, for short) Algorithm is described in

Table 1.

Algorithm 1 The Distributed Approximate Dual Subgradient Algorithm
Initialization: Initially, all the agents agree upon someδ > 0 in the approximate problem

(P∆). Each agenti chooses a common Slater vectorz̄, computesγi(z̄) and obtainsγ =

N maxi∈V γi(z̄) through a max-consensus algorithm whereγi(z̄) is given in (7). After that,

each agenti chooses initial statesxi(0) ∈ X andξi(0) ∈ Ξ′.

Iteration: At each timek, each agenti executes the following steps:

1: For eachk ≥ 1, given vi(k), solve the local optimization problem (8), obtain a solution

xi(k) ∈ Ωi(vi(k)) and the dual optimal valueQi(vi(k)).

2: For eachk ≥ 0, generate the dual estimateξi(k + 1) according to the following rule:

ξi(k + 1) = PMi
[vi(k) + α(k)Di(k)], (9)

where the scalarα(k) ≥ 0 is a step-size.

3: Repeat fork = k + 1.

Remark 3.1: The DADS algorithm is an extension of the classical dual algorithm, e.g., in [28]

and [4] to the multi-agent setting and nonconvex case. In theinitialization of the DADS algorithm,

the valueγ serves as an upper bound onD∗
∆. In Step1, one solutionin Ωi(vi(k)) is needed,

and it is unnecessary to compute the whole setΩi(vi(k)). •

In order to assure the primal convergence, we will assume that the dual estimates converge

to the set where each has a single optimal solution.

Definition 3.1 (Singleton optimal dual solution set):The set ofD∗
s ⊆ R

(m+2n)N is the

collection ofξ such that the setΩi(ξi) is a singleton, whereξi = (µi, λ, w) for eachi ∈ V . •

The primal and dual estimates in the DADS algorithm will be shown to asymptotically

converge to a pair of primal-dual solutions to the approximate problem (P∆). We formally
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state this in the following theorem:

Theorem 3.1 (Convergence properties of the DADS algorithm):Consider the problem (P )

and the corresponding approximate problem (P∆) with someδ > 0. We let the non-degeneracy

assumption 2.1, the balanced communication assumption 2.2and the periodic strong connectivity

assumption 2.3 hold. In addition, suppose the Slater’s condition 2.4 holds for the problem (P ).

Consider the dual sequences of{µi(k)}, {λi(k)}, {wi(k)} and the primal sequence of{xi(k)} of

the distributed approximate dual subgradient algorithm with {α(k)} satisfying lim
k→+∞

α(k) = 0,
+∞
∑

k=0

α(k) = +∞,
+∞
∑

k=0

α(k)2 < +∞.

1) (Dual estimate convergence) There exists a dual solutionξ∗ ∈ D∗
∆ whereξ∗ := (µ∗, λ∗, w∗)

andµ∗ := (µ∗
i ) such that the following holds for alli ∈ V :

lim
k→+∞

‖µi(k)− µ∗
i ‖ = 0, lim

k→+∞
‖λi(k)− λ∗‖ = 0, lim

k→+∞
‖wi(k)− w∗‖ = 0.

2) (Primal estimate convergence) If the dual solution verifiesξ∗ ∈ D∗
s , i.e.Ωi(ξ

∗
i ) is a singleton

for all i ∈ V , then there isx∗ ∈ X∗
∆ with x∗ := (x∗

i ) such that the following holds for all

i ∈ V :

lim
k→+∞

‖xi(k)− x∗
i ‖ = 0.

IV. D ISCUSSION

Before proceeding with the technical proofs for Theorem 3.1,we would like to make the

following observations. First, our methodology is motivated by the need of solving a nonconvex

problem in a distributed way by a group of agents whose interactions change with time. This

places a number of restrictions on the type of solutions thatone can find. Time-varying interac-

tions of anonymous agents can be currently solved via agreement algorithms; however these are

inherently convex operations, which does not work well in nonconvex settings. To overcome this,

one can resort to dualization. Admittedly, zero duality gapdoes not hold in general for nonconvex

problems. A possibility would be to resort to nonlinear augmented Lagrangians, for which strong

duality holds in a broad class of programs [8], [9], [32]. However, we find here another problem,

as a distributed solution using agreement requires separability, as the one ensured by the linear

Lagrangians we use here. Thus, we have looked for alternative assumptions that can be easier

to check and allow the dualization approach to work.
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More precisely, Theorem 3.1 shows that dual estimates always converge to a dual optimal

solution. The convergence of primal estimates requires an additional assumption that the dual

limit has a single optimal solution. Let us refer to this assumption asthe singleton dual optimal

solution set(SD for short). This assumption may not be easy to checka priori, however it is

of similar nature as existing algorithms for nonconvex optimization. In [8] and [9], subgradient

methods are defined in terms of (nonlinear) augmented Lagrangians, and it is shown that every

accumulation point of the primal sequence is a primal solution provided that the dual function

is required to be differentiable at the dual limit. An open question is how to resolve the above

issues imposed by the multi-agent setting with less stringent conditions on the nature of the

nonconvex optimization problem.

In the following, we study a class of nonconvex quadratic programs for which a sufficient

condition guarantees that the SD assumption holds. Nonconvex quadratic programs hold great

importance from both theoretic and practical aspects. In general, nonconvex quadratic programs

are NP-hard, and please refer to [27] for detailed discussion. The aforementioned sufficient

condition only requires checking the positive definitenessof a matrix.

Consider the following nonconvex quadratic program:

min
z∈∩i∈V Xi

f(z) =
∑

i∈V

fi(z) =
∑

i∈V

(

‖z‖2Pi
+ 2〈qi, z〉

)

,

s.t. ‖z‖2Ai,ℓi
+ 2〈bi,ℓi , z〉+ ci,ℓi ≤ 0, ℓi = 1, · · · ,mi, (10)

where‖z‖2Ai,ℓi
, zTAi,ℓiz andAi,ℓi are real and symmetric matrices. The approximate problem

of P∆ is given by

min
x∈R2N

∑

i∈V

fi(xi) =
∑

i∈V

(

‖xi‖
2
Pi
+ 2〈qi, xi〉

)

,

s.t. ‖xi‖
2
Ai,ℓi

+ 2〈bi,ℓi , xi〉+ ci,ℓi ≤ 0, ℓi = 1, · · · ,mi,

− xi + xiD −∆ ≤ 0, xi − xiD −∆ ≤ 0, xi ∈ Xi, i ∈ V. (11)

We introduce the dual multipliers(µ, λ, w) as before. The local Lagrangian functionLi can

be written as follows:

Li(xi, ξi) , ‖xi‖
2
Pi+

∑mi
ℓi=1

µi,ℓi
Ai,ℓi

+ 〈ζi, xi〉,
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where the term independent ofxi is dropped andζi is a linear function ofξi = (µi, λ, w). The

dual function and dual problem can be defined as before. Consider any dual optimal solution

ξ∗. If for all i ∈ V :

(P1)Pi +
∑mi

ℓi=1 µ
∗
i,ℓi

Ai,ℓi is positive definite;

(P2) x∗
i =

(

Pi +
∑mi

ℓi=1 µ
∗
i,ℓi

Ai,ℓi

)−1
ζ∗i ∈ Xi;

then the SD assumption holds. The properties (P1) and (P2) are easy to verify in a distributed

way once obtaining a dual solutionξ∗. We would like to remark that (P1) is used in [12] to

determine the unique global optimal solution via canonicalduality when the constraint setX is

absent.

V. CONVERGENCE ANALYSIS

This section provides the complete analysis of Theorem 3.1.Recall thatg is continuous and

X is compact. Then there areG,H > 0 such that‖g(x)‖ ≤ G and‖x‖ ≤ H for all x ∈ X. We

start our analysis from the computation of supergradients of Qi.

Lemma 5.1 (Supergradient computation): If x̄i ∈ Ωi(ξ̄i), then
(

g(x̄i)
T , (−∆−x̄i)

T , x̄T
i , (x̄i−

∆)T ,−x̄T
i )

T is a supergradient ofQi at ξ̄i; i.e., the following holds for anyξi ∈ Ξ′:

Qi(ξi)−Qi(ξ̄i) ≤ 〈g(x̄i), µi − µ̄i〉+ 〈−∆− x̄i, λi − λ̄i〉

+ 〈x̄i, λiU − λ̄iU 〉+ 〈x̄i −∆, wi − w̄i〉+ 〈−x̄i, wiU − w̄iU 〉. (12)

Proof: The proof is based on the computation of dual subgradients, e.g., in [4], [5].

A direct result of Lemma 5.1 is that the vector(g(xi(k))
T , (−∆ − xi(k))

T , xi(k)
T , (xi(k) −

∆)T ,−xi(k)
T ) is a supergradient ofQi at vi(k); i.e., the following supergradient inequality holds

for any ξi ∈ Ξ′:

Qi(ξi)−Qi(vi(k)) ≤ 〈g(xi(k)), µi − µi(k)〉+ 〈−∆− xi(k), λi − viλ(k)i〉

+ 〈xi(k), λiU − viλ(k)iU 〉+ 〈xi(k)−∆, wi − viw(k)i〉+ 〈−xi(k), wiU − viw(k)iU 〉. (13)

Now we can see that the update rule (9) of dual estimates in theDADS algorithm is a

combination of a dual subgradient scheme and average consensus algorithms. The following

establishes thatQi is Lipschitz continuous with some Lipschitz constantL.
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Lemma 5.2 (Lipschitz continuity of Qi): There is a constantL > 0 such that for anyξi, ξ̄i ∈

Ξ′, it holds that‖Qi(ξi)−Qi(ξ̄i)‖ ≤ L‖ξi − ξ̄i‖.

Proof: Similarly to Lemma 5.1, one can show that ifx̄i ∈ Ωi(ξ̄i), then (g(x̄i)
T , (−∆ −

x̄i)
T , x̄T

i , (x̄i−∆)T ,−x̄T
i )

T is a supergradient ofQi at ξ̄i; i.e., the following holds for anyξi ∈ Ξ′:

Qi(ξi)−Qi(ξ̄i) ≤ 〈g(x̄i), µi − µ̄i〉+ 〈−∆− x̄i, λi − λ̄i〉

+ 〈x̄i, λiU − λ̄iU 〉+ 〈x̄i −∆, wi − w̄i〉+ 〈−x̄i, wiU − w̄iU 〉.

Since ‖g(x̄i)‖ ≤ G and ‖x̄i‖ ≤ H, there isL > 0 such thatQi(ξi) − Qi(ξ̄i) ≤ L‖ξi − ξ̄i‖.

Similarly, Qi(ξ̄i)−Qi(ξi) ≤ L‖ξi − ξ̄i‖. We then reach the desired result.

In the DADS algorithm, the error induced by the projection map PMi
is given by:

ei(k) := PMi
[vi(k) + α(k)Di(k)]− vi(k).

We next provide a basic iterate relation of dual estimates inthe DADS algorithm.

Lemma 5.3 (Basic iterate relation): Under the assumptions in Theorem 3.1, for any((µi), λ, w) ∈

Ξ with (µi, λ, w) ∈Mi for all i ∈ V , the following estimate holds for allk ≥ 0:

∑

i∈V

‖ei(k)− α(k)Di(k)‖
2 ≤ α(k)2

∑

i∈V

‖Di(k)‖
2 +

∑

i∈V

(‖ξi(k)− ξi‖
2 − ‖ξi(k + 1)− ξi‖

2)

+ 2α(k)
∑

i∈V

{〈g(xi(k)), µi(k)− µi〉+ 〈−∆− xi(k), v
i
λ(k)i − λi〉

+ 〈xi(k), v
i
λ(k)iU − λiU 〉+ 〈xi(k)−∆, viw(k)i − wi〉+ 〈−xi(k), v

i
w(k)iU − wiU 〉}. (14)

Proof: Recall thatMi is closed and convex. The proof is a combination of the nonexpansion

property of projection operators in [5] and the property of balanced graphs.

The lemma below shows the asymptotic convergence of dual estimates.

Lemma 5.4 (Dual estimate convergence):Under the assumptions in Theorem 3.1, there ex-

ists a dual optimal solutionξ∗ := ((µ∗
i ), λ

∗, w∗) ∈ D∗
∆ such that lim

k→+∞
‖µi(k)− µ∗

i ‖ = 0,

lim
k→+∞

‖λi(k)− λ∗‖ = 0, and lim
k→+∞

‖wi(k)− w∗‖ = 0.

Proof: By the dual decomposition property (4) and the boundedness ofdual optimal solution

sets, the dual problem(D∆) is equivalent to the following:

max
(ξi)

∑

i∈V

Qi(ξi), s.t. ξi ∈Mi. (15)
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Note thatQi is affine andMi is convex, implying that the problem (15) is a constrained convex

programming where the global objective function is a simplesum of local ones and the local

state constraints are convex and compact. The rest of the proofs can be finished by following

similar lines in [36], and thus omitted.

The remainder of this section is dedicated to characterizing the convergence properties of

primal estimates. Toward this end, we present some properties ofΩi.

Lemma 5.5 (Properties of marginal maps):The set-valued marginal mapΩi is closed. In

addition, it is upper semicontinuous atξi ∈ Ξ′; i.e., for anyǫ′ > 0, there isδ′ > 0 such that for

any ξ̃i ∈ BΞ′(ξi, δ
′), it holds thatΩi(ξ̃i) ⊂ B2X (Ωi(ξi), ǫ

′).

Proof: Consider sequences{xi(k)} and{ξi(k)} satisfying lim
k→+∞

ξi(k) = ξ̄i, xi(k) ∈ Ωi(ξi(k))

and lim
k→+∞

xi(k) = x̄i. SinceLi is continuous, then we have

Li(x̄i, ξ̄i) = lim
k→+∞

Li(xi(k), ξi(k)) ≤ lim
k→+∞

(Qi(ξi(k))) = Qi(ξ̄i),

where in the inequality we use the property ofxi(k) ∈ Ωi(ξi(k)), and in the last equality we

use the continuity ofQi. Then x̄i ∈ Ωi(ξ̄i) and the closedness ofΩi follows.

Note thatΩi(ξi) = Ωi(ξi)∩X. Recall thatΩi is closed andX is compact. Then it is a result of

Proposition 1.4.9 in [2] thatΩi(ξi) is upper semicontinuous atξi ∈ Ξ′; i.e, for any neighborhood

U in 2X of Ωi(ξi), there isδ′ > 0 such that∀ξ̃i ∈ BΞ′(ξi, δ
′), it holds thatΩi(ξ̃i) ⊂ U . Let

U = B2X (Ωi(ξi), ǫ
′), and we obtain upper semicontinuity atξi.

With the above results, we are ready to show the convergence of primal estimates.

Lemma 5.6 (Primal estimate convergence):Under the assumptions in Theorem 3.1, for

eachi ∈ V , it holds that lim
k→+∞

xi(k) = x̃i wherex̃i = Ωi(ξ
∗
i ).

Proof: The combination of upper semicontinuity ofΩi in Lemma 5.6 and lim
k→+∞

ξi(k) = ξ∗i

with ξ∗i given in Lemma 5.4 ensures that each accumulation point of{xi(k)} is a point in the

setΩi(ξ
∗
i ); i.e., the convergence of{xi(k)} to the setΩi(ξ

∗
i ) can be guaranteed. SinceΩi(ξ

∗
i ) is

singleton, theñxi = Ωi(ξ
∗
i ). We arrive in the desired result.

Now we are ready to show the main result of this paper, Theorem3.1. In particular, we will

show complementary slackness, primal feasibility ofx̃, and its primal optimality, respectively.

Proof for Theorem 3.1:

Claim 1: 〈−∆− x̃i + x̃iD , λ
∗
i 〉 = 0, 〈−∆+ x̃i − x̃iD , w

∗
i 〉 = 0 and 〈g(x̃i), µ

∗
i 〉 = 0.
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Proof: Rearranging the terms related toλ in (14) leads to the following inequality holding

for any ((µi), λ, w) ∈ Ξ with (µi, λ, w) ∈M for all i ∈ V :

−
∑

i∈V

2α(k)(〈−∆− xi(k), v
i
λ(k)i − λi〉+ 〈xiD(k), v

iD
λ (k)i − λi〉)

≤ α(k)2
∑

i∈V

‖Di(k)‖
2 +

∑

i∈V

(‖ξi(k)− ξi‖
2 − ‖ξi(k + 1)− ξi‖

2)

+ 2α(k)
∑

i∈V

{〈−xi(k), v
i
w(k)iU − wiU 〉+ 〈xi(k)−∆, viw(k)i − wi〉+ 〈g(xi(k)), µi(k)− µi〉}.

(16)

Sum (16) over[0, K], divide by s(K) :=
∑K

k=0 α(k), and we have

1

s(K)

K
∑

k=0

α(k)
∑

i∈V

2(〈∆+ xi(k), v
i
λ(k)i − λi〉+ 〈−xiD(k), v

iD
λ (k)i − λi〉)

≤
1

s(K)

K
∑

k=0

α(k)2
∑

i∈V

‖Di(k)‖
2 +

1

s(K)
{
∑

i∈V

(‖ξi(0)− ξi‖
2 − ‖ξi(K + 1)− ξi‖

2)

+
K
∑

k=0

2α(k)
∑

i∈V

(〈g(xi(k)), µi(k)− µi〉+ 〈xi(k)−∆, viw(k)i − wi〉+ 〈−xi(k), v
i
w(k)iU − wiU 〉)}.

(17)

We now proceed to show〈−∆− x̃i+ x̃iD , λ
∗
i 〉 ≥ 0 for eachi ∈ V . Notice that we have shown

that lim
k→+∞

‖xi(k)− x̃i‖ = 0 for all i ∈ V , and it also holds thatlim
k→+∞

‖ξi(k)− ξ∗i ‖ = 0 for all

i ∈ V . Let λi =
1
2
λ∗
i , λj = λ∗

j for j 6= i andµi = µ∗
i , w = w∗ in (17). Recall that{α(k)} is not

summable but square summable, and{Di(k)} is uniformly bounded. TakeK → +∞, and then

it follows from Lemma 5.1 in [36] that:

〈∆+ x̃i − x̃iD , λ
∗
i 〉 ≤ 0. (18)

On the other hand, sinceξ∗ ∈ D∗
∆, we have‖ξ∗‖ ≤ γ given the fact thatγ is an upper bound

of D∗
∆. Let ξ := (µ, λ, w) where ξi := (µi, λ, w). Then we could choose a sufficiently small

δ′ > 0 and ξ ∈ Ξ in (17) such that‖ξi‖ ≤ γ + θi whereθi is given in the definition ofMi and

ξ is given by:λi = (1 + δ′)λ∗
i , λj = λ∗

j for j 6= i, w = w∗, µ = µ∗. Following the same lines

toward (18), it gives that−δ〈∆+ x̃i− x̃iD , λ
∗
i 〉 ≤ 0. Hence, it holds that〈−∆− x̃i+ x̃iD , λ

∗
i 〉 = 0.

The rest of the proof is analogous and thus omitted.

Claim 2: x̃ is primal feasible to the approximate problem (P∆).
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Proof: We have known that̃xi ∈ X. We proceed to show−∆ − x̃i + x̃iD ≤ 0 by

contradiction. Since‖ξ∗‖ ≤ γ, we could choose a sufficiently smallδ′ > 0 and ξ := (µ, λ, w)

where ξi := (µi, λ, w) and ‖ξi‖ ≤ γ + θi in (17) as follows: if (−∆ − x̃i + x̃iD)ℓ > 0, then

(λi)ℓ = (λ∗
i )ℓ + δ′; otherwise,(λi)ℓ = (λ∗

i )ℓ, andw = w∗, µ = µ∗. The rest of the proofs is

analogous to Claim 1.

Similarly, one can showg(x̃i) ≤ 0 and−∆+ x̃i− x̃iD ≤ 0 by applying analogous arguments.

We conclude that̃x is primal feasible to the approximate problem (P∆).

Claim 3: x̃ is a primal solution to the problem (P∆).

Proof: Sincex̃ is primal feasible to the approximate problem (P∆), then
∑

i∈V fi(x̃i) ≥ p∗∆.

On the other hand, it follows from Claim 1 that

∑

i∈V

fi(x̃i) =
∑

i∈V

Li(x̃i, ξ
∗
i ) ≤

∑

i∈V

Qi(ξ
∗
i ) ≤ p∗∆.

We then conclude that
∑

i∈V fi(x̃i) = p∗∆. In conjunction with the feasibility of̃x, this further

ensures that̃x is primal optimal to the problem (P ∗
∆). This completes the proofs for Theorem 3.1.

VI. SIMULATIONS

In this section, we examine several numerical examples to illustrate the performance of our

algorithm.

A. Robust source localization

We consider a robust source localization problem where the objective function is adopted

from [1], [24]. In particular, consider a network of four agents V , {1, · · · , 4}. The objective

functions of agents are piecewise linear and given byfi(z) = |‖z−ai‖−r|. The local inequality

functions are given by:

g1(z) =















z1 − 8

−z1 − 8

z2 − 8

−z2 − 8















, g2(z) =















z1 − 9

−z1 − 9

z2 − 9

−z2 − 9















, g3(z) =















z1 − 8.5

−z1 − 8.5

z2 − 8.5

−z2 − 8.5















, g4(z) =















z1 − 9.5

−z1 − 9.5

z2 − 9.5

−z2 − 9.5















,
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and, the local constraint sets are given by

X1 = {z ∈ R
2 | − 10 ≤ z1 ≤ 10, −10 ≤ z2 ≤ 10},

X2 = {z ∈ R
2 | − 10.5 ≤ z1 ≤ 10.5, −10.5 ≤ z2 ≤ 10.5},

X3 = {z ∈ R
2 | − 9 ≤ z1 ≤ 9, −10 ≤ z2 ≤ 10},

X4 = {z ∈ R
2 | − 11 ≤ z1 ≤ 11, −9 ≤ z2 ≤ 9}.

In the simulation, we choose the parameterδ = 0.1. The local Lagrangian function can be

written asLi(xi, ξi) = fi(xi) + 〈ζi, xi〉 by dropping the terms independent ofxi andζi is linear

in ξi. Figure 3 shows the sectional plot off(z) ,
∑

i∈V fi(z) alongz1-axle, demonstrating that

f is nonconvex and has local minima.

The inter-agent topologiesG(k) are given by:G(k) is 1 ↔ 2 ↔ 3 ↔ 4 when k is odd, and

G(k) is 1→ 2↔ 3← 4→ 1 whenk is even. It is easy to see thatG(k) satisfies the periodical

strong connectivity assumption 2.3.

1) Simulation 1; the assumption of SD is satisfied:For this numerical simulation, we consider

the set of parametersr = 0.75, a1 = [0 0]T , a2 = [0 1]T , a3 = [1 0]T and a4 = [1 1]T .

Figure 1 shows the surface of the global objective functionf(x) =
∑

i∈V fi(x). The contour,

Figure 2, indicates that the set of optimal solutions is a region around[0.5 0.5]T . Figure 4 is

the sectional plot off1 alongz1-axle.

From Figures 5–8, one can see thatζi(k) converges to some point(0, 0.05]× (0, 0.05]. Hence,

ξ∗ ∈ D∗
s ; i.e., the assumption of SD is satisfied.

The simulation results are shown in Figures 9 to 10. In particular, Figure 9 (resp. Figure 10)

shows the evolution of primal estimates of the primal solution x∗(1) (resp.x∗(2)). After about

25 iterates, the primal estimates oscillate within a very small region and eventually agree upon

the point[0.4697 0.472]T which coincides with a global optimal solution.

2) Simulation 2; the assumption of SD is violated:Consider the same problem as Simulation

1 with r = 0.75 and ai = [0 0]T for i ∈ V . From Figures 11 and 12, one can see thatζi(k)

converges to[0 0]T . Hence,ξ∗ /∈ D∗
s and the assumption of SD is not satisfied. Figures 13

and 14 confirms that primal estimates fail to converge in thiscase.

3) Simulation 3; comparison with gradient-based algorithms: Consider the same set of param-

eters as in Simulation 1 without including the inequality constraints. The multi-agent interaction
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topologies are the same. We implement the diffusion gradient algorithm in [22] for this problem.

Figures 15 and 16 show that the primal estimates reach the consensus value of[−0.65 −0.38]T

after 40000 iterates. From Figure 2, it is clear that[−0.65 − 0.38]T is not a global optimum.

By comparing Figures 9, 10, 15 and 16, one can see that our algorithm is much faster than

the diffusion gradient method at the expense of solving a global optimization problem at each

iterate.

We also implement the incremental gradient algorithm in [33] for the same set of parameters

in Simulation 1 without including inequality constraints.Figure 17 demonstrates that the perfor-

mance of the incremental gradient method is analogous to thediffusion gradient algorithm; i.e.,

the estimates are trapped in some local minimum, and the convergence rate is slower than our

algorithm.

B. Nonconvex quadratic programming

Consider a network of four agents where the topologies are thesame as before. The local

objective function isfi(z) = ‖z‖2Pi
+ 〈qi, z〉 and the local constraint function isgi(z) = ‖z‖2Ai

+

〈bi, z〉+ ci ≤ 0. In particular, we use the following parameters:

P1 = P2 = P3 =





0 1

1 1



 , P4 =





0 1

1 0



 ,

A1 = A4 =





18 0

0 8



 , b1 = b4 = [2 0], c1 = c4 = −1,

A2 =





13 −2

−2 8



 , b2 = [0 4], c2 = −1,

A3 =





5 −5

−5 5



 , b3 = [10 10], c3 = −1.

And the local constraint sets are given by

X1 = {z ∈ R
2 | − 10 ≤ z1 ≤ 10, −10 ≤ z2 ≤ 10},

X2 = {z ∈ R
2 | − 10.5 ≤ z1 ≤ 10.5, −10.5 ≤ z2 ≤ 10.5},

X3 = {z ∈ R
2 | − 9 ≤ z1 ≤ 9, −10 ≤ z2 ≤ 10},

X4 = {z ∈ R
2 | − 11 ≤ z1 ≤ 11, −9 ≤ z2 ≤ 9}.
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One can see that the sum ofPi is

P =
4

∑

i=1

Pi =





0 4

4 3





which is indefinite. We chooseδ = 0.3 for the simulation.

The dual estimates associated with the inequality constraints converge toµ∗
1 = 0.5027, µ∗

2 =

3.1061, µ∗
3 = 1.8792 andµ∗

4 = 2.2910 in Figure 20. One can verify that properties P1 and P2

hold in this case:

Pi + µ∗
iAi > 0, (Pi + µ∗

iAi)
−1ζ∗i ∈ Xi, i ∈ V.

The primal estimates converge to[−0.1933 − 0.3005]T , [−0.2621 − 0.5360]T , [−0.1013 −

0.0116]T and [−0.2144 − 0.2667]T in Figures 18 and 19, and the collection of these points

consists of a global optimal solution to the approximate problem.

VII. C ONCLUSIONS

We have studied a distributed dual algorithm for a class of multi-agent nonconvex optimization

problems. The convergence of the algorithm has been proven under the assumptions that (i) the

Slater’s condition holds; (ii) the optimal solution set of the dual limit is singleton; (iii) the

network topologies are strongly connected over any given bounded period. An open question is

how to address the shortcomings imposed by nonconvexity andmulti-agent interactions settings.
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Fig. 9. The primal estimates ofx∗(1)
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Fig. 10. The primal estimates ofx∗(2)
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Fig. 13. The primal estimates ofx∗(1)
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Fig. 14. The primal estimates ofx∗(2)
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Fig. 15. The primal estimates ofx∗(1) of the diffusion gradient method
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Fig. 16. The primal estimates ofx∗(2) of the diffusion gradient method
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Fig. 17. The primal estimates ofx∗(1) of the incremental gradient method
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Fig. 18. The primal estimates ofx∗(1) of quadratic programming
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Fig. 19. The primal estimates ofx∗(2) of quadratic programming
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Fig. 20. The dual estimates ofµ∗
i of quadratic programming
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