
2011 IEEE International Conference on Robotics and Automation
Shanghai International Conference Center
May 9-13, 2011, Shanghai, China

978-1-61284-380-3/11/$26.00 ©2011 IEEE 5893

are not robust to spurious observations, which is the main

topic of this paper. Finally, a distributed robust solution, also

based on RANSAC, can be found in our previous work [10].

In contrast with this, the approach presented here considers

covariances in the observations of the robots and overcomes

several limitations of the previous algorithm. More precisely,

in [10] the three steps of RANSAC are performed separately.

However, in our new algorithm they are done at once,

ensuring convergence to the maximum likelihood of the inlier

observations simultaneously to the hypotheses generation and

voting processes. This saves in running time and memory as

flooding subroutines that were needed before have been now

prescinded from; see Section IV for more information.

Finally, a connection can also be made with the recent

literature on calibration techniques for sensor networks.

In [4], a collaborative sensor-bias calibration scheme for

physically distributed static sensors is proposed. The pa-

per [4] purposefully obviates the treatment of outliers, which

is the main focus of our work. As such, our algorithm can

be seen as a contribution to this body of literature.

Along the paper, we do not discuss how the individual per-

ception data is obtained or the data association problem [2].

We merely focus on the problem of performing robust

distributed data fusion, discarding the outlier information.

II. PROBLEM STATEMENT

We consider a network of N robots labeled by i ∈ V =
{1, . . . , N}. At each time t > 0, communications among

robots are defined according to undirected graphs G(t) =
{V, E(t)}, where E(t) ⊂ V × V represents the edge set.

Thus, robots i and j can communicate at time t if and only

if (i, j) ∈ E(t). The neighbors of robot i ∈ V at time t > 0
are those that can directly communicate with it; i.e., Ni(t) =
{j ∈ V | (i, j) ∈ E(t)}.

Assumption 2.1 (Conectness): There exists a positive in-

teger T such that, for any instant of time t ≥ 0, the graph

G(V, E(t) ∪ E(t+ 1) ∪ . . . ∪ E(t+ T)) is connected.

Let us consider some object in the environment defined

by a set of attributes, θ ∈ R
d. These attributes can be, for

example, the position of the object in a world coordinate

frame, its shape and color, or a set of descriptors that identify

it. Each robot has some noisy initial measurement of θ, say

xi ∈ R
d, with uncertainty contained in the symmetric, semi-

definite positive covariance matrix Λi ∈ R
d×d.

The maximum likelihood (ML) of θ, θML, is estimated

using a weighted least-squares approximation from the robot

measurements as

θML = (ΣN
i=1Λ

−1

i)−1ΣN
i=1Λ

−1

i xi. (1)

A distributed algorithm to compute the ML can be found

in [12]. At the beginning, each robot initializes two state

variables, Pi(0) = Λ
−1

i and qi(0) = Λ
−1

i xi. Then, at each

iteration, they update these variables using

Pi(t+ 1) = aii(t)Pi(t) +
∑

j∈Ni(t)

aij(t)Pj(t),

qi(t+ 1) = aii(t)qi(t) +
∑

j∈Ni(t)

aij(t)qj(t),
(2)

where A(t) = [aij(t)] are the adjacency matrices associated

with G(t), which must be doubly stochastic and non degen-

erate ∀t [3]. In [12] it is shown that under these assumptions

lim
t→∞

Pi(t) =
1

N

∑

j∈V

Pj(0), lim
t→∞

qi(t) =
1

N

∑

j∈V

qj(0),

lim
t→∞

P
−1
i (t)qi(t) = θML, ∀i = 1, . . . , N.

(3)

The speed of convergence of the algorithm will depend on

the evolution of the topology. The covariance associated to

the ML estimate is ΛML = 1

N
limt→∞ P−1

i (t), which will

always be smaller than any of the initial covariances of the

robots. Note that the inverse of P−1

i (t) is always well defined

because of the properties of Λi and eq. (2). For additional

details about the algorithm, we refer the reader to [12].

The algorithm relies only on local communications and

supports changes in the network topology. Moreover, the

intermediate estimates, θi(t) = P−1

i (t)qi(t), are unbiased;

that is, E[θi(t)] = θML, ∀t ≥ 0. However, if some of

the initial measurements contain extreme noise or spurious

information on the attributes of the object being measured,

the final estimation will be erroneous and unreliable.

To filter the outliers from the algorithm, we propose an

algorithm that follows the RANSAC approach [5]. The algo-

rithm generates a set of hypotheses computed from random

subsets of robots and voted by all of them. The hypothesis

with the larger number of votes, will be considered the right

one and the robots who voted for it will constitute the set

of inliers. In the following sections we will explain how all

the process is done in a decentralized way using distributed

consensus techniques.

III. DISTRIBUTED GENERATION OF RANDOM

HYPOTHESES

Following the RANSAC principles, we assume that each

observation has equal probability of being a good observation

pin independent from the probability of the rest of observa-

tions. We will denote by Vin ⊂ V the subset of robots with

inlier information. The goal is to estimate the ML of the

observations of the robots in Vin in a distributed way.

We define one hypothesis as the ML of the observations

of a subset of the robots. For one hypothesis, h, let ∅ 6=
Vh ⊆ V be the subset of robots whose observations generate

the hypothesis and

θ
h
ML = (

∑

i∈Vh

Λ
−1

i)−1
∑

i∈Vh

Λ
−1

i xi. (4)

Proposition 3.1: The variable θi(t) = P−1

i (t)qi(t), up-

dated using (2) with initial conditions

[Pi(0), qi(0)] =

{

[Λ−1

i ,Λ−1

i xi] if i ∈ Vh

[0, 0] otherwise
, (5)

asymptotically converges to (4) for all i ∈ V .

This means that the network is able to compute partial

maximum likelihoods of different subsets of the robots in a

decentralized way. The covariance associated to the partial

ML will be Λ
h
ML = 1

N
limt→∞ P−1

i (t). We show now how

5894

the robots configure Vh for the different hypotheses in a

distributed way.

Depending on the model to fit the observations, RANSAC

requires c samples to generate one hypothesis [5]. Taking into

account our definition of one hypothesis, c can be chosen

arbitrarily because for any c ≥ 1 the ML of the samples

can be computed. Given a fixed c, to build one hypothesis

h we require c robots to belong to Vh, |Vh| = c. We use a

max consensus algorithm with random initial conditions to

decide which c robots form the subset. Initially, each robot

generates a random number hi > 0 and the hypothesis set

hi(0) = {hi}, which is updated using

hi(t+ 1) = maxc(hi(t)
⋃

j∈Ni
hj(t)), (6)

where maxc selects the c maximum elements of the set.

The max consensus algorithm is proved to converge in at

most Diam(G) iterations [3]. In this case hi(Diam(G)) will

converge to the c maximum values of the network. Assuming

that each robot generates a different random number the

subset Vh is established as

Vh = {i ∈ V | hi ∈ hi(Diam(G))}. (7)

Let us note that each robot knows if it belongs to Vh in

a local way. The process can also be executed for all the

hypotheses in parallel.

The number of hypotheses, K, is computed using the

RANSAC formulas [5].

IV. DISTRIBUTED VOTING OF THE HYPOTHESES

A. Distributed Static Voting

For the sake of completeness, and also for comparison

purposes with our current approach, we present a variation of

the distributed voting method introduced in [10] in terms of

stochastic variables. Assume that the hypotheses have already

been computed. In order to vote for the set of hypotheses,

each robot initializes a voting vector, vi ∈ R
K , i = 1, . . . , N,

with as many elements as hypotheses to be voted for.

For every hypothesis h, the hth component of the voting

vector of robot i, vhi , is initialized as

vhi (0) =

{

1, if d(xi,θ
h
ML,Λ

h
i) ≤ χ2

d,p,

0, if d(xi,θ
h
ML,Λ

h
i) > χ2

d,p,
(8)

where d(xi,θ
h
ML,Λ

h
i) is the Mahalanobis distance from the

observation xi to the partial ML estimate, θ
h
ML, and χ2

d,p

is the value of the Chi square distribution for d degrees of

freedom and confidence probability p. The covariance, Λh
i ,

is computed depending on whether robot i belonged to Vh

or not,

Λ
h
i =

{

Λ
h
ML +Λi if i 6∈ Vh,

Λ
h
ML +Λi − 2Λh

MLΛ
−1

i Λ
h
ML if i ∈ Vh.

(9)

In the first case, xi and θ
h
ML are independent and both

covariances are considered. In the second case, there exists

a correlation between xi and θ
h
ML, which is taken care of by

the third member of the sum.

After this, the robots exchange messages averaging vi [3].

The vectors of all the robots will converge to the average

of the initial conditions, which in this case is, for each

hypothesis, the number of votes divided by the total number

of robots. At this point, all the robots are able to select the

best hypothesis, h∗ = argmaxh vhi and by eq. (8) they also

know if their observation was an inlier or an outlier. The

final ML can then be obtained by a similar algorithm, where

only the inlier robots contribute to the final result.

However, due to the asymptotic convergence of (2), the

exact ML of the hypotheses will not be available to the

robots, and this will require a stopping criterion to initialize

the voting. Moreover, the previous approach requires three

different consensus steps. We propose next a dynamic voting

approach where the robots vote for (or not) a hypothesis

when their observations pass the Chi-square test. If one

hypothesis is supported by all the robots in Vin, then the

desired ML will be obtained by the algorithm in only one

consensus step.

B. Distributed Dynamic Voting

In order to make the presentation clearer, we describe the

algorithm just for one hypothesis, omitting the superscript h.

As explained in the previous section, the robots initially de-

cide the subset whose observations configure the hypothesis,

eq. (6), and all of them initialize their states according to (5).

In contrast with a static voting approach, now the voting

process starts at the same time as the hypotheses generation.

The initial votes are

vi(0) =

{

1, if i ∈ Vh,

0, otherwise.
(10)

The new local updates for each robot are

Pi(t+ 1) = aii(t)Pi(t) +
∑

j∈Ni(t)

aij(t)Pj(t) + u
P
i (t),

qi(t+ 1) = aii(t)qi(t) +
∑

j∈Ni(t)

aij(t)qj(t) + u
q

i (t),

vi(t+ 1) = aii(t)vi(t) +
∑

j∈Ni(t)

aij(t)vj(t) + u
v
i(t),

(11)

where uP
i (t), u

q
i (t) and uv

i (t) are the dynamic inputs in the

consensus rule and A(t) = [aij(t)] is defined as in (2).

In order to decide the inputs, each robot executes the Chi-

square test with the current value of θi(t) = P−1

i (t)qi(t).
For abbreviation, we will denote

di(t) = d(xi,θi(t),Λi). (12)

Note that the inverse of Pi(t) is not always well defined.

For the time instants t for which P−1

i (t) does not exist, we

cannot compute the Mahalanobis distance. However, at these

instants we assign the distance di(t) a value larger than χ2
d,p.

Denote the set of time instants in which robot i changes

its opinion as follows:

T +

i = {t ∈ N | di(t) ≤ χ2
d,p ∧ di(t− 1) > χ2

d,p},

T −
i = {t ∈ N | di(t) > χ2

d,p ∧ di(t− 1) ≤ χ2
d,p}.

(13)

5895

The control inputs of robot i are given by:

[uP
i (t), u

q
i (t), uv

i (t)] =

[Λ−1

i ,Λ−1

i xi, 1] if t ∈ T +

i ,

−[Λ−1

i ,Λ−1

i xi, 1] if i ∈ T −
i ,

[0, 0, 0] otherwise.
(14)

Let us note that we have not considered the current

estimation of the covariance matrix of the hypothesis in

the Mahalanobis distance in eq. (12). We have chosen

this conservative solution because in the first iterations of

the algorithm the estimation of Pi(t) is highly unreliable.

Usually, at these times Pi(t) is multiplied by weights very

close to zero, resulting in large covariances due to the inverse

P−1

i (t). When this happens, the Mahalanobis distances are

close to zero and spurious votes appear in the algorithm.

On the other hand, by doing this, some false negative votes

may be introduced in the voting. However, this is not very

problematic if there are still enough inliers to compute a

good solution.

Proposition 4.1: If T +

i and T −
i are finite for all i ∈ V

then the rule (11) with control inputs (14) converges to

lim
t→∞

θi(t) = (
∑

j∈Vcon

Λ
−1

j)−1
∑

j∈Vcon

Λ
−1

j xj , (15)

lim
t→∞

vi(t) =
|Vcon|

N
. (16)

where Vcon = {i ∈ V | di(t) ≤ χ2
d,p, t > tmax} and tmax is a

time instant such that tmax > t, ∀t ∈ T +

i , T −
i , ∀i ∈ V.

If the robots are not indefinitely changing their vote, then the

algorithm will achieve convergence to the ML of the subset

of robots that have voted for it. At the end the hypothesis

with the larger value of vhi will be the one selected by all

the robots as the good one. Note that with this approach,

once the hypothesis is selected there is no need to compute

additional ML estimates.

What remains to be done now is to determine conditions

that guarantee the covergence to the ML of the inliers.

C. Conditions to reach the ML of Vin

We derive a set of reasonable conditions such that, if

Vh ⊆ Vin for one hypothesis, then the assumptions in

Proposition 4.1 are met and Vcon = Vin for that hypothesis.

First, we impose a condition on the inlier observations.

Since they are different measurements of the same vector,

they have to be close to each other.

Condition 1: It holds that d(xi, xj ,Λi) ≤ χ2
d,p for any

pair of robots, i, j ∈ Vin.

Lemma 4.1: Let CH(Vin) be the convex hull of the inlier

observations. If Condition 1 is satisfied, then, for any robot

i ∈ Vin and any x ∈ CH(Vin), we have d(xi, x,Λi) ≤ χ2
d,p.

This means that we have a set of points voted for by all the

inliers, which leads to a second condition

Condition 2: For any Vh ⊆ Vin, θ
h
ML ∈ CH(Vin).

The lemma also suggests a restriction to impose to the outlier

observations.

Condition 3: For all x ∈ CH(Vin) and k 6∈ Vin it holds

that d(xk, x,Λk) > χ2
d,p.

However, let us note that because our algorithm is not

convex, the above conditions are not enough to ensure that

one hypothesis instantiated with inliers will end up with all

the inliers voting for it and all the outliers rejecting it. It could

be possible that some outliers vote for it at some intermediate

estimation or that one or more inliers constantly change their

vote and convergence does not occur.

An additional condition to ensure convergence to the

desired result is imposed. First let us notice that θi(t) and the

Mahalanobis distance, di(t), can be written as functions of

a vector w = (w1, . . . , wN) ∈ [0, 1]N , which represents the

weights of the linear combination (not necessarily convex)

of the different observations.

θi(w) = P
−1
i (w)qi(w) = (

∑

i∈V

wiΛ
−1
i)−1(

∑

i∈V

wiΛ
−1
i xi),

di(w) = d(xi,θi(w),Λi) =

√

(xi − θi(w))TΛ−1
i (xi − θi(w)),

Both functions are well defined for any w 6= 0. However, let

us recall that if w = 0, we have defined di(w) > χ2
d,p. The

values of the different wi are hard to compute as a function

of t because they depend on the weights aij(t) in eq. (11)

and the network topology at each time instant. However, we

can analyze the behavior of di(w) over a compact subset of

[0, 1]N . If the behavior in the set is the desired one, we will

be able to ensure that for any t the algorithm will return the

desired results.

Without loss of generality, let us assume that the robots are

ordered so that we can separate the different elements of w in

win ∈ [0, 1]|Vin|, the components corresponding to the inliers

and wout the components of the outliers, w = [win,wout].
Condition 4: For any i ∈ V, the partial derivatives of

di(w),

∂di(w)

∂wj

=
(xi − θi(w))TΛ−1

i P−1
i (w)Λ−1

j (xj − θi(w))

di(w)
, (17)

satisfy, ∀j ∈ V and wout = 0, that

∂di(w)

∂wj

= 0 ⇔

θi(w) = xi, xj , if i, j ∈ Vin,

θi(w) = xi, if i ∈ Vin, j 6∈ Vin,

θi(w) = xj , if i 6∈ Vin, j ∈ Vin.

(18)

Theorem 4.1: Under Conditions 1-4, for any Vh ⊆ Vin,

the following holds:

• All the inliers eventually vote for the hypothesis

∃ t+ | ∀t > t+, ∀i ∈ Vin, di(t) ≤ χ2
d,p. (19)

• The outliers do not vote for the hypothesis at any time

dk(t) > χ2
d,p, ∀t > 0, ∀k 6∈ Vin. (20)

This means, by Proposition 4.1 that (11) will converge and

that Vcon = Vin.

Let us note that the conditions to know with certainty that

the algorithm will converge to the desired result are relatively

easy to occur in real scenarios. The first condition requires

that the inlier observations are close to each other, which is

easy to happen because they are good measurements of the

same vector.

5896

−8 −6 −4 −2 0 2 4

−5

0

5

10

ML

MLin

Observations of the robots

X(m)

Y
(m

)

0 1 2 3 4 5

2

3

4

5

6

7

8

9

ML

MLin

Observations of the robots

X(m)

Y
(m

)

(a) Communication Graph (b) Observations of the robots (c) Observations of the inliers (zoom)

Fig. 2: Robust sensor fusion of a bi-dimensional feature observed by ten robots. (a) Communication network. Blue circles represent the robots with inlier
information and red squares the outliers. (b) Observations of the ten robots. Seven robots have a good observation of the feature (blue crosses and solid
ellipses) whereas three robots have observed another features (red crosses and dashed ellipses). If all the measurements are considered in the computation
of the Maximum Likelihood, the obtained result is the black cross and dash-dot ellipse with the ML mark. The good maximum likelihood is the one in
the middle of the inlier observations (MLin). (c) Zoom of the inlier observations and both ML.

The second condition is that the maximum likelihood of

partial sets of inliers falls in the convex hull of the inliers.

For a very small number of inliers (2 or 3) this will be hard

to be true, but for a larger number of inliers this condition

is almost sure to happen because the ML is similar to a

weighted average.

The third condition requires that the outliers are far away

from the convex hull of the inliers. This makes sense,

otherwise one may argue that they are not real outliers as

they would be posing a good observation of the feature.

The last condition is that the derivatives of the Maha-

lanobis distance only vanish at the points that correspond

to the inlier observations. For the observation of any robot

i, a global minimum is obtained when θi(w) = xi, with

Mahalanobis distance equal to zero. For the inliers this

is not a problem because they must vote the hypotheses.

For the outliers, it would be a problem that this happened,

but it is almost impossible that a combination of inlier

observations satisfying Conditions 1-3 returns the outlier. A

global extreme can also appear if there exists w such that

(xk − θ(w)) is orthogonal to all (xi − θ(w)) with respect

to Λ
−1

k P−1

k (w)Λ−1

i . Nevertheless, we have not encountered

this situation in any of the simulations we have carried out

and, provided that this extreme satisfies that dk(w) > χ2
d,p,

the algorithm would still converge.

Finally, let us remark that the algorithm may still converge

to the desired result if some of these conditions are not met.

In section V we analyze this situation.

V. SIMULATION RESULTS

We have tested our robust algorithm in a simulated

environment to evaluate its performance. In Fig. 2, we

show the observations of a two-dimensional feature by a

network composed by 10 robots. We have chosen a two-

dimensional feature in order to have a good visualization of

the results, however, the algorithm is not restricted to this

case and can be used with descriptors of any dimension.

The communication network is fixed and we have used the

Metropolis Weights [12] to configure A(t). Seven robots

have good observations of the feature (blue crosses and solid

ellipses) and 3 robots have outlier information (red crosses

and dashed ellipses). If all the measurements are considered

in the computation of the Maximum Likelihood, the obtained

result is the black cross and dash-dotted ellipse with the ML

mark at value (−0.21, 4.60) while the ML of the inlier robots

is (3.08, 5.19) (MLin).

In the first step, the robots generate the different subsets

Vh that will initialize the hypotheses. In the experiment we

have set the probability of being an inlier to 0.6 and the

probability of success in RANSAC to 0.99. As we mentioned

in Section III, the value of c can be arbitrarily chosen. Larger

values of c make many robots to plug their observations

at the beginning, which is good if the number of inliers is

large. However, the larger the c, the more hypotheses will be

required to succeed, and for each additional hypothesis the

amount of information to be communicated among agents

grows linearly. For this reason we have set c = 1 resulting

in a total of 6 hypotheses generated by the algorithm. In

this example, the conditions stated in section IV-C are also

satisfied, ensuring convergence to the ML of the inliers if

one hypothesis is instantiated by robots in Vin.

In Fig. 3 (a), (b), we show the evolution of the two

coordinates of θi(t) for the most voted hypothesis. The

values of the different robots converge to the value of the

ML of all the inliers (depicted in black dashed line in

the graphics). In Fig. 3 (c), the evolution of vi(t) for the

same hypothesis is depicted. Eventually all the nodes reach

the value 0.7, which is exactly the fraction of robots with

inlier information. It is also remarkable that the number

of iterations in which the robots change their opinion is

considerably small. In less than 10 iterations, the graphics

do not have discontinuities due to the inputs (11). After that

point, the algorithm behaves as a static consensus algorithm.

We have also run a Monte Carlo simulation considering

more general situations where the conditions of Section IV-

C do not always hold. We have compared the results of

the new algorithm with the robust consensus based on static

voting and with the distributed consensus algorithm proposed

in [12] to compute the ML of all the observations. We have

run 1000 trials in which 20 robots have been considered.

The probability for each robot to have inlier information has

been set to 0.8, and only 3 hypotheses were generated in

each trial. The inlier robots have measurements of the feature

with gaussian error of zero mean and standard deviation

5897

0 10 20 30 40 50 60 70
2.6

2.8

3

3.2

3.4

3.6

Evolution of X (ML of most voted h)

Iterations

X
(m

)

0 10 20 30 40 50 60 70
4.6

4.8

5

5.2

5.4

5.6

5.8

Evolution of Y (ML of most voted h)

Iterations

Y
(m

)

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

1.2

Evolution of V (Most voted h)

Iterations

V

(a) (b) (c)

Fig. 3: Evolution of the Maximum Likelihood and the number of votes of the most voted hypothesis. In figures (a) and (b) we show the evolution of
θi(t) for the hypothesis that has obtained the most number of votes in the end. The dashed black line is the value of the ML of the robots with inlier

information. It is observed that in both coordinates the values of θi(t) asymptotically converge to it. The value of vh
∗

i , depicted in (c), converges to 0.7
for all the robots, which is exactly the fraction of robots with inlier information.

TABLE I: Comparison of the different algorithms

Method ML [12] Static Voting Dynamic Voting

Trials 1000 1000 1000

False Positive Votes 4015 375 355
False Negative Votes 0 472 192
Avrg. norm of error 2.063 0.444 0.438

Std. deviation of error 2.502 1.275 1.256
Iterations per trial 100 300 100

of 2 meters. For the outlier robots we have assigned a

deviation of 10 meters. The covariance matrices have also

been randomly generated with eigenvalues of mean 0.5
and standard deviation 0.5. Regarding the communication

topology we have changed it at each iteration of each trial

without affecting our results.

The results obtained in the simulation can be seen in

Table I. The results using the non robust algorithm [12] are

in the first column. In this case all the outliers participate

in the different trials (a total of 4015). As a consequence,

the average error in the estimation of the ML is large (2.06

meters). If the static voting method is used, the results are

clearly improved. Only 375 false positive votes appear and

the average error is reduced to 0.444 meters, with only

472 inliers thinking they have outlier information. Finally, if

the proposed algorithm is used, 355 false positive votes are

counted and the average error is of 0.438 meters. Moreover,

since the robots are voting a dynamic observation which

tends to the good ML, a fewer number of false negatives

is registered (192). Although the results are similar to those

of the static voting, the dynamic algorithm is much faster

because it requires one third of communication rounds.

The dynamic voting algorithm condenses the three steps of

RANSAC in only one, requiring 100 iterations per trial. The

only drawback of the robust algorithms with respect to [12] is

that the size of the messages grows linearly with the number

of hypotheses. However, this limitation is also found in the

centralized version of RANSAC, where for each hypothesis

a different solution must be computed and voted for.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a distributed algorithm for

sensor fusion robust to outlier observations. The algorithm

relies only on local communications and supports changes

in the topology of the communication network. Each robot

detects in a local way if its observation should be merged in

the algorithm or not. Conditions under which the maximum

likelihood of the inliers is obtained have been given. Sim-

ulation results show the performance of our proposal. The

algorithm also obtains good results in situations in which not

all the requirements are satisfied. Although real experiments

are not provided in the paper, possible applications in which

this can be used include surveillance in camera networks,

calibration of sensor networks or multi-robot SLAM.

REFERENCES

[1] R. Aragues, J. Cortes, and C. Sagues. Dynamic consensus for merging
visual maps under limited communications. In IEEE Int. Conf. on

Robotics and Automation, pages 3032–3037, 2010.
[2] R. Aragues, E. Montijano, and C. Sagues. Consistent data association

in multi-robot systems with limited communications. In Robotics:

Science and Systems, 2010.
[3] F. Bullo, J. Cortés, and S. Martı́nez. Distributed Control of Robotic

Networks. Applied Mathematics Series. Princeton University Press,
2009. Electronically available at http://coordinationbook.info.

[4] V. Bychkovskiy, S. Megerian, D. Estrin, and M. Potkonjak. A collab-
orative approach for in-place sensor calibration. In 2nd International

Workshop on Information Processing in Sensor Networks (IPSN’03),
volume 2634 of Lecture Notes in Computer Science, pages 301–316.
Springer-Verlag, 2003.

[5] M. A. Fischler and R. C. Bolles. Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography. Communications of the ACM, 24(6):381–395,
1981.

[6] N. Floudas, A. Polychronopoulos, O. Aycard, J. Burlet, and
M. Ahrholdt. High level sensor data fusion approaches for object
recognition in road environment. In IEEE Intelligent Vehicles Sympo-

sium, pages 136–141, 2007.
[7] G. Gate, A. Breheret, and F. Nashashibi. Centralized fusion for fast

people detection in dense environment. In IEEE Int. Conf. on Robotics

and Automation, pages 76–81, 2009.
[8] A. Gil, O. Reinoso, M. Ballesta, and M. Julia. Multi-robot visual

SLAM using a rao-blackwellized particle filter. Robotics and Au-

tonomous Systems, 58(1):68–80, 2009.
[9] K. LeBlanc and A. Saffiotti. Multirobot object localization: A

fuzzy fusion approach. IEEE Transactions on Systems, Man, and

Cybernetics-part B, 39(5):1259–1276, 2009.
[10] E. Montijano, S. Martı́nez, and C. Sagues. De-RANSAC: Robust

Consensus for Robot Formations. In Workshop: Network Science and

Systems Issues in Multi-Robot Autonomy. ICRA, 2010.
[11] A. W. Stroupe, M. C. Martin, and T. Balch. Distributed sensor fusion

for object position estimation by multi-robot systems. In IEEE Int.

Conf. on Robotics and Automation, pages 1092–1098, 2001.
[12] L. Xiao, S. Boyd, and S. Lall. A scheme for robust distributed sensor

fusion based on average consensus. In Proceedins of the International

Conference on Information Processing in Sensor Networks, pages 63–
70, 2005.

5898

