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Abstract— This paper investigates a distributed formation The area of networked control systems focuses on the

control problem in an operator-vehicle network where each effect of imperfect communication channels on remote con-
vehicle is remotely controlled by an operator. Each operator- trol. Most of the existing papers focus on; e.g., band-

vehicle pair is attacked by an adversary, who corrupts the . . o
commands sent from the operator to the vehicle following a limited channels [20], [24], quantization [11], [23], patk

partially unknown strategy. We propose a novel distributed ~dropout [17], [31], delay [10], [36], and sampling [25].
control algorithm that allows operators to adapt their policies Very recently, the security of the new generation of control
online by exploiting the latest collected information about systems, namelgyber-physical system&as drawn mount-
adversaries. The algorithm enables vehicles to asymptotically ing attention in the control society, and our current paper

achieve the desired formation from any initial configuration . - g . . .
and initial estimate of the adversaries’ strategies. It is shown falls into this field. Denial-of-service attackslestroying the

that the sequence of the distances to the desired formation is data availability in control systems, are entailed in reécen
summable. A numerical example is provided to illustrate the papers [2], [4], [6], [16]. Another important class of cyber
performance of the algorithm. In particular, we observe that  attacks, namelyfalse data injection compromises the data
:)huet r::%?rgﬁ]onverg;nce t? thle deslltred formation is exponential, inteqrity of state estimation and is attracting considirab
P g our theoretical restit effort; an incomplete reference list includes [21], [284],
[37]. Replay attacksmaliciously repeat transmitted data,
. INTRODUCTION and their impact to control systems is first studied in [22].
r'rr]be papers [3], [38] are devoted to studyidgception at-

. : : ackswhere attackers intentionally modify measurements and
putation have made possible the development of highly S%’:ontrol commands. In [7], [8], the authors exploit pursuit-

phisticated unmanned vehicles. Applications include bord : : . .
evasion games to compute optimal evasion strategies for

patrol, search and rescue, surveillance, and target ﬁjentlmobile agents in the face of jamming attacks. The paper [3]
cation operations. Unmanned vehicles operate without crew " g " J 9 : pap
examines the stability of a SCADA water management

onboard, which lowers their deployment costs in scenario$ tem under | f switching attacks. and th thor
that are hazardous to humans. More recently, the use pfoem under a class of switching attacks, a € authars

unmanned vehicles by (human) operators has been propo t%[19]fopror:)OS§ a Cl?esnsw o{otrusé Za?eéj gsg_'b“etffn';f‘;?%”
to enhance information sharing and maintain situation fiers for power systems 1o prevent data dissemi y

awareness. However, this capability comes at the priceeof ”;Imtrusted phase measurement units.

increased vulnerability of cyber and communication system dis?iigizgwg[lzr%n]all[c;g]UZSb?\?v?)wrc:arplrr:asrztrilt'g-tia\t/%err];fse{ztnecrgz’ rv;/e
Motivated by this, we consider a formation control problem S :
y P ant to this work. The paper [32] consider the problem

for an operator-vehicle group where each unmanned vehici distributed function calculation in the presence of faul
is able to perform real-time coordination with operators (o ¢ malicious agents, whereas [27] focEses on CONSENSUS
ground stations) via sensor and communication interfaced. 9 '

However, the operator-vehicle link can be attacked by a%roblems. In both settings, the f_aulty or malicious agents
adversary, disrupting the overall group objective. Ournnaiﬁ‘renpirtz orf thi?] n(?[twqrrﬁ Eiirmrjn Silrjlbjeg.t t(t:)ivunilm?wrgj (?rr?nltirr?r-
goal is to provide a resilient solution that assures missiony NoN-2€ 0) inputs. The ain objeclive is to dete e

completion despite the presence of security threats. conditions _unde_r_ which the mlst_)ehavmg_ agents can (or
. . . cannot) be identified, and then devise algorithms to oveecom
Literature review.Information networks have had a great

impact on the way modem control systems operate todathe malicious behavior. This significantly departs from the

: g{'oblem formulation we consider here, where the attackers
Unfortunately, they have also become an attractive targare external to the operator-vehicle group and can affect

of causal and organized attacks. In practice, either reac-

tive or protective mechanisms have been exploited to deIfQIter operator-vehicle connections. Additionally, we @ak
P P use of a model of attackers as rational decision makers,

with cyber attacks. Non—coopergtlve game theory [15] hasho can make decisions in real-time and feedback fashion.
been advocated as a mathematical framework to model the

: . n contrast, the malicious model in [27], [32] may not
interdependency between attackers and administratods, gn - :

: . ) : : sufficient to capture the features of human adversaries.
predict the behavior of attackers; see an incomplete list

ere, we aim to design completely distributed algorithms
references [1], [16], [30], [35]. f =S19 b y distributed alg
or the operator-vehicle group to maintain mission asstean
) ) . _ under limited knowledge of teammates and opponents. The
The authors are with Department of Mechanical and Aerospag- E biective i d . | ith hat is ind dé
neering, University of California, San Diego, 9500 Gilman, Da Jolla objective Is to eterm'ne. an algorithm that is in gpen nto
CA, 92093,{ni zhu, soni and}@icsd. edu the number of adversaries and robust to dynamical changes

Recent advances in communications, sensing and co



of communication graphs between operators. {ﬁ

Statement of contributionsThe current paper studies a % Q‘ -
formation control problem for an operator-vehicle network Q et :%
where each vehicle is remotely controlled by an operator. % §>z X@E
Each operator-vehicle pair is attacked by an adversary, who (4{ >>‘ b
corrupts the control commands sent to the vehicle. The ) -
adversaries are modeled as rational decision makers and 5 /iig’\ .
their strategies are linearly parameterized by some unknow ) g T
matrix. We propose a distributed resilient formation cohtr ﬁ i}g,
algorithm which consists of two feedback-connected blocks
a formation control block and an online learning block. The
novel online learning mechanism serves to collect informa- Fig. 1. The architecture of the operator-vehicle network

tion in a real-time fashion and update the estimates of adver
saries through continuous contact with them. The formation
control law of each operator is adapted online to minimize The mission of the operator-vehicle network is to achieve
a local formation error function. To do this, each operatosome desired formation which is characterized by a (dicjcte
exploits the latest estimate of her opponent and locatiéns tormation graphy := (V, £). Each edgéj,i) € £ C VxV\
neighboring vehicles. We show how the proposed algorithmiiag(V), starting from vehiclej and pointing to vehicle,
guarantees that vehicles achieve asymptotically the etsiris associated with a vectos; € R%. Denote by\; := {j €
formation from any initial vehicle configuration and anyV | (j,7) € £} the set of in-neighbors of vehiclein G
initial estimates of adversaries. The sequence of therdtisga and letn; be the cardinality of\;; i.e., n; = |N;|. The
to the desired formation is shown to be summable. In owset of in-neighbors of agentwill be enumerated as/; =
simulation, the convergence rate turns out to be exporentidii, . . ., in, }. Being a member of the team, each operaisr
which outperforms the analytic result characterizing astvor only aware of local formation constraints; i.e;; for j € ;.
case convergence rate. The multi-vehicle formation control mission can be en-
coded into the following optimization problém
[I. PROBLEM FORMULATION
. L 2
Here, we first articulate the layout of the operator-vehicle wn [7(p) == Z lpi = pj = ”’iJ’”Pu]’
network and its formation control mission. Then, we present (Gi)es
the adversary model that is used in the rest of the manuscrigtherep = [p7,--- , pL]” € RV?, P;; € R**4 is a diagonal
After this, we specify the information assumptions thaknd positive-definite weight matrix assigned to the linki).
operators have on adversaries. The objective function/(p) can describe any shape ¢
by adjustingy;;. Notice thatJ(p) is a convex function op

A. Architecture and objective of the operator-vehicle netéince” _ H%“ is convex and; — p; — vy, is affine; c.f. [9].

work _ _ . ‘ Denote by the set of the (global) minimizefs* ¢ RN<,
Consider a group of vehicles iR“, labeled byi € V :=  we impose the following to ensure the desired formation is

{1,---,N}. The dynamics of each vehicle is governed byye|l-defined:

the following discrete-time and fully actuated system: Assumption 2.1: The digraphg is strongly connected. In

‘ _ ‘ addition, X* #£ () and J(p*) = 0 for any p* € X*.
pilk+1) = pilk) + ua(k), @ We assume that op((araiors and vehicles are synchronized.
wherep; (k) € R¢ is the position of vehicleé andu;(k) € R  Each operator only receives information from neighbors in
is its input. Each vehicleé is remotely maneuvered by anN; at each time instant. The communication graph between
operatori, and this assignment is one-to-one and fixed. Fayperators is then assumed to be fixed and identicél. to
simplicity, we assume that vehicles communicate only with Remark 2.1: Similar formation functions are used
the associated operator and not with other vehicles. Moré [13], [14]. Whenwv,;; = 0 for all (i,j) € &, then the
over, each vehicle is able to identify its location and sdmisl t formation control problem reduces to the special case of
information to its operator. On the other hand, an operatsendezvous which has received considerable attention [12]
can exchange information with neighboring operators and8], [26], [29]. °
deliver control commands to her vehicle. We assume that ) )

the communications between operators, and from vehicle Model of rational adversaries

to operator are securewhile the communications from A group of N adversaries aims to abort the mission
operator to vehicle can be attacked. Other architectures af formation stabilization. To achieve this, an adversary
possible, and the present one is chosen as a first main cléssallocated to attack a specific operator-vehicle pair and
of operator-vehicle networked systems; see Figure 1. this relation does not change over time. Thus, we identify

1Alternatively, it can be assumed that operators have acoegshicles’ 2In this paper, we denote byzHi := 27 Az the weighted norm of
positions by an external and safe measurement system. vectorz for a matrix A with the proper dimensions.



adversaryi with the operator-vehicle pair Each adversary is willing to reduce such security cost, which, for simglci

is able to eavesdrop on incoming messages of her targgé model as a weighte2norm.

operator. We further assume that adversaries are able toProblem (2) assumes that each adversary is a rational

collect some imperfect information of their opponents irdecision maker, and always chooses the optimal action based

advance. Specifically, adversaiwill have estimates;; €  on the information available. Compared with [21], [27], ]28

R¢ of vy; and P;; € R of Py, for j € N;. Here, [32], [34], [37] focusing on attacking detection, our akec

P;; € R%*4 is positive-definite and diagonal. model limits the actions of adversaries to some extent.
Adversaries make real-time decisions based on the latésssumptions that restrict the behavior of attackers arallysu

information available. In particular, at time, adversary; taken in main references on system control under jamming

eavesdropg; (k) sent from operatoy € N; to operatori, attacks. For example, the paper [16] limits the number of

and interceptg; (k) +u; (k) sent from operatoi to vehiclei. ~ denial-of-service attacks in a time period. This is based

The adversary then computesva(k) which is added to on the consideration that the jammer is energy constrained.

pi(k) +u;(k) so that vehicle implementsp; (k) + u;(k) + Moreover, the paper [7] assumes that the maximum speeds of

v;(k) instead. The command;(k) will be the solution to UAVs and the aerial jammer are identical in a pursuit-evasio

the program: game. In addition, the papers [2], [4], [6] restrict the ekiag
strategies to follow some I.I1.D. probability distributmnwe
max Z llpj (k) — (pi(k) + ui(k) + v;) — ﬁijll%ij argue that the investigation of resilient control policfes
R EIY constrained jamming attacks is reasonable and can lead to
— [lvill &, (2) important insights for network vulnerability and algorith

dd N - design. Clearly, if the actions of adversaries were omeigipt
where i; ¢ R?* is diagonal and positive definite. The no strategy could counteract them. But, even in the case that
above optimization problem captures two partly conflictingammer actions are limited, it is not fully clear what stgte

objectives. On the one hand, adversarywould like to  would work or fail. The analysis of these settings can reveal
destabilize the formation associated with Vehi@leand important System and a|gorithm weaknesses.

this interest is encapsulated in the te@jeM llp; (k) —
(pi(k)+us (k) +vi) — 04 |§5 . On the other hand, adversary D. Information about adversaries and online adaptation

would like to avoid a high] attacking cofv; (k)||%,, which In an adversarial environment, it is not realistic to expect
represents the energy consumption of adding the sigia).  that operators have complete and perfect information an the
We assume the following on the cost matrices of adversariegpponents. In this paper, we assume that operatarows

Assumption 2.2: For all j € Nj, 375 v P — R; <0.  thatadversary makes decisions online based on the solution
In this way, the objective function of the optimization prob to the optimization problem (2), but has no access to the
lem (2) is strictly concave. This can be verified by noticingralue of ;, P;; and;;, which is some private information
that the Hessia® y~ . P,; — 2R, is negative definite. As Of adversaryi. This implies that operatarknows thatv; (k)

a consequence, the solution to the optimization problem (3§ in the form of (3), but is unaware of the real valuelqf
is unique and given by: and?;;. A more compact expression fof(k) is given next.

Lemma 2.1: The vector v;(k) can be written in the
vi(k) = — Z Lij(pj(k) — (pi(k) + uw;(k)) — ;5), (3) following compact form:

2
’° vi(k) = O B, (k)

where Li; = (R; — .o, Pij)"'Pi; € R4 is diagonal _ Lo (ps () — (0 (k) 1 (B)) — ) 41150
and positive definito, - j;:/.{ ij(pj (k) — (pi(k) + ui(k)) — vij) + nij},

C. Justification of attacking costs and our attacker model where n;; := L;;(v;; — 7;;) € RY, and matrices®; €
(

= ij
n; (d+1)xd ) nid . n;(d+1) i
Here we provide a justification on the attacking cosg{ » ¢i(k) € R™%, @i(k) € R are given

|[vil|%,, in problem (2). At each time, adversagyhas to

spend some energy to successfully decode the message and@iT = [L
deliver the wrong data to vehicle The energy consumption

depends upon security schemes; e.g., cryptography and/or

i " Liig, ity " Midn, ]

pi (k) — (pi(k) + ui(k)) — vis,

radio frequency, employed by operatorA larger v; alerts ¢i(k) == — : )
operatori that there is a greater risk to her vehicle, and Di,,. (k) — (pi(k) + wi(k)) — v,
consequently operator will raise the security level (e.g., o, (k) == _[(bi(k)LT 1.7 '

the expansion of radio frequencies) of the link to vehigle ’

increasing the subsequent costs paid by adverséeyy. to  whereN; = {i1,...,ip, }.

block all of the radio frequencies following the operatde Proof: This fact can be readily verified. [ ]

term |jv;(k)||%, represents the consideration of adversary In the light of the above lemma, we will equivalently assume
for hersubsequengnergy consumption which is directly de-that operatoi is aware ofv; (k) being the product 0®; and
termined byv; (k). As a rational decision maker, adversary ®;(k), without knowing the parameté;. It would be hard



to gather the private informatio®; of adversaries priori.

We now formally state the interactions of thi€ group

We will exploit the ideas of reinforcement learning [33]dan consisting of operator, vehicle and adversaryn Algo-

adaptive control [5], that operators can use to estin@te
through continuous contact with adversaries. This wilhwll

operators to adapt their policiesline and eventually defeat

adversaries.

rithm 1. The rule to compute;(k), and the precise update
law for ©;(k) can be found there.

Algorithm 1 The AR-FORM Algorithm for groupi

Notations.In the sequel, we letr be the trace operator of |nitialization: Initial value ©; € R"(d+1)xd and estimate
matrices, and lef A[|» and||A|| denote the Frobenius norm g (g) = P,[9,] of the adversary parameter.

and2-norm of a real matrixd € R™*", respectively. Recall
n

that [ A][3 = tr(A74) = 33" a2 and ]| < [|A] .
i=1 j=1

Consider the diagonal vector magiag,, : R¥*¢ — RY,
defined asliag,(A4) = v, with v; = A;;, for all i. Similarly,
define the diagonal matrix magjagy, : R*% — R4*4,
as diagma(A) = D, with D;; = A;, Dij = 0, for all
i,j andj # i. Let Pxg R¢ — R? be the projection
operator fromR? onto the non-negative orthant &“. Now
defineP; : Rri(dth)xd _, Rni(d+l)xd 75 follows. Given
A € RH(d+Dxd thenP;(A) = A € R™(4+Dxd where

T T T
Liini Migy = niini]a
AT . 7T 7T =T ~T
A" =Ly, - Lii, Tiiy, T’iini]a

IN/Z; = diagma(PZO(diagve(L?j)))v 77;'1; = 773;, JjEN;.

AT = [LE

111

The block-decomposition oA and A is analogous to that
of ©; in Lemma 2.1. The operatd?; will be used in the
learning step of the proposed algorithm below.

I11. ATTACK-RESILIENT FORMATION CONTROL
ALGORITHM AND ANALYSIS

In this section, we propose a nowtack-resilient forma-
tion control algorithm , AR-FORM for short, and then sum-

Iteration: At eachk > 0, adversary, operator, and vehicle
interact through the following sequence of steps:
1: Operatori receivesp;(k) from operatorj € N;, and
solves the following quadratic program:

i (k) — pi(k + 1]k) — v
B 2 IPa6) =itk 206) v

s.t. pi(k + 1) = pi(k) + wi(k) + ©i(k) T ®(k), (4)

to obtain the optimal solution; (k).
2: Operatori sends; (k)+u;(k) to vehiclei, and generates
the estimate:

pi(k + 1|k) = pi(k) + ui(k) + ©;(k)T @, (k).

3: Adversary: eavesdrops op; (k) sent from operatoy €
N; to operatori, and corruptw; (k) + w;(k) by adding
4: Vehiclei receives and implements(k) +u; (k) +v; (k),
and then sends bagk(k + 1) = p;(k) + u; (k) + vi (k)
to operatori.
5: Operatori computes the estimation erref(k) = p;(k+
1) — pi(k+1]k), and updates the parameter estimate as:

o
ma (k)2

wherem; (k) := /1 + || ®;(k)]].

2
P,;j’

Oi(k + 1) = P;[0;(k) + ®;(k)ei(k)"],

marize its properties of guaranteeing the formation cdntro . Repeat fork = k + 1.

mission under malicious attacks. Due to the space limitatio

we omit the proofs for the main results.

Overall, the algorithm can be roughly described as follows:

At each time instant, each operator first collects the
latest locations of neighboring operators’ vehicles.
Then, the operator computes a control layk)
minimizing a local formation error function by
assuming that her neighboring vehicles do not
move. This computation is based on the certainty
equivalence principle; i.e., operatorexploits her
latest estimated;(k) to predict how adversary
corrupts her command as ®;(k) were identical

to ©;. After that, the operator sends the new
commandp; (k) + u, (k) to her associated vehicle.
Adversaryi then corrupts the command by adding
the signalv;(k) parameterized by9,. Vehicle i
receives, implements, and further sends back to
operator: the corrupted commang (k) + u; (k) +
v;(k). After receiving the new location of her
vehicle, operatoti computes the estimation error
of ©,, and updates her estimate to minimize an
estimation error function.

Remark 3.1: Let ©,(k)T be partitioned in the form:
©i(k)" = [Lis, (k) -+ Lii,, (k) i, (k) -+ nia,, (K)],

where L;;j(k) € R and n;;(k) € R4, for j € N; =
{1,---,n;}. Then, the solution;(k) to the quadratic pro-
gram in Stepl can be explicitly computed as follows:

wik) = (3 Puy(I+ 3 La(k)) ™

JEN; leN;
x Y Pi{(p(k) = pilk) = vij)
JEN;
+ Z Li(k)(pi(k) — pi(k) — va) + Z na(k)}.  (5)
leN; leEN;

Hence, the program in Stepis equivalent to the computa-
tion (5). In Step5, operator: utilizes a projected parameter
identifier to learn®; online. This scheme extends the classic
(vector) normalized gradient algorithm; e.g., in [5], teeth
matrix case and further incorporates a projection to guaean
that u,;(k) is well defined. That is, the introduction df;
ensures that the estimate;;(k) is positive definite, and



that I + > .c . Lij(k) is nonsingular. As in [5], the term
Wfbi(l@)ei(k)T in the update law o®;(k) is to mini-

mize the error cos%. Here, e;(k) is the position
estimation error, aneh;(k) is a normalizing factor. .
The following theorem guarantees that the proposed al
rithm allows the operator-vehicle network to achieve the ¢
sired formation despite the malicious attacks of advessar
Theorem 3.1: (Convergence  properties of the
AR-FORM algorithm): Consider any initial position
p(0) € RNY of vehicles. If Assumptions 2.1 and 2.
hold, then the AR-FORM algorithm for every groupi
ensures that the vehicles asymptotically achieve the ates
formation;, i'e"kEIfoo dist(p(k), X™) = 0. Furthermore, the % 10 20 30 40 50

rate of convergence of the algorithm ensures

Fig. 2. Initial configuration of vehicles.

“+o00
D0 D7 lpi(k) = pilk) — v > < oo .
k=0 (i,j)€€
We provide a coupled of remarks to conclude this secti 40 )

Persistent excitation (e.g., in [5]) is not guaranteed to
satisfied by theAR-FORM algorithm, thus the formatior
convergence rate may not be exponential. Furthermore; v
out persistent excitation, we cannot guarantee either
convergence of the estimat®,;(k) to the true value®,. 20
Note that the regresscb;(k) is coupled by the location:

of different vehicles. Thus, we would need full coordinati 10
between operators at each time instant to guarantee peits

excitation. The absence of a centralized authority makiss . | | | |

task challenging. 0 10 20 30 40 50

30

IV. SIMULATION Fig. 3. Trajectories of the vehicles during the fiéstiterations. The green
We now set out to elucidate the performance of oufduares stand for initial locations and red circles reprieBeal locations.

proposed algorithm through a numerical example. Consider
a group of15 vehicles which are initially randomly deployed ) ]
over the square df0 x 50 as in Figure 2. Figure 3 delineatesP® enlarged to allow for more complex interactions. In
the trajectory of each vehicle in the fir§D iterations of 2addition, it would be interesting to study the impact of othe
the algorithm. The configuration of the vehicles at @gsh ~ attacks; e.g., denial-of-service attacks and replay legtao
iteration is given by Figure 4 and this one is identical t°OPerative control in the operator-vehicle network.

the desired formation. This fact can be verified by Figure 5,
which shows the evolution of the formation errors. Figure 5 REFERENCES
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