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Abstract— This paper investigates a distributed formation
control problem in an operator-vehicle network where each
vehicle is remotely controlled by an operator. Each operator-
vehicle pair is attacked by an adversary, who corrupts the
commands sent from the operator to the vehicle following a
partially unknown strategy. We propose a novel distributed
control algorithm that allows operators to adapt their policies
online by exploiting the latest collected information about
adversaries. The algorithm enables vehicles to asymptotically
achieve the desired formation from any initial configuration
and initial estimate of the adversaries’ strategies. It is shown
that the sequence of the distances to the desired formation is
summable. A numerical example is provided to illustrate the
performance of the algorithm. In particular, we observe that
the rate of convergence to the desired formation is exponential,
outperforming our theoretical result.

I. I NTRODUCTION

Recent advances in communications, sensing and com-
putation have made possible the development of highly so-
phisticated unmanned vehicles. Applications include border
patrol, search and rescue, surveillance, and target identifi-
cation operations. Unmanned vehicles operate without crew
onboard, which lowers their deployment costs in scenarios
that are hazardous to humans. More recently, the use of
unmanned vehicles by (human) operators has been proposed
to enhance information sharing and maintain situational
awareness. However, this capability comes at the price of the
increased vulnerability of cyber and communication systems.
Motivated by this, we consider a formation control problem
for an operator-vehicle group where each unmanned vehicle
is able to perform real-time coordination with operators (or
ground stations) via sensor and communication interfaces.
However, the operator-vehicle link can be attacked by an
adversary, disrupting the overall group objective. Our main
goal is to provide a resilient solution that assures mission
completion despite the presence of security threats.

Literature review.Information networks have had a great
impact on the way modern control systems operate today.
Unfortunately, they have also become an attractive target
of causal and organized attacks. In practice, either reac-
tive or protective mechanisms have been exploited to deal
with cyber attacks. Non-cooperative game theory [15] has
been advocated as a mathematical framework to model the
interdependency between attackers and administrators, and
predict the behavior of attackers; see an incomplete list of
references [1], [16], [30], [35].
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The area of networked control systems focuses on the
effect of imperfect communication channels on remote con-
trol. Most of the existing papers focus on; e.g., band-
limited channels [20], [24], quantization [11], [23], packet
dropout [17], [31], delay [10], [36], and sampling [25].

Very recently, the security of the new generation of control
systems, namelycyber-physical systems, has drawn mount-
ing attention in the control society, and our current paper
falls into this field.Denial-of-service attacks, destroying the
data availability in control systems, are entailed in recent
papers [2], [4], [6], [16]. Another important class of cyber
attacks, namelyfalse data injection, compromises the data
integrity of state estimation and is attracting considerable
effort; an incomplete reference list includes [21], [28], [34],
[37]. Replay attacksmaliciously repeat transmitted data,
and their impact to control systems is first studied in [22].
The papers [3], [38] are devoted to studyingdeception at-
tackswhere attackers intentionally modify measurements and
control commands. In [7], [8], the authors exploit pursuit-
evasion games to compute optimal evasion strategies for
mobile agents in the face of jamming attacks. The paper [3]
examines the stability of a SCADA water management
system under a class of switching attacks, and the authors
in [19] propose a class of trust based distributed Kalman
filters for power systems to prevent data disseminated by
untrusted phase measurement units.

Regarding malicious behavior in multi-agent systems, we
distinguish [27], [32] as two representative references rel-
evant to this work. The paper [32] consider the problem
of distributed function calculation in the presence of faulty
or malicious agents, whereas [27] focuses on consensus
problems. In both settings, the faulty or malicious agents
are part of the network and subject to unknown (arbitrar-
ily non-zero) inputs. Their main objective is to determine
conditions under which the misbehaving agents can (or
cannot) be identified, and then devise algorithms to overcome
the malicious behavior. This significantly departs from the
problem formulation we consider here, where the attackers
are external to the operator-vehicle group and can affect
inter operator-vehicle connections. Additionally, we make
use of a model of attackers as rational decision makers,
who can make decisions in real-time and feedback fashion.
In contrast, the malicious model in [27], [32] may not
be sufficient to capture the features of human adversaries.
Here, we aim to design completely distributed algorithms
for the operator-vehicle group to maintain mission assurance
under limited knowledge of teammates and opponents. The
objective is to determine an algorithm that is independent of
the number of adversaries and robust to dynamical changes



of communication graphs between operators.
Statement of contributions.The current paper studies a

formation control problem for an operator-vehicle network
where each vehicle is remotely controlled by an operator.
Each operator-vehicle pair is attacked by an adversary, who
corrupts the control commands sent to the vehicle. The
adversaries are modeled as rational decision makers and
their strategies are linearly parameterized by some unknown
matrix. We propose a distributed resilient formation control
algorithm which consists of two feedback-connected blocks:
a formation control block and an online learning block. The
novel online learning mechanism serves to collect informa-
tion in a real-time fashion and update the estimates of adver-
saries through continuous contact with them. The formation
control law of each operator is adapted online to minimize
a local formation error function. To do this, each operator
exploits the latest estimate of her opponent and locations of
neighboring vehicles. We show how the proposed algorithm
guarantees that vehicles achieve asymptotically the desired
formation from any initial vehicle configuration and any
initial estimates of adversaries. The sequence of the distances
to the desired formation is shown to be summable. In our
simulation, the convergence rate turns out to be exponential,
which outperforms the analytic result characterizing a worst-
case convergence rate.

II. PROBLEM FORMULATION

Here, we first articulate the layout of the operator-vehicle
network and its formation control mission. Then, we present
the adversary model that is used in the rest of the manuscript.
After this, we specify the information assumptions that
operators have on adversaries.

A. Architecture and objective of the operator-vehicle net-
work

Consider a group of vehicles inRd, labeled byi ∈ V :=
{1, · · · , N}. The dynamics of each vehicle is governed by
the following discrete-time and fully actuated system:

pi(k + 1) = pi(k) + ui(k), (1)

wherepi(k) ∈ Rd is the position of vehiclei andui(k) ∈ Rd

is its input. Each vehiclei is remotely maneuvered by an
operatori, and this assignment is one-to-one and fixed. For
simplicity, we assume that vehicles communicate only with
the associated operator and not with other vehicles. More-
over, each vehicle is able to identify its location and send this
information to its operator. On the other hand, an operator
can exchange information with neighboring operators and
deliver control commands to her vehicle. We assume that
the communications between operators, and from vehicle
to operator are secure1, while the communications from
operator to vehicle can be attacked. Other architectures are
possible, and the present one is chosen as a first main class
of operator-vehicle networked systems; see Figure 1.

1Alternatively, it can be assumed that operators have access to vehicles’
positions by an external and safe measurement system.

 

 

 

 

 

 

 

 

Fig. 1. The architecture of the operator-vehicle network

The mission of the operator-vehicle network is to achieve
some desired formation which is characterized by a (directed)
formation graphG := (V, E). Each edge(j, i) ∈ E ⊆ V ×V \
diag(V ), starting from vehiclej and pointing to vehiclei,
is associated with a vectorνij ∈ Rd. Denote byNi := {j ∈
V | (j, i) ∈ E} the set of in-neighbors of vehiclei in G
and let ni be the cardinality ofNi; i.e., ni = |Ni|. The
set of in-neighbors of agenti will be enumerated asNi =
{i1, . . . , ini

}. Being a member of the team, each operatori is
only aware of local formation constraints; i.e.,νij for j ∈ Ni.

The multi-vehicle formation control mission can be en-
coded into the following optimization problem2:

min
p

[

J(p) :=
∑

(j,i)∈E

‖pi − pj − νij‖
2
Pij

]

,

wherep = [pT
1 , · · · , pT

N ]T ∈ RNd, Pij ∈ Rd×d is a diagonal
and positive-definite weight matrix assigned to the link(j, i).
The objective functionJ(p) can describe any shape inRd

by adjustingνij . Notice thatJ(p) is a convex function ofp
since‖ · ‖2

Pij
is convex andpi − pj − νij is affine; c.f. [9].

Denote by the set of the (global) minimizersX∗ ⊂ R
Nd.

We impose the following to ensure the desired formation is
well-defined:

Assumption 2.1: The digraphG is strongly connected. In
addition,X∗ 6= ∅ andJ(p∗) = 0 for any p∗ ∈ X∗.

We assume that operators and vehicles are synchronized.
Each operator only receives information from neighbors in
Ni at each time instant. The communication graph between
operators is then assumed to be fixed and identical toG.

Remark 2.1: Similar formation functions are used
in [13], [14]. When νij = 0 for all (i, j) ∈ E , then the
formation control problem reduces to the special case of
rendezvous which has received considerable attention [12],
[18], [26], [29]. •

B. Model of rational adversaries

A group of N adversaries aims to abort the mission
of formation stabilization. To achieve this, an adversary
is allocated to attack a specific operator-vehicle pair and
this relation does not change over time. Thus, we identify

2In this paper, we denote by‖x‖2

A
:= xT Ax the weighted norm of

vectorx for a matrixA with the proper dimensions.



adversaryi with the operator-vehicle pairi. Each adversary
is able to eavesdrop on incoming messages of her target
operator. We further assume that adversaries are able to
collect some imperfect information of their opponents in
advance. Specifically, adversaryi will have estimateŝνij ∈
R

d of νij and P̂ij ∈ R
d×d of Pij , for j ∈ Ni. Here,

P̂ij ∈ Rd×d is positive-definite and diagonal.
Adversaries make real-time decisions based on the latest

information available. In particular, at timek, adversaryi
eavesdropspj(k) sent from operatorj ∈ Ni to operatori,
and interceptspi(k)+ui(k) sent from operatori to vehiclei.
The adversary then computes avi(k) which is added to
pi(k) + ui(k) so that vehiclei implementspi(k) + ui(k) +
vi(k) instead. The commandvi(k) will be the solution to
the program:

max
vi∈Rd

∑

j∈Ni

‖pj(k) − (pi(k) + ui(k) + vi) − ν̂ij‖
2
P̂ij

− ‖vi‖
2
Ri

, (2)

where Ri ∈ R
d×d is diagonal and positive definite. The

above optimization problem captures two partly conflicting
objectives. On the one hand, adversaryi would like to
destabilize the formation associated with vehiclei, and
this interest is encapsulated in the term

∑

j∈Ni
‖pj(k) −

(pi(k)+ui(k)+vi)− ν̂ij‖
2
P̂ij

. On the other hand, adversaryi

would like to avoid a high attacking cost‖vi(k)‖2
Ri

, which
represents the energy consumption of adding the signalvi(k).
We assume the following on the cost matrices of adversaries:

Assumption 2.2: For all j ∈ Ni,
∑

j∈Ni
P̂ij − Ri < 0.

In this way, the objective function of the optimization prob-
lem (2) is strictly concave. This can be verified by noticing
that the Hessian2

∑

j∈Ni
P̂ij − 2Ri is negative definite. As

a consequence, the solution to the optimization problem (2)
is unique and given by:

vi(k) = −
∑

j∈Ni

Lij(pj(k) − (pi(k) + ui(k)) − ν̂ij), (3)

whereLij = (Ri −
∑

j∈Ni
P̂ij)

−1P̂ij ∈ Rd×d is diagonal
and positive definite.

C. Justification of attacking costs and our attacker model

Here we provide a justification on the attacking cost
‖vi‖

2
Ri

in problem (2). At each time, adversaryi has to
spend some energy to successfully decode the message and
deliver the wrong data to vehiclei. The energy consumption
depends upon security schemes; e.g., cryptography and/or
radio frequency, employed by operatori. A larger vi alerts
operatori that there is a greater risk to her vehicle, and
consequently operatori will raise the security level (e.g.,
the expansion of radio frequencies) of the link to vehiclei,
increasing the subsequent costs paid by adversaryi (e.g. to
block all of the radio frequencies following the operator).The
term ‖vi(k)‖2

Ri
represents the consideration of adversaryi

for hersubsequentenergy consumption which is directly de-
termined byvi(k). As a rational decision maker, adversaryi

is willing to reduce such security cost, which, for simplicity,
we model as a weighted2-norm.

Problem (2) assumes that each adversary is a rational
decision maker, and always chooses the optimal action based
on the information available. Compared with [21], [27], [28],
[32], [34], [37] focusing on attacking detection, our attacker
model limits the actions of adversaries to some extent.
Assumptions that restrict the behavior of attackers are usually
taken in main references on system control under jamming
attacks. For example, the paper [16] limits the number of
denial-of-service attacks in a time period. This is based
on the consideration that the jammer is energy constrained.
Moreover, the paper [7] assumes that the maximum speeds of
UAVs and the aerial jammer are identical in a pursuit-evasion
game. In addition, the papers [2], [4], [6] restrict the attacking
strategies to follow some I.I.D. probability distributions. We
argue that the investigation of resilient control policiesfor
constrained jamming attacks is reasonable and can lead to
important insights for network vulnerability and algorithm
design. Clearly, if the actions of adversaries were omnipotent,
no strategy could counteract them. But, even in the case that
jammer actions are limited, it is not fully clear what strategy
would work or fail. The analysis of these settings can reveal
important system and algorithm weaknesses.

D. Information about adversaries and online adaptation

In an adversarial environment, it is not realistic to expect
that operators have complete and perfect information on their
opponents. In this paper, we assume that operatori knows
that adversaryi makes decisions online based on the solution
to the optimization problem (2), but has no access to the
value ofRi, P̂ij and ν̂ij , which is some private information
of adversaryi. This implies that operatori knows thatvi(k)
is in the form of (3), but is unaware of the real value ofLij

and ν̂ij . A more compact expression forvi(k) is given next.
Lemma 2.1: The vector vi(k) can be written in the

following compact form:

vi(k) = ΘT
i Φi(k)

= −
∑

j∈Ni

{Lij(pj(k) − (pi(k) + ui(k)) − νij) + ηij},

where ηij := Lij(νij − ν̂ij) ∈ R
d, and matricesΘi ∈

R
ni(d+1)×d, φi(k) ∈ R

nid, Φi(k) ∈ R
ni(d+1) are given

by:

ΘT
i := [Lii1 · · · Liini

ηii1 · · · ηiini
],

φi(k) := −







pi1(k) − (pi(k) + ui(k)) − νii1

...
pini

(k) − (pi(k) + ui(k)) − νiini






,

Φi(k) := −[φi(k)T 1 · · · 1]T ,

whereNi = {i1, . . . , ini
}.

Proof: This fact can be readily verified.
In the light of the above lemma, we will equivalently assume
that operatori is aware ofvi(k) being the product ofΘi and
Φi(k), without knowing the parameterΘi. It would be hard



to gather the private informationΘi of adversariesa priori.
We will exploit the ideas of reinforcement learning [33], and
adaptive control [5], that operators can use to estimateΘi

through continuous contact with adversaries. This will allow
operators to adapt their policiesonlineand eventually defeat
adversaries.

Notations.In the sequel, we lettr be the trace operator of
matrices, and let‖A‖F and‖A‖ denote the Frobenius norm
and2-norm of a real matrixA ∈ Rm×n, respectively. Recall

that ‖A‖2
F = tr(AT A) =

m
∑

i=1

n
∑

j=1

a2
ij and‖A‖ ≤ ‖A‖F .

Consider the diagonal vector map,diagve : Rd×d → R
d,

defined asdiagve(A) = v, with vi = Aii, for all i. Similarly,
define the diagonal matrix map,diagma : Rd×d → R

d×d,
as diagma(A) = D, with Dii = Aii, Dij = 0, for all
i, j and j 6= i. Let P≥0 : R

d → R
d be the projection

operator fromRd onto the non-negative orthant ofRd. Now
define Pi : Rni(d+1)×d → R

ni(d+1)×d as follows. Given
Λ ∈ Rni(d+1)×d, thenPi(Λ) = Λ̃ ∈ Rni(d+1)×d, where

ΛT := [LT
ii1

· · · LT
iini

ηT
ii1

· · · ηT
iini

],

Λ̃T := [L̃T
ii1

· · · L̃T
iini

η̃T
ii1

· · · η̃T
iini

],

L̃T
ij = diagma(P≥0(diagve(L

T
ij))), ηT

ij = η̃T
ij , j ∈ Ni.

The block-decomposition ofΛ and Λ̃ is analogous to that
of Θi in Lemma 2.1. The operatorPi will be used in the
learning step of the proposed algorithm below.

III. A TTACK-RESILIENT FORMATION CONTROL

ALGORITHM AND ANALYSIS

In this section, we propose a novelattack-resilient forma-
tion control algorithm , AR-FORM for short, and then sum-
marize its properties of guaranteeing the formation control
mission under malicious attacks. Due to the space limitation,
we omit the proofs for the main results.

Overall, the algorithm can be roughly described as follows:

At each time instant, each operator first collects the
latest locations of neighboring operators’ vehicles.
Then, the operator computes a control lawui(k)
minimizing a local formation error function by
assuming that her neighboring vehicles do not
move. This computation is based on the certainty
equivalence principle; i.e., operatori exploits her
latest estimateΘi(k) to predict how adversaryi
corrupts her command as ifΘi(k) were identical
to Θi. After that, the operator sends the new
commandpi(k) + ui(k) to her associated vehicle.
Adversaryi then corrupts the command by adding
the signalvi(k) parameterized byΘi. Vehicle i

receives, implements, and further sends back to
operatori the corrupted commandpi(k)+ui(k)+
vi(k). After receiving the new location of her
vehicle, operatori computes the estimation error
of Θi, and updates her estimate to minimize an
estimation error function.

We now formally state the interactions of theith group
consisting of operator, vehicle and adversaryi in Algo-
rithm 1. The rule to computeui(k), and the precise update
law for Θi(k) can be found there.

Algorithm 1 The AR-FORM Algorithm for groupi

Initialization: Initial value Θ̃i ∈ Rni(d+1)×d and estimate
Θi(0) = Pi[Θ̃i] of the adversary parameter.

Iteration: At eachk ≥ 0, adversary, operator, and vehiclei

interact through the following sequence of steps:

1: Operatori receivespj(k) from operatorj ∈ Ni, and
solves the following quadratic program:

min
ui(k)∈Rd

∑

j∈Ni

‖pj(k) − pi(k + 1|k) − νij‖
2
Pij

,

s.t. pi(k + 1|k) = pi(k) + ui(k) + Θi(k)T Φi(k), (4)

to obtain the optimal solutionui(k).
2: Operatori sendspi(k)+ui(k) to vehiclei, and generates

the estimate:

pi(k + 1|k) = pi(k) + ui(k) + Θi(k)T Φi(k).

3: Adversaryi eavesdrops onpj(k) sent from operatorj ∈
Ni to operatori, and corruptspi(k) + ui(k) by adding
vi(k) = ΘT

i Φi(k).
4: Vehicle i receives and implementspi(k)+ui(k)+vi(k),

and then sends backpi(k + 1) = pi(k) + ui(k) + vi(k)
to operatori.

5: Operatori computes the estimation errorei(k) = pi(k+
1)− pi(k +1|k), and updates the parameter estimate as:

Θi(k + 1) = Pi[Θi(k) +
1

mi(k)2
Φi(k)ei(k)T ],

wheremi(k) :=
√

1 + ‖Φi(k)‖2.
6: Repeat fork = k + 1.

Remark 3.1: Let Θi(k)T be partitioned in the form:

Θi(k)T = [Lii1(k) · · · Liini
(k) ηii1(k) · · · ηiini

(k)],

where Lij(k) ∈ R
d×d and ηij(k) ∈ R

d, for j ∈ Ni =
{1, · · · , ni}. Then, the solutionui(k) to the quadratic pro-
gram in Step1 can be explicitly computed as follows:

ui(k) =
(

∑

j∈Ni

Pij(I +
∑

l∈Ni

Lil(k))
)−1

×
∑

j∈Ni

Pij

{

(pj(k) − pi(k) − νij)

+
∑

l∈Ni

Lil(k)(pl(k) − pi(k) − νil) +
∑

l∈Ni

ηil(k)
}

. (5)

Hence, the program in Step1 is equivalent to the computa-
tion (5). In Step5, operatori utilizes a projected parameter
identifier to learnΘi online. This scheme extends the classic
(vector) normalized gradient algorithm; e.g., in [5], to the
matrix case and further incorporates a projection to guarantee
that ui(k) is well defined. That is, the introduction ofPi

ensures that the estimateLij(k) is positive definite, and



that I +
∑

j∈Ni
Lij(k) is nonsingular. As in [5], the term

1
mi(k)2 Φi(k)ei(k)T in the update law ofΘi(k) is to mini-

mize the error costei(k)T ei(k)
mi(k)2 . Here, ei(k) is the position

estimation error, andmi(k) is a normalizing factor. •
The following theorem guarantees that the proposed algo-

rithm allows the operator-vehicle network to achieve the de-
sired formation despite the malicious attacks of adversaries.

Theorem 3.1: (Convergence properties of the
AR-FORM algorithm): Consider any initial position
p(0) ∈ R

Nd of vehicles. If Assumptions 2.1 and 2.2
hold, then theAR-FORM algorithm for every groupi
ensures that the vehicles asymptotically achieve the desired
formation; i.e., lim

k→+∞
dist(p(k),X∗) = 0. Furthermore, the

rate of convergence of the algorithm ensures

+∞
∑

k=0

∑

(i,j)∈E

‖pj(k) − pi(k) − νij‖
2 < +∞.

We provide a coupled of remarks to conclude this section.
Persistent excitation (e.g., in [5]) is not guaranteed to be
satisfied by theAR-FORM algorithm, thus the formation
convergence rate may not be exponential. Furthermore, with-
out persistent excitation, we cannot guarantee either the
convergence of the estimateΘi(k) to the true valueΘi.
Note that the regressorΦi(k) is coupled by the locations
of different vehicles. Thus, we would need full coordination
between operators at each time instant to guarantee persistent
excitation. The absence of a centralized authority makes this
task challenging.

IV. SIMULATION

We now set out to elucidate the performance of our
proposed algorithm through a numerical example. Consider
a group of15 vehicles which are initially randomly deployed
over the square of50×50 as in Figure 2. Figure 3 delineates
the trajectory of each vehicle in the first60 iterations of
the algorithm. The configuration of the vehicles at the60th

iteration is given by Figure 4 and this one is identical to
the desired formation. This fact can be verified by Figure 5,
which shows the evolution of the formation errors. Figure 5
also demonstrates that the convergence rate in the simulation
is exponential and this is faster than our analytical result.

V. CONCLUSIONS

In this paper, we have studied a formation control problem
for a operator-vehicle network in the presence of a team
of adversaries. We have proposed a novel attack-resilient
distributed formation control algorithm, theAR-FORM, and
analyzed its asymptotic convergence properties. Our results
have demonstrated the potential of online learning to enhance
network resilience, and suggest a number of future research
directions which we plan to investigate. For example, more
challenging scenarios can be created by considering intel-
ligent adversaries who can learn some private information
of operators; e.g.,νij and Pij , and adapt their attacking
policies online. The current operator-vehicle architecture can
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Fig. 2. Initial configuration of vehicles.
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Fig. 3. Trajectories of the vehicles during the first60 iterations. The green
squares stand for initial locations and red circles represent final locations.

be enlarged to allow for more complex interactions. In
addition, it would be interesting to study the impact of other
attacks; e.g., denial-of-service attacks and replay attacks, to
cooperative control in the operator-vehicle network.
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