Deployment algorithms for dynamically
constrained mobile robots

Sonia Marinez

Abstract The use of unmanned vehicles in exploration and surve#laperations
has become evermore pervasive in today’s world. The deredop of cooperative
motion strategies has been fueled by this increasing dentémdever, many dy-
namical models for these autonomous vehicles remain siemgleare not accurate
representations of a vehicle where such cooperative mstrategies may be phys-
ically implemented. This paper reviews complementary tsahs to the problem
of cooperative deployment of autonomous vehicles usindivoehter functions. In
particular, vehicles are subject to three types of dynamitstraints, such as those
due to remaining power supplies, nonholonomic dynamicd,cmstraints due to
external environmental forces. Simulations illustrate tonvergence properties of
the algorithms when applicable.

1 Introduction

The study of coordination mechanisms in multi-agent systesmelevant for both
the understanding of scientific phenomena and the develapoaiaew technolo-
gies. A main class of examples from nature is given by swagririranimal species
such as ant colonies, termites, flocking birds, and schgdish. Emergence and
self-organization is also a characteristic of human prsjtsocieties, and economic
groups. In these groups, each member makes decisions edlyebased on local
information signals sent or left by other members of the grand the environment.
This decentralized process with no leaders yields compigerging behaviors that
translate into robust and efficient global structures.goas, or organizations.
Complex systems in biology and society can help us undatstaadel, and de-
sign large-scale engineered systems composed of autos@ndisemi-autonomous
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agents. Their potential advantages are those found intiteagical counterparts—
robustness to failure thanks to system redundancy, anddeed efficiency in the
number and quality of the global tasks that can be accongaisHowever, the re-
alization of multi-agent systems poses new challengesciediby scalability prob-
lems, agent heterogeneity, and intermittent interactiongncertain, dynamically
changing environments.

Research in mobile robotics has helped enormously in therstahding of these
challenges through the study of several important bendhmarblems including
rendezvous, formation control, deployment, and task assét In particular, the
problem of robot deployment to provide better coverage sk t@rvicing in an en-
vironment lends itself to geometric optimization formigats, which have been ex-
tensively studied. An incomplete list of references on cage includes [1, 2], based
on potential field methods, [3] using the theory of coveragatprocesses, [4]
making use of non-smooth analysis techniques, and [5, 6a3édon behavioral
control approaches. More recently, the robotics commusitieveloping new non-
model based algorithms for coordinated deployment and raéglitg [8].

An alternative, popular approach makes use of multi-cggeeiormance metrics
and Voronoi-based control algorithms to stabilize muitbat systems to locally
optimal positions [9, 10]. This approach has been adapteeabwith non-convex
environments with obstacles [11, 12, 13], distributed emvinent learning [14, 15],
and equitable partitions [16, 17]. The resulting algorithoan be adapted so that
limited-range, distributed interactions are possible al j48].

More recently, different researchers have started to gdenthe difficulties in-
troduced by vehicle dynamics. Coordination algorithmsdally assume simple
dynamics for vehicles. The idea is to implement this sthagya high-level plan,
together with low-level local motion plans that each vehigbses to reconfigure to
the prescribed upper-level positions. If synchronizatigpossible, each vehicle can
wait for others to reach their positions before moving favaHowever, in asyn-
chronous regimes this strategy can be just infeasible. @mther hand, dynamic
constraints may require a re-definition of the deploymeifeaives in order to pro-
duce more meaningful solutions. However, the inclusionasfstraints in the coor-
dination objectives can impose additional computational eontrol challenges.

In this chapter, we review and summarize several extengsibisronoi-based
deployment to account for different types of dynamical ¢ists. These include
power constraints, and vehicle controllable and uncolatoté dynamics. The paper
is organized as follows. In Section 2, we review the basigyd® algorithm to the
Locational Optimization problem for coverage control. kc8on 3 we address the
problem of deployment under power limitation to vehicle oot Section 4 adapts
Lloyd’s algorithm to deal with Dubin’s type of unicycles véahybrid coordinated
motion law. Finally, Section 5 introduces a heuristic toldeigh underactuated and
uncontrollable vehicles in river environments.
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2 Benchmark problem: coverage control

In this section, we present a basic coverage control profibemulation together
with gradient-based algorithmic solutions for unconsteai vehicle dynamics [9,
10]. Some of these will be extended in the following sectimrsccount for different
types of dynamical constraints.

Basic coverage and task-assignment objectives can be fatiediby a meaning-
ful class of Locational Optimization or multicenter perfaance metrics. Lep C R?
be a convex, bounded environment, gndQ — R>q be a scalar field with bounded
supportQ. Here,@ represents aa priori measure of information o@—the higher
the value ofp(q), g € Q, the more attention that should be affordedjte Q. Let
P = (p1,..., pn) denote the agent positions@ In the following, we interchange-
ably refer to the elements of the network as sensors, agatitgles, or robots. Let
f : R — R be a non-decreasing and piecewise differentiable functtating the
Euclidean distance from; toq € Q, ||pi — g, to coverage performance froppon
g, foralli € {1,...,n}. For example, the functiofi can encode the signal-to-noise
ratio between a source with locatignand the sensor located gt Or it can de-
fine the cost of servicing a locatiapby an agent placed gi; e.g. the traveling
time from p; to g when moving on a straight line with constant velocity. Witlese
elements, a coverage metric can be defined as:

#(P)= [ minf (I —al)da, ®

where miny, f(||pi —q||) has the interpretation of the best coverage girovided
by the multi-robot system. The minimization of this metmsults into a minimum
average cost to cové) using the multi-robot group.

For the purpose of defining a distributed algorithm thatroes this metric, it
is helpful to restate (1) in terms of the individual conttibn that each agent in
the network adds to7’. For example, assume thégx) = x2 for all i € {1,...,n}
and denote the associatef by #zent. Let ¥ (P) = (V4,...,Vn) be the so-called
Voronoi partitionof Q, where

Vi={qeQllla—mll<la-ml.Vi#i},  Vie{l...n} ()

satisfyU!' ; Vi = Q. Then# may be rewritten as

N
#®)=#RYP)=3 [ la-plPotada ©
i= i
Given a regioWW C Q, one can define itmassandcentroid as follows:

My = /W o(qdg,  CMy = /VV q(a)da. (@)
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It can be shown, see [19, 9], that if agents are @eatroidal Voronoi configuration
that is, pi = CMy; for all i, then the cost functior?’ is at a local minimum.

An alternative metric that considers flat and limited sefgotprints (resp. travel
rangesR can be obtained by takinfY||p—q||) = — 1) ([|P—dl|), which leads to:

HuaedP) == [ oy P09
i=1 PP,

The minimization of this metric results into a maximizatiofthe area covered by
the group of agents. This objective can be combined with theipus one, leading
to a mixed metric of the forn®#hixed(P) = 0 Hentr+ Bared P), for a, B > 0.
Once a metric is chosen, a gradient-based distributed alaatyorithm can be
implemented by each agent to asymptotically reach the sporaling set of local
minima. The following law is a continuous-time version oé talgorithm in [9]:

pi = —sat<‘7‘ff;f’“') = My (CMy, —pi), ie{l,...,n},
|

where the function sé&t) = v, if ||v|]| < 1, otherwise s&t) = ﬁ Essentially, agents
need to be able to compute the regidfsand follow the corresponding centroid.
If Q is compact, agents will converge to centroidal locatiortse Torresponding
Voronoi regions may be computed by agents using informatdfaa limited set of
other agents, the Delaunay neighbors. Thus, the algorghtisiributed in the sense
of the Delaunay graph. Correspondingly, the metdtgeaand 7 hmixeq give rise to
algorithms that are distributed in the sense of thed&sk graph (for appropriate
o andp). Discrete-time versions of these algorithms can be sebe tonvergent
even if partial asynchronous behavior is permitted [9, 10].

A simulation of the above gradient algorithm is providedael

Fig. 1 A simulation run of the gradient-based algorithm associated Witk The figure on the
left depicts robots’ initial positions. The figure on the righpresents robots’ final positions and
correspond to centroidal Voronoi configurations.
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3 Power-limited deployment

Power-aware algorithms have been the subject of extersdearch in static sensor
networks and mobile middleware, see [20, 21]. However gliefimited work on
power constraints, and how these may affect cooperativeralcsigorithms. For
instance, the final agent configurations provided by Figui@ h task assignment
objective do not seem reasonable when agents have diffeiaitn restrictions.

Here we describe a first approach [22] to deal with this prokilethe context of
the Locational Optimization or multicenter type of metridsSection 2. We assume
that there is enough group redundancy so that the loss ofteylar agent can
be afforded. This allows to account for energy limitatiorysnbeans of a modified
performance metric of the form of (1) and associated gelzexhVoronoi partitions.

Let P = (ps,..., pn) be the positions of robots inQ. The sensors have an as-
sociated energy conteBt such that 0< E; < Emax, for alli € {1,...,n}. As agents
move, their energy reserve will decrease. We propose theniolg simple agent
dynamics in the augmented sté®, E;) € Q x Rxo:

pi=u, E=-a(pl), (5)

wherep; denotes the velocity of agensuch that| pi|| € [0,Vmax, Ui is the control
input, andg; : [0,vmay — Rxp is any increasing function such thg{x) = 0 only
at x = 0. Intuitively, g;(x) captures the fact that energy expenditure increases as
velocity increases. This modeling assumption is based erctimsideration that
power is consumed to change absolute speed and countezgdiodces; the latter
being the predominant force [22]. In the following, we widkieg;(x) = g(x) = X2,
foralli e {1,...,n}, for simplicity.

Energy expenditure will affect the travel range that a senan cover with max-
imum velocity before running out of batteries. Suppose #gnti travels with
a maximum velocitypi(t) = (Vmax, 0)" € R?. Then, the vehicle runs out of en-
ergy at timeT (Vmax) = Ei(0)/9(Vmax). The associated travel range is the distance
R. = VmaxT (Vmax). This motivates the use of a mixed type of performance matic
in Section 2 that accounts for travel-range limits. Thuscaesider:

H(PE) = min_fi(dg (q, pi))@(q)dq, (6)

whereE = (Ey,...,E,) are current energy levels of agents, the mgpsR — R
are non-decreasing functions associated with the traval @oeach agent, and
dg, : Q x Q — Ris aweighted (quasi) pseudo-metric function such as thevioig:

1. The power-weighted metridg,, pow(d, pi) = ||q— pil|? — (Ei)?,
2. The multiplicatively-weighted metriclg, mui(g, pi) = éHq— pill,

3. The additively-weighted metridg, aw(q, pi) = ||9— pil| — (Ei)z.

All these metrics lead to generalized Voronoi regions [18pge size depends on
the relative energy content of neighboring robots:
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V"= {qe Q|dg (q,pi) < dg (g, pj),V ] #i}, wheredg, is a pseudometric

Boundaries of these Voronoi regions are (1) straight lirmstfie power metric,
(2) circles of radii;, i € {1,...,n}, for the multiplicatively-weighted metric, and
(3) hyperbolic boundaries for the additively-weighted riretDue to the difficulty
of representing and intersecting hyperbolic boundariesfagus on the first two
types. As opposed to standard Euclidean Voronoi regiorsgtigeneralized regions
can be non-convex and their generators may lie outside ttiemhicles only have
a limited amount of energy to move using a maximum velodityj € {1,...,n},
we propose that in order for an agerb be able to cover a poirt € Q, agenti
must be able to readpwith its current energy level. This leads to new assignment
regions for agents given by the intersection of Voronoi@agiwith circles of radii
Ei,ie{1,...,n}

Let Bi(E;) be a closed ball centered pt with radiusE;. Then, the space that
can be covered by the robotst8 , Bi(Ej) C Q. The new limited-Voronoi regions
assigned to each agent are defined as follows:

VB ={a€Qldg(a,p) <dg(q,p)),Vj#iand|g—pil| <E},

wheredg, is one of the pseudometrics above. Figure 2 compares lirvibeonoi
regions.

5

@.4

Fig. 2 Figures from left to right: (i) Voronoi partition associatedthe multiplicatively weighted
pseudometric, (ii) limited-range cells associated with the mplidttively-weighted pseudometric,
(iii) limited-range cells associated with the power-weighpseéudometric.

The computation of limited types of regions are spatiallstritbuted over the
Delaunay graph and the third one over tligng-disk graph. The new regions em-
phasize different energy levels of agents. The correspgnalietrics for centroidal,
area, and mixed coverage are then given respectively asviall
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ie{1,...,n

Ao P.E) = / eI, (06 (6P} 900,

HaaedPE) = [ _min (~Log,(la-piDo@da=~ [ plada,
Qie{1,...,N} UL, Bi(E)
e%pmixed(P» E) = Karea?ared P, E) + Kcent#cen{ P, E) .
In particular, it is still possible to rewriteZzent(P, E) as follows:

Heen{P.E) = Z/g E (0, pi)@(a)dq.

LD|

For any of these functiong”’, we can define a gradient descent control algorithm

for agents as follows:
(5 ) (% )

oA
i = —K* |7E| t y |7E|
pi (pi,Ei)sa < 70 ) K*(p 2|Sat< )
Ei = _Hpinv NS {1a--'7n}' (7)

That is, assuming that energy decreases accordifigit®, we modulate the ve-
locity of agents via the gaik*® while collectively decreasing the cost functioff.

In this way, vehicles with lower energy will spend less in nmgvtoward their goal
positions, while vehicles with larger energy will spend maddith this strategy, con-
trollability to critical positions is possible for thosees that have enough energy
to move. For the particular case &fzeni(P, E), the algorithm makes agents follow
the centroids of the corresponding generalized Vorondbregif they do not run
out of energy. Convergence is stated in the following theore

Theorem 1 (Critical configurations for centroidal coverageand MWVD, [23]).
The critical points of a gradient descent flow characteribg@7) using an objective
functionZzentrare configurations where each agent is either:

1. located at the centroid,; p= CMVE’S?’
2. has no energy,E= 0. '

Agents approach these critical configurations as #o.

A simulation run of the energy-aware gradient-descentrélya for a mixed metric
Hixed IS provided in Figure 3. Agents that need to travel furtheagwvill even-
tually have smaller assigned regions. In this case vehatelsup at the centroids

of their regions. Similar convergence results can be astaa for the other cost
functions such as#ea The number of agents that can run out of energy depends
on the initial agents’ positions, the densiyq), and size of the environment. The
extension of these results to deal with asynchronous imgiéations can be done

in a similar way to [9].
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Fig. 3 Multi-robot system trajectories evolving under (7) f#fen. The final energy regions, and
final agent energy levels, are also shown here.

4 Unicycle vehicle dynamics

Vehicles’ actuation can severely be affected by dynamioaktraints on their po-
sitions and velocities. For example, the control laws ofghevious section force
individual agents to move directly towards the centroid hait Voronoi regions;
however, this is not always possible. When vehicles are obhaitle, one can con-
sider vehicle dynamics into the design of coordination atgms from the start.
This can help avoid severe performance degradation duekmfasynchronization.

In the following we introduce control algorithms that prbmeclass of non-
holonomic vehicles to centroidal Voronoi configurationsiievtthe minimization of
Hzenyr 1S satisfied in certain sense. This results into a hybridesysthat can be
analyzed via the novel theory of [24, 26]. Suppose that Vebiare deployed in
a convex, compact environme@ Referencing Figure 4, each vehicle has con-
figuration variables(pi, 8) € SE2)q, and a body coordinate frame with basis
&1 = (cosf,sinG) and g » = (—sind,cos6). We denoted; = CMy. —p; as in
Figure 4 and define the angle; € [—rm, 1] to be the angle betwees; andd;.
We assume the vehicles have bounded velocity and turnieg |t < vmax and
|| < wmax respectively. Next, we introduce a Dubin’s type of nonhelaic vehi-
cles that we shall consider.

cMy,

Fig. 4 Vehicle with wheeled mobile dynamics (left). The variables@defined for a vehicle with
fixed forward velocity and a left virtual center (middle). Then-active virtual center quantities
are shown with a tilde, ~ (right).
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Vehicles with fixed forward velocity. Simple models for UAVs and underwater
gliders can be modeled as vehicles with constant forwaratity] constant altitude
and a minimum turning radius such as the following [25]:

pi = (cosd,sin@)",  G=ua,

where is the only input. Define the vehichdrtual centeras its center of rota-
tion when the turning input i wmax. These centers can be on either side of the
vehicle, and a strategy to switch virtual center locatiornil$ lve introduced later.
Our coverage objective will be formulated in terms of theuat center of each ve-
hicle to a desired centroid target. This target will be thetigd of the vehicle’s
Voronoi region calculated using the virtual centers of a&hicles in the network.
Once the virtual center has arrived at the centroid, theclekiill hoverabout it by
maintaining the maximum steering inpittumax.

The virtual centers’ coordinates in the global frame are

(—sinB,cos8)". (8)

p’=pi+

ax

with time derivative:

w

ax

b’ = pi+ ((cos&)é}.,(sina)af(l; )(cose.,sine.)T. 9

ax
Indeed, withawy = +wmax the vehicle is hovering since the virtual center remains
fixed, pf = 0. At any point in time, the current virtual center is chosgrabvehicle
to be located on either side of the direction of travel. Tomim notation let a
current virtual center bg{, and the opposite virtual center pg= pI + 82 Let

d = CM; (¥ (P)) — i and letQ; denote the angle betweery andd;, see Flgure 4.

Each vehicle will either be in forward motion or hovering oot about one of
the centers. This will result into four possible modes ofratien for each vehicle
depending on the center location: forward-left, hovet;fefrward-right, and hover-
right. We enumerate each mode with the state{1,2, 3,4}, thus we describe each
agent by a state variabbe,c SE(2)g x {1,2,3,4}, and the multi-agent system state
by X = (X1,...,xn) € RN,

The choice of the center for each vehicle is based on thewwoitp observation.
Starting arbitrarily with a center positigs, we propose that each vehicle can switch
to the other centep;, only if the actual improvement in cost satisfigg(P, 7' (P)) —
(P, 7 (P)) > B, whereB > 0 is a fixed constanB = (p,...,pl,...,p,) andP =
(Py,---,Bi,...ph) considers the new virtual center positipn This improvement
can be evaluated locally by each vehicle, by knowihg

We now describe more precisely the hybrid system that fapeslthe coop-
erative algorithm for the multi-UAV group. The system stapace is SB)q x
{1,2,3,4} C O = R™. First, the set# 1, ..., A 4 define the states where each
vehiclei can flow continuously in each of the four modes, and are gigdolows:
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(1) Anindividual vehicle can be iA; 1 (resp A 3) if the centroid is in front of the
left (resp. right) virtual center g/, and if p{ is not sufficiently close to CM 7). Ad-
ditionally, the improvement from switching between forddeft to forward-right
(resp. vice-versa) must be better thdinHowever, if the opposite virtual centef ~
is not inQ, then the vehicle may maintain its current virtual centespite violating
the improvement thresholf:

Ai1={xeO|x € SE2)qx {1}, @1-d >g Mdi|*>—M|di[|><B, ||di]l> e}
U{x€O|x € SE2)ox {1}, &1 -d>¢, feQc |d > e},
Az={x€O0|x € SE2)qx {3}, @1-d >¢&, Mil|di[|?—M|d[*<B, |/di > &}
U{xeO|x € SE2)ox {3}, e1-di>¢ feQ [d=>¢},

(2) A vehicle can be i > (resp.A 4) if CM;(¥) is behind the left (resp. right)

virtual centerpf, or if p{ is on the boundar® and heading outwards, or ff is
sufficiently close to CM¥):

Ao={xeO|x €SE2)qx{2},a1-d <e¢,|d]>¢e}U

{xe O|x € SE?2)qx{2},e1-fin <O}U{xeO|x € SE2)q x {2}, ||di|| <z},
Aas={xeO|x eSE2)gx{4},61-d <g|d] >e}U

{xe O|x € SE?2)yq x {4}, 8.1 -Ain <0} U{xe O] x € SE(2)q x {4}, ||di| <€}
The hysteresis variables9 € < € < € serve to insure that Zeno effects do not
occur. Combining these sets together, the entire hybritesydlow set isA =

NN (AL 1UA 2UA 3UA 4). When the system configuratiare A, the state evolves
under thex= F (x), whereF (x) is defined as follows. First, I&%(x) with:

2Q; i
|00max’ O)T ) |:I,2(X) = (COSGH S|n6|, Wmax, O)T ’

Fi.1(x) = (cos8;, sing,

2Qj Wmax

Fi3(X) = (cos@, sing;, ,0T,  Fia(x)=(cosB, SinG, —Wmax 0)" .

Then,F(x) = (Fi(X), -+, Fn(X))T, R (X) = Fk(x) if and only if [y = k € {1,2,3,4}.
We now describe the set where discrete jumps can occur. Weomisider:

1. Switching from forward-left to forward-right: .

Bi1={xe€O|x e SE2)qx {1},e1-d > & Mi(|[di]|*—[|di[*) > B, fi € Q},
2. Switching from forward-right to forward-left: .

Bi2={xcO|x €SE2)qx {3},81-0¢ >& M([di?—||di[|?) > B, fi € Q},
3. Switching from forward-left to hover-left:

Bis={xe€O|x € SE2)ox{1},81-d <&}V
{xeO|x € SE2)sq x {1},8.1-fin < —e}U{xc O x € SE2)q x {1}, ||di]| < &},

4. Switching from hover-left to forward-left:
Bia={xcO|x € SE2qx{2},681-d >¢€,&1-in >0, |d| >}
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5. Switching from forward-right to hover-right:

Bis={xcO|x €SE2)gx{3},a1-d <&}U
{xe O|x € SE2)yq x {3},a.1-fin < —€}U{xe O|x € SE2)q x {3}, ||di|| < &},

6. Switching from hover-right to forward-right:
Big={XxcO|x € SE2qx{4},&1-d >¢,a1-0in >0, |d| >}

The switching domain is the unio = UN; Up_; Bix. The jump mapG is then
defined as follows. First, leg; 1(X), . .., i 6(X) be the maps for an individual vehicle
i. These maps are:

2 2
i1(X) = (3, pi— —8€.2,6), i2(X)=(L,pi+—&p2,6),
0i.1(x) (3, pi aXQ,Z ) gi2(X) = (L, pi 8.2,6)

gi73(X) = (25 Pi, Bl)a gi_’4(X) = (17 piael)v
gi5(X) = (4,pi,6), gie(X) = (3,pi,6).

We combine the above functions for each vehicle and obtain
Gi(X) = {(le'-'7gi,k(x))"'7XN) ‘ Xe Bi,ka for ke {1a76}}

The complete set-valued jump map is th@fx) = N ; Gi(x).
Concisely, the hybrid system of unicycles is described as

x=F(x), X €A,
x"€G(x), xeB.

It can be seen that the system satisfies the Basic Conditi¢gB§]pSection VI. This
allows us to apply the hybrid LaSalle invariance theorenivédrtherein:

Theorem 2 (Goebel, Sanfelice, Teel [27]{5iven a hybrid systerfF, G, A,B) on a
state space @ RM which satisfies the Basic Conditions, suppose that:

1. thereis aV: O — R, Lyapunov function continuous on O and Locally Lipschitz
on a neighborhood of A,

2. % C Ois non-empty,

3. Ua(X) = maXier(x) L1V (X) <0, for all x € A,

4. ug(X) = MaXecg(x (V(XH) —V(x)) <0, forall x € B.

Let x be precompact wittange(x) C % . Then for some constantaV (% ), x ap-

proaches the largest weakly invariant set in\{{r) N % N (u;l(O) U ugl(O)) .

A direct application of the above result leads to:

Theorem 3 (Kwok, Martinez [28]).LetZ = O. Given the hybrid system for fixed
forward velocity vehicles defined above and with virtualteerynamicg9), any
precompact trajectory (, j) with rgex € %, will approach the set of points

M ={x€O[||CMy, —pi|| <& Vie{l,...,n}}. (10)
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The proof makes use offzent(X1, ..., XN) = P}, ..., Py) as a locally Lipschitz
Lyapunov function. It can be seen that fzent(X) < O for all x € A and, that (i)
HentdXT) = Hent(X), for all x € B. The proof follows from the analysis that the
only possible set that can contain the largest invariarisset .

We present a simulation case below where vehicles have aftiredrd velocity
in Figure 5. All vehicles begin with random positions anceotations in the lower
left corner. They start with a left virtual center, but aggiswitches to a right virtual
center early in the simulation. It can be seen how the vehitdwigate their virtual
centers to the centroids of their Voronoi cells. The plotha tight shows a plot of
the cost function minimization to a critical value.

1500

1000

500

0 15 20

10
t (sec)
Fig. 5 Fixed forward velocity deployment simulation. The agents stettte lower left corner and
path lines are shown in the left figure with final positions andrgations shown in the right figure.
Virtual center locations are denoted by a dot.

5 Uncontrollable vehicles in river environments

It is generally assumed that vehicles have fully actuateditdeast controllable,
dynamics. However, potential applications may involvedbployment of vehicles
in hazardous environments where agents lack the actuatioounteract external
forces. Example applications include the deployment ofroaldAVs in wind or
gliders in a swift current. One can still aim to factor suayngicant environmental
dynamics into the cooperative control algorithms.

In this section we summarize the results found in [29, 30}lerdeployment of
vehicles in fast flow environments. Assume the followingekimatic model for each
of the agents:

pi=u+V(pi), (11)

whereu;(t) is piecewise smoothjui|| < 1, and||V|| > 1. Time-optimal trajectories

can only be obtained with maximum velocity, thys= (cos8;,sing)", see [31].
Our notion of coverage will be associated with the set of {zdimat an agent can

travel to faster than other agents. First, let us recall #faniion of reachable set:
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Definition 1 (Reachable set)We define theeachable setZ(p;), of an agent at
positionp; to be the set of points< X that an agent can reach in finite time starting
from the initial positionp; and using a piecewise smooth control inpyt) with
llui]l < 1. TheT-limited reachable ser(p;i), of an agent at positiop;, is the set
of points that an agent can reach within tifeusing a piecewise smooth control
inputu;(t) with ||| < 1.

Figure 6 shows two examples of reachable sets in an affinecarsdant flows.

—_—

—_—

Fig. 6 Reachable sets in affine environments. The figure on the rightsmonds to th& reach-
able set of a vehicle moving with velocitin a constant flow of magnitudé = (c,0).

A distributed algorithm for the deployment of agents in a flemwvironment can
be now based on the maximization of the following area cayeraetric:

Hred 1., Pn) = / 1dx. (12)
UZt (i)

This must be done while taking into account the flow environnaed how it affects
the dynamics of each agent. The consideration of other cserstill possible, how-
ever, external drifts give rise to generalized Voronoi oegi with complex bound-
aries; see [32, 33] for some initial work in this regard. ld@rto maximize’#3rea
one can follow the next steps: (a) determine minimum timg¢taries in the flow
environment, and (b) use knowledge of the properties ofetlogsgimal trajectories
to compute a gradient direction.

In order to find%r (pi), one must solve the following optimal control problem:

t
minimize: J= / f 1dt,
0
subjectto:  pi=u+V(p), Juil <1, (13)
pi(0) andp; (t¢ ) given.

For a smooth flow field&/, this is known as Zermelo’s problem, and a solution can
be found in [31]. The optimal solution is to consider a cohitnput of the form

U = (cos@,sing),

NPT Ny OV Ny
6 _smze}.a—xl +sin6 cos6 <0X1_0Xz) —cosze.a—xz. (14)
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The minimum-time trajectories are obtained by using thjgutnin combination
with (11). Note that a constakt produces straight-line optimal trajectories.

To obtain theT -limited boundary ofZr (pi), one could integrate (11) using (14)
to timeT starting at the agent locatign and initial heading (0) € [a — 3 — J,a +

B+ F], wherea = arctanV(x), V1 (x)) andB = arcsin(m) The solutions for
various initial headings at tim& could then be recorded and combined with the
solutionsy(t,—1) andy(t, 1) for t € [0, T]. Note that this procedure works well for
affine flows, for which optimal trajectories are well behavEdat is, the trajectories
do not intersect and they fill up the cone between the extrgstimal trajectories
y(t,—1) andy(t,1).

The consideration of piecewise constant flows changes thesaf optimal solu-
tions and reachable sets. We summarize some of their piepartder the following
assumption.

Assumption 1.The flow environmenX may have obstacles and:

1. The flowV is piecewise constant. That ¥,= | g, Xk such thal/x, is constant
and satisfiegVix, || > 1 for all k.

2. The regions, k € {0,...,m}, are separated by piecewise differentiable curves.
Let Y, : Xk — R be piecewise differentiable common boundarygandX,.

3. Alongthe interface between two flokand/, we consider any (x) € co{V|x,,V|x, }
for {x| Yi((x) = 0}.

Thus, the optimal paths in the interior of eashwill be straight lines. As a path
reachesyy, several situations may arise. We briefly describe thedeeifidilowing.
Catalog of optimal trajectories. For simplicity, in this chapter we assume the
boundary of the environmernX to be parallel to the flow in the inner regiof,
and there will not be obstacles present.

For the case that a trajectory intersects a boundary betwweerflows, de-
fined by ((x) = 0, the intersection can again occur either transverselgrayen-
tially. Based on this, we classify trajectories isimple (transversalyr non-simple
(tangential) trajectoriessee Figure 7. The transversal simple trajectories are non-
pathological and undergo a direction change at the inteyfatlowing an analogous
rule to that of the Snell’s law in physics:

Proposition 1 (Kwok, Martinez [34]).Let V. = (c1,¢2)" and V, = (di,dz)" be
the flows in two neighboring regions, amd, o, be their respective flow orienta-
tions. Leté be the orientation of the normal vector of the smooth cup¢e) = 0 at
the point where the optimal trajectory crosses into the sddtow region. A neces-
sary condition for an optimal trajectory across the intaréeof the two flow regions
requires that:

1+[V_|lcog6_—a;) 14|V |cog6, —ap)
sin(6_ — &) B sin(8y — &) '

(15)

Given(15), and a fixed headin§_, the final heading satisfies
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B+CvB2+C2-1
B2+C? ’

sinf, = (16)

where B= NI E0340—01) cosg — dp and C= HNL 40~ sing 4 .

sin(6_—¢&)

Fig. 7 Example of simple trajectories (left figure) and of non-simplgettories (right figure.)

However, the application of (15) can also result in a trajpc{non-simple tra-
jectory) that travels along the boundary between two diffieflows; see Figure 7,
right picture. The use of the same result can also give a wagntpute a heading
back into the first region. When an agent is moving along a flowndary, and it is
possible to switch back into the first region, the agent maosh to switch back at
any time, making this process indeterminate. However,aghelt above dictates that
there is only one possible outgoing heading back into theffow region. Further-
more, it is possible for these trajectories that flow alongrutaries and later return
to intersect other trajectories that remained in the oalgfftow region. For com-
pleteness, the following result summarizes necessaryitiomsl for the incoming
and outgoing angles for these cases.

Proposition 2 (Kwok, Martinez [34]).Assume two flow regions defined by the pa-
rameters||V_||, a1 and ||V, ||, a2, respectively, separated by an interface whose nor-
mal angle isé. If it is possible for an agent to flow along the boundary unter
second flow, thefl, satisfies

0; € {E tarccog—||Vy| sin(az+&)] ,—& Larccog||Vy| sin(az + &)] } 17)

LetD= %. Then, the incoming heading resulting in flow along the

boundary, if it exists, satisfies

|V_| sina; — Dcosé
|IV_|| cosay +Dsiné

0_ = arctan{

+arcco -1 (18)
V/(IV-|'sina; — Dcos&)Z+ (Dsiné +[|V_| cosa1)? | -

Knowledge about these trajectories can be used to derivadiegit-ascent algo-
rithm that aims to maximize#zea We begin by taking the gradient 6#3eaWith
respect tqo; in order to obtain a set directions each agent must travel in.
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Proposition 3 (Kwok, Mart inez [34]).Given the area objectivl2), let

C

A=ozr(m)n| U %r(py) ]| nX, (19)

JE flow

the set of points iM%y (pi) is not in the interior of neighboring reachable sets.
Then the gradient with respect tg ip:

o ¢
2 @) S, (20)

where(; : S — R? is a parametrization 00%+ (pi), andfigyt : R? — R? is the unit
outward-pointing normal vector af.

For piecewise constant row} can analytically be computed using the previous
analysis of the course changes of optimal trajectories insflesee [34]. We can
further analyze the algorithm

0 Harea .
= \ ie{l,...,n}, 21
o (L) @

above for the special case of a single constant flow field. Eonatant flow the gra-
dient according to (20) becom@%ﬁ—i’ea = oni Adu(¢)d& . This result has an intuitive
interpretation. In order to maximize area covered, agermgentowards locations
that are not occupied by other agents’ reachable sets. Neviottowing can be
proven:

Proposition 4 (Kwok, Martinez [34]).

1. For a constant flow field, \= ¢, if no regions intersect the boundariéX, then
HarealS NoN-decreasing if agents use the control k&4).

2. For constant flows, if the flow boundaries are parallel witle flow direction
and X is unbounded (the flow domain is an infinitely long sttip@n >74eais
maximized by21).

Other flow cases make difficult the analysis of the evolutib e, similarly to
what happens with time-dependent coverage functions. Titrertt strategy makes
agents follow the direction of maximum ascentiéf., However, one can imagine
situations in which the value o¥##5 decreases despite of this if, for example,
boundaries oX become closer and closer. The following is a simulation shgw
how J#eq0scillates around a given value when the flow regions forbgcles into

a bounded region; see Figure 8.
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Fig. 8 The central “eye” of the storm is treated as an obstacle, owvalguitly a “no-fly zone.” The
simulation snapshots occur foe 0 (top left),t = 20 (top right), and = 60 (bottom left). A plot
of the total reachable area is shown in the bottom right.

6 Conclusions

This chapter summarized several results concerning tHeydapnt of vehicles sub-
ject to dynamic constraints. In general, the algorithmadistibuted over the asso-
ciated Delaunay graphs or,indisk graphs withr sufficiently large. The algorithms
provide convergence guarantees to the set of local minirddfefent classes of Lo-
cational Optimization or multicenter metrics. Dynamic straints were dealt with
in essentially three ways: (i) in a soft manner, by modifythg Locational Op-
timization metric and working with easy-to-compute getizea Voronoi regions,
and (ii) by resorting to controllability properties of thehicles, and (iii) by using
the dynamic constraints in the definition of generalizedaeg assigned to each
vehicle. In general, dynamic constraints will lead to iwem generalized Voronoi
regions, whose boundary is hard to compute and represeitteaices to the so-
lution of an optimal control problem. We are currently intigating how this can
be alleviated by considering upper and lower approximatioin\VJoronoi regions,
which can be refined to any degree at a higher computatiopainse. By defining
an algorithm that allows each agent follow the directionroépproximated gradient
using the lower Voronoi region approximation, it can be da@m local minima can
still be reached. We are exploring this in the context of tamsriver environments
in the manuscript [35] with Voronoi regions given by hypddsg but we believe the
approach can be extended to general cost functions.
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