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Abstract— In this paper, we study a battery sizing problem
for grid-connected photovoltaic (PV) systems assuming that
the battery charging/discharging limit scales linearly with its
capacity. The objective is to seek a value of the battery size such
that the electricity purchase cost from the grid is minimized
while satisfying the loads. We propose an upper bound on the
storage size, and an algorithm to calculate the exact storage
size for the case with ideal PV generation and constant loads;
we verify that these are consistent with the results obtained via
simulations.

I. INTRODUCTION

Distributed renewable energy systems have seen signifi-

cant deployment on electric distribution systems to reduce

capacity needs and fossil fuel emissions. Among the avail-

able renewable energy technologies such as hydroelectric,

photovoltaic (PV), wind, geothermal, biomass, and tidal

systems, grid-connected solar PV has continued to be the

fastest growing distributed power generation technology [1].

Meanwhile, solar energy generation tends to be variable due

to the diurnal cycle of the solar geometry and clouds. To

complement the PV output during times of peak energy

usage and store surplus PV energy for nighttime use, storage

devices (such as batteries, ultracapacitors, and pumped hydro

storage) can be applied.

In this paper, we study the problem of determining the

battery size for grid-connected PV systems. Our setting is

shown in Fig. 1. Electrical energy is generated from solar

panels, and is used to supply loads. If the PV generation is

larger than the loads, extra electrical energy can be stored

in batteries to reduce energy imports later on; if the PV

generation is smaller than loads, electricity has to be either

discharged from the battery or purchased from the grid

to meet the loads. Given the high cost of battery storage

systems, the size of the battery storage should be small

yet minimize electricity purchases from the grid. We thus

formulate a battery sizing problem in which the maximum

battery charging/discharging rate scales linearly with the

battery capacity, and show that there is a unique critical

value (denoted as Ec
max, refer to Problem 1) such that the

cost of electricity purchase remains the same if the net usable

battery capacity is larger than or equal to 2Ec
max and the cost

is strictly larger otherwise. We propose an upper bound on

Ec
max, and an algorithm to calculate the exact value for the

case of typical maximum PV generation on clear days and
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Fig. 1. Grid-connected PV system with battery storage (we assume that the
conversion efficiency of DC-to-AC or AC-to-DC converters is 1; therefore,
converters are not drawn here).

constant loads; the results are very consistent with the critical

value obtained via simulations.

Storage sizing problems for grid-connected systems have

been studied extensively, e.g., [2]–[6]. In these studies,

batteries are used to reduce the fluctuation of PV output [2],

maximize a defined service lifetime/unit cost index of the

energy storage system [4], or minimize the cost of the energy

storage system [3]. Almost all of these previous studies

on storage sizing are based on trial and error approaches

except [5], [6]. In [5], the goal is to minimize the long-

term average electricity costs in the presence of dynamic

pricing as well as investment in storage in a stochastic

setting. In [6], we study a battery sizing problem in a setting

similar to this work. The key difference is that the maximum

charging/discharging rate is fixed in [6], which is relaxed in

this work to allow the maximum rate to scale linearly with

the battery capacity; this is more realistic because battery

cells can be connected in parallel to implement the critical

battery capacity.

II. PROBLEM FORMULATION

A. Photovoltaic Generation

To calculate the electrical power generated from solar

panels, we use Ppv(t) = GHI(t)×S×η, where GHI (W/m2)

is the global horizontal irradiation at the location of solar

panels, S (m2) is the total area of solar panels, and η is the

conversion efficiency of the solar cells. The PV generation

model is a simplified version of the one used in [7].

B. Electric Grid

Electricity can be drawn from (or dumped to) the grid.

We associate costs only with the electricity purchase from

the grid, and assume that there is no benefit by dumping

electricity into the grid. The motivation is that, from a grid

operator standpoint, it would be most desirable if PV system

served only the local load and did not export to the grid.

We use Cgp(t) (¢/kWh) to denote the electricity purchase

rate, Pgp(t) (W ) to denote the electrical power purchased



from the grid at time t, and Pgd(t) (W ) to denote the excess

electrical power dumped to the grid or curtailed at time t.
For simplicity, we assume that Cgp(t) is time independent

and has the value Cgp.

C. Battery

A battery has the dynamic
dEB(t)

dt
= PB(t), where EB(t)

(Wh) is the amount of electrical energy stored in the battery

at time t, and PB(t) (W ) is the charging/discharging rate

satisfying PB(t) > 0 when charging and PB(t) < 0 when

discharging. We impose the following constraints on the

battery:

i) EBmin ≤ EB(t) ≤ EBmax, where EBmin (or EBmax) is

the minimum (or maximum) battery electrical energy

(usually EBmin is chosen to be larger than 0 to prevent

fast battery aging), and 0 < EBmin ≤ EBmax, and

ii) PBmin ≤ PB(t) ≤ PBmax, where −PBmin > 0 (or

PBmax > 0) is the maximum battery discharging (or

charging) rate.

We assume that PBmax = −PBmin = EBmax−EBmin

Tc

, where Tc

is the minimum time necessary to charge (or discharge) the

battery from EBmin (or EBmax) to EBmax (or EBmin). In other

words, the maximum charging/discharging rate scales lin-

early with the usable capacity of the battery. This assumption

is reasonable for scenarios in which the battery is composed

of multiple battery cells connected in parallel.

D. Minimization of Electricity Purchase Cost

With all the components introduced earlier, now we can

formulate the following problem:

min
PB ,Pgp,Pgd

∫ t0+T

t0

CgpPgp(τ)dτ

s.t. Ppv(t) + Pgp(t) = Pgd(t) + PB(t) + Pload(t) , (1)
dEB(t)

dt
= PB(t), EBmin ≤ EB(t) ≤ EBmax, EB(t0) = EBmin ,

PBmin ≤ PB(t) ≤ PBmax, PBmax = −PBmin = EBmax−EBmin

Tc

,

Pgp(t) ≥ 0, Pgd(t) ≥ 0 ,

where t0 is the initial time, T is the time period considered

for the cost minimization, and Pload(t) (W ) denotes the load

at time t. Note that the objective is to minimize the electricity

purchase cost from the electric grid during the time interval

[t0, t0 + T ] while guaranteeing that the electricity supply

can meet the electricity demand (i.e., the power balance

equation (1)) and battery constraints are not violated.

E. Battery Sizing Problem Formulation

Before we formulate the battery sizing problem, we first

simplify the cost minimization problem in Section II-D by

eliminating variables Pgd(t) and Pgp(t).
Using Eq. (1), we obtain Pgp(t) = Pload(t) − Ppv(t) +

PB(t) + Pgd(t). If Pload(t) − Ppv(t) + PB(t) < 0, we need

to choose Pgd(t) > 0 to make Pgp(t) = 0 so that the cost

is minimized at the current time t; if Pload(t) − Ppv(t) +
PB(t) > 0, we need to choose Pgd(t) = 0 to minimize the

electricity purchase costs, and we have Pgp(t) = Pload(t) −
Ppv(t)+PB(t). Therefore, Pgp(t) can be written as Pgp(t) =

max(0, Pload(t) − Ppv(t) + PB(t)) so that the integrand in

the objective function is minimized at the current time t.
We can plug in the expression of Pgp(t) in the objective

function, and obtain an optimization problem which has only

one independent variable PB(t).
We now change variables to make the state variable and

the control variable explicit. Let x(t) = EB(t)−
EBmax+EBmin

2 ,

u(t) = PB(t), and Emax = EBmax−EBmin

2 (note that the division

by 2 is to obtain a simple constraint on x(t): |x(t)| ≤ Emax,

and 2Emax is the net (usable) battery capacity; thus, we can

equivalently use Emax as the battery capacity). Then we have

PBmax = −PBmin =
2Emax

Tc

, (2)

and can rewrite the optimization problem as

J =min
u

∫ t0+T

t0

Cgp max(0, Pload(τ)− Ppv(τ) + u(τ))dτ

s.t.
dx(t)

dt
= u(t), |x(t)| ≤ Emax, x(t0) = −Emax ,

PBmin ≤ u(t) ≤ PBmax, PBmax = −PBmin = 2Emax

Tc

. (3)

We define the set of feasible controls (denoted as Ufeasible) as

controls that satisfy the constraints − 2Emax

Tc

≤ u(t) ≤ 2Emax

Tc

.

If we fix the parameters t0, T , and Tc, J is a function

of Emax, which is denoted as J(Emax). If Emax = 0,

then u(t) = 0, and J reaches the largest value Jmax =∫ t0+T

t0
Cgp max(0, Pload(τ)−Ppv(τ))dτ . If we increase Emax,

intuitively J will decrease (though may not strictly decrease)

because the battery can be utilized to store extra electrical

energy generated from PV to be potentially used later on

when the load exceeds the PV generation. This is formally

justified by the following lemma.

Lemma 1 Given the optimization problem in Eq. (3) with

fixed t0, T , and Tc, if E1
max < E2

max, then J(E1
max) ≥

J(E2
max).

Proof: Given E1
max, suppose a feasible control u1(t)

achieves the minimum electricity purchase cost J(E1
max), and

the corresponding state x is x1(t). Since |x1(t)| ≤ E1
max <

E2
max and |u1(t)| ≤

2E1

max

Tc

<
2E2

max

Tc

, u1(t) is also a feasible

control for problem (3) with the state constraint E2
max, and

results in the cost J(E1
max). Since J(E2

max) is the minimal

cost over the set of all feasible controls which include u1(t),
we must have J(E1

max) ≥ J(E2
max). �

In other words, J is decreasing with respect to the param-

eter Emax, and is lower bounded by 0. We are interested in

finding the smallest value of Emax (denoted as Ec
max) such

that J remains the same for any Emax ≥ Ec
max.

Problem 1 (Storage Size Determination) Given the opti-

mization problem in Eq. (3) with fixed t0, T, and Tc, deter-

mine a critical value Ec
max ≥ 0 such that i) ∀Emax < Ec

max,

J(Emax) > J(Ec
max), and ii) ∀Emax ≥ Ec

max, J(Emax) =
J(Ec

max).

Note that the critical value Ec
max is bounded (refer to

Proposition 1), and unique as stated below (which can be



proved via contradiction based on the definition of Ec
max).

Lemma 2 Given the optimization problem in Eq. (3) with

fixed t0, T, and Tc, Ec
max is unique.

One may try to calculate Ec
max by first obtaining an explicit

expression for J(Emax) and then solve for Ec
max. However,

the optimization problem in Eq. (3) is difficult to solve due

to the state and control constraints. Instead, we first focus

on bounding the critical value Ec
max in the next section, and

then study the problem for specific scenarios in Section IV.

III. UPPER BOUND ON Ec
max

To make use of the battery, we impose the following

assumption on Problem 1, which guarantees that the battery

can be charged at t1 and the battery discharging at t2 > t1
can strictly reduce the cost.

Assumption 1 There exist t1, t2 ∈ [t0, t0 + T ], such that

t1 < t2, Ppv(t1)−Pload(t1) > 0 and Ppv(t2)−Pload(t2) < 0.

Proposition 1 Given the optimization problem in Eq. (3)

with fixed t0, T, and Tc under Assumption 1,

0 < Ec
max ≤ max(

min(A,B)

2
,
max(C,D)Tc

2
) ,

where

A =

∫ t0+T

t0

max(0, Ppv(t)− Pload(t))dt , (4)

B =

∫ t0+T

t0

max(0, Pload(t)− Ppv(t))dt . (5)

C = max
t∈[t0,t0+T ]

(Pload(t)− Ppv(t)) , (6)

D = max
t∈[t0,t0+T ]

(Ppv(t)− Pload(t)) . (7)

Proof: We first show Ec
max > 0 via contradiction. Since

Ec
max ≥ 0, we need exclude the case Ec

max = 0. Suppose

Ec
max = 0. If we choose Emax > Ec

max = 0, J(Emax) <
J(Ec

max) because under Assumption 1 a battery can store the

extra PV generated electrical energy first and then use it later

on to strictly reduce the cost compared with the case without

a battery (i.e., the case with Emax = 0). A contradiction to

the definition of Ec
max.

To show Ec
max ≤ max(min(A,B)

2 , max(C,D)Tc

2 ), it is suffi-

cient to show that if Emax ≥ max(min(A,B)
2 , max(C,D)Tc

2 ),

then J(Emax) = J(max(min(A,B)
2 , max(C,D)Tc

2 )).
Before we prove the result, we briefly discuss the mean-

ings of A,B,C,D. In Eq. (4), max(0, Ppv(t) − Pload(t))
is the extra PV generated electrical power after supplying

the load, and therefore, A is the maximum total amount of

electrical energy that can be stored in the battery during

the interval [t0, t0 + T ] without considering the maximum

charging rate PBmax. In Eq. (5), max(0, Pload(t) − Ppv(t))
is the electrical power strictly necessary to supply the load

at time t via either battery discharging or grid purchase.

Therefore, B is the total amount of electrical energy that

needs to be discharged from the battery or purchased from

the grid to meet the load. Since the objective is to minimize

the electricity purchase from the grid, we would like to fulfill

B using the electrical energy discharged from the battery

(whenever possible). The actual discharged electrical energy

can be smaller than B if the maximum discharging rate

−PBmin is smaller than max(0, Pload(t)−Ppv(t)) for some t.
In Eq. (6), C is the minimum of the battery discharging rate

so that battery discharging and PV generation can meet the

load. In Eq. (7), D is the minimum of the battery charging

rate so that the battery can be charged whenever there is

extra PV generated power after supplying the load.

We first consider
min(A,B)

2 ≥ max(C,D)Tc

2 . In this case, the

upper bound becomes
min(A,B)

2 , and Emax ≥ min(A,B)
2 ≥

max(C,D)Tc

2 . Note that Emax ≥ max(C,D)Tc

2 implies that

PBmax = −PBmin = 2Emax

Tc

≥ max(C,D). Therefore, the

maximum battery charging/discharging rate is large enough

to ensure that PV generated extra power can be stored

(as long as the battery capacity is large enough) and the

battery discharging can meet the demand at any time (as

long as there is enough electrical energy stored). Thus, in

this case, the only factor that matters is the electrical energy

stored and the electrical energy that can be discharged. If

Emax ≥ min(A,B)
2 , the battery is large enough to store all

extra PV generated electrical energy (when A ≤ B) or

supply the load all the time (when A > B). Then it is not

possible to lower the cost with an Emax ≥ min(A,B)
2 , which

implies that J(Emax) = J(min(A,B)
2 ).

We now consider
min(A,B)

2 < max(C,D)Tc

2 . In this

case, the upper bound becomes
max(C,D)Tc

2 , and Emax ≥
max(C,D)Tc

2 > min(A,B)
2 , i.e., the battery capacity is large

enough to hold all extra PV generated electrical energy

(when A ≤ B) or electrical energy necessary to power the

load (when A > B). Thus, in this case, the only factor

that matters is the maximum charging/discharging rate. If

Emax ≥ max(C,D)Tc

2 , then PBmax = −PBmin ≥ max(C,D). In

other words, the maximum battery charging/discharging rate

is large enough to ensure that PV generated extra electrical

power can be stored and the battery discharging can meet the

demand at any time. Therefore, it is not possible to lower

the cost, which implies that J(Emax) = J(max(C,D)Tc

2 ). This

completes the proof. �

IV. IDEAL PV GENERATION AND CONSTANT LOAD

In this section, we study how to obtain the critical value

for the scenario in which the PV generation is ideal and the

load is constant as specified below.

Assumption 2 The initial time t0 is 0000 h LST, T = k ×
24(h) where k is a nonnegative integer, Ppv(t) is periodic on

a timescale of 24 hours, and satisfies the following property

for t ∈ [0, 24(h)]: there exist three time instants 0 < tsunrise <
tmax < tsunset < 24(h) such that

• Ppv(t) = 0 for t ∈ [0, tsunrise] ∪ [tsunset, 24(h)];
• Ppv(t) is continuous and strictly increasing (or decreas-

ing) for t ∈ [tsunrise, tmax] (or t ∈ [tmax, tsunset]);
• Ppv(t) achieves its maximum Pmax

pv at tmax,

and Pload(t) = Pload for t ∈ [t0, t0 + T ], where Pload is a

constant satisfying 0 < Pload < Pmax
pv .



It can be verified that Assumption 2 implies Assumption 1.

A. Ec
max under Fixed Maximum Charging/Discharging Rate

If PBmin and PBmax are fixed, we have the following results

regarding Ec
max.

Proposition 2 [6] Given the optimization problem in

Eq. (3) with fixed t0, T, PBmin and PBmax under Assump-

tion 2. I) If T = 24(h), Ec
max = min(A1,B1)

2 , where

A1 =

∫ 24

0

min(PBmax,max(0, Ppv(t)− Pload))dt , (8)

B1 =

∫ 24

tmax

min(−PBmin,max(0, Pload − Ppv(t)))dt ; (9)

II) If T = k × 24(h) where k > 1 is a positive integer,

Ec
max = min(A2,B2)

2 , where A2 = A1 and

B2 =
∫ tmax+24

tmax
min(−PBmin,max(0, Pload − Ppv(t)))dt . (10)

Remark 1 Note that if T = 24(h), A1 is the amount of

extra PV generated electrical energy that can be stored in

a battery, and B1 is the amount of electrical energy that is

necessary to supply the load and can be provided by battery

discharging. �

Instead, if we fix the charging time Tc, then PBmin and

PBmax change as Emax changes due to Eq. (2). Based on

Proposition 2, one might try to calculate Ec
max by replacing

PBmax and PBmin in Proposition 2 with Eq. (2) and then

solving Ec
max = min(A1,B1)

2 as an implicit equation of Ec
max.

Numerically we can solve the implicit equation; however,

the obtained Ec
max may not be consistent with the value

obtained via simulations for certain Tc, which is illustrated

in Section V-B. Therefore, new techniques are necessary to

handle the scenario with fixed Tc.

B. Ec
max under Fixed Minimum Charging/Discharging Time

Now we study how to calculate Ec
max when Tc is fixed.

This calculation is based on the analysis of Proposition 2, its

application in the current setting, and insights provided by

simulations.

We first consider the scenario in which Pload < Pmax
pv −

Pload and T = 24(h). As illustrated in the simulation

Section V-B, the value of Ec
max given by Proposition 2 is

correct for certain values of Tc. Therefore, we begin our

analysis based on the result in Proposition 2.

For the quantity A1 defined in Eq. (8), the maximum

value of max(0, Ppv(t) − Pload) is Pmax
pv − Pload. Therefore,

if PBmax ≥ Pmax
pv − Pload, A1 becomes

A1 =

∫ 24

0

max(0, Ppv(t)− Pload)dt , (11)

which does not directly depend on Emax (recall PBmax =
2Emax

Tc

). Similarly, If −PBmin ≥ Pload, B1 becomes

B1 =

∫ 24

tmax

max(0, Pload − Ppv(t))dt , (12)

which does not directly depend on Emax either (recall

−PBmin = 2Emax

Tc

).

Now we study different ranges for PBmax under the con-

straint Pload < Pmax
pv − Pload. There are three possibilities:

i) PBmax < Pload, or equivalently, Emax < EL
max, where

EL
max = PloadTc

2 . In this case, it means that −PBmin =
PBmax is not large enough to supply the demand from the

load for t ∈ [tsunset, 24], which results in grid purchase.

By increasing the battery capacity (which increases

PBmax), the electricity purchased from the grid will be

lowered (thus, also lowering the cost) because more

extra PV generation can be stored due to PBmax <
Pload < Pmax

pv −Pload. Therefore, Ec
max cannot be smaller

than EL
max.

ii) Pload ≤ PBmax < Pmax
pv − Pload, or equivalently, EL

max ≤

Emax < EH
max, where EH

max =
(Pmax

pv −Pload)Tc

2 . In this case,

the quantity B1 is given in Eq. (12) but the quantity A1

is still given in Eq. (8). Based on the meanings of A1

and B1 in Remark 1, to minimize the grid purchase cost,

we need to make sure A1 ≥ B1 and 2Emax ≥ B1; in

other words, the supply is at least as large as the demand

and the battery can store the needed electrical energy

B1. By increasing Emax starting from EL
max, A1 will

strictly monotonically increase based on Eq. (8), and

therefore, A1 ≥ B1 will eventually be satisfied (though

Emax may increase even beyond EH
max). Therefore, the

smallest value of Emax satisfying EL
max ≤ Emax < EH

max,

A1 ≥ B1, and 2Emax ≥ B1, will be the critical value

Ec
max, which can be proved via contradiction. If no such

value can be found, we need to consider Emax ≥ EH
max.

iii) Pmax
pv − Pload ≤ PBmax, or equivalently, Emax ≥ EH

max.

In this case, the quantity A1 is given in Eq. (11) and

B1 is given in Eq. (12). Based on the meanings of

A1, B1, and the result in Proposition 2, the battery

capacity can be chosen to be
min(A1,B1)

2 . However, we

also need to guarantee that Emax ≥ EH
max. Therefore,

max(EH
max,

min(A1,B1)
2 ) is the critical value, which can

be proved via contradiction.

If Pload ≥ Pmax
pv −Pload, we can redefine PloadTc

2 as EH
max, and

(Pmax
pv −Pload)Tc

2 as EL
max. Similar analysis can be applied to this

scenario and the difference lies in the case EL
max ≤ Emax <

EH
max. In this case, it might not be possible that A1 ≥ B1

due to larger loads; when A1 < B1, we require 2Emax ≥ A1,

i.e., when the supply cannot meet the demand, the battery

should store all extra PV generated electrical energy to lower

the grid purchase.

When T = k × 24 for k > 1, we can do the same

analysis based on the result in part II of Proposition 2.

Now an algorithm to calculate the value Ec
max is given in

Algorithm 1. The inputs are t0, T, Tc, Pload, Ppv(t), and the

output is Ec
max. The structure of the algorithm follows the

previous discussion: Steps 1-2 set EL
max and EH

max; Steps 3-

7 deal with the case in which EL
max ≤ Emax < EH

max while

Steps 10-12 handle the case in which Emax ≥ EH
max. Based

on the expression for Ec
max at Step 11, it can be verified that

the upper bound in Proposition 1 also holds in the current
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Fig. 2. PV output for July 13 - 16, 2010, at La Jolla, California.

setting.

Algorithm 1 Calculation of Ec
max

Input: Fixed t0, T, Tc, Pload, and Ppv(t) for t ∈ [t0, t0 + T ]
satisfying Assumption 2

Output: Ec
max

1: Set EL
max =

min(Pload, Pmax
pv −Pload)×Tc

2 ;

2: Set EH
max =

max(Pload, Pmax
pv −Pload)×Tc

2 ;

3: if Pload < Pmax
pv − Pload then

4: Find the smallest value of Emax satisfying EL
max ≤

Emax < EH
max and:

i) A1 ≥ B1 and 2Emax ≥ B1 for T = 24;

ii) A2 ≥ B2 and 2Emax ≥ B2 for T = k × 24;

5: else

6: Find the smallest value of Emax satisfying EL
max ≤

Emax < EH
max and:

i) either A1 ≥ B1 and 2Emax ≥ B1, or A1 < B1 and

2Emax ≥ A1 for T = 24;

ii) either A2 ≥ B2 and 2Emax ≥ B2, or A2 < B2 and

2Emax ≥ A2 for T = k × 24;

7: end if

8: if a solution is found then

9: Set Ec
max as the smallest value of Emax;

10: else

11: i) If T = 24, calculate A1, B1, and set Ec
max =

max(EH
max,

min(A1,B1)
2 );

ii) If T = k × 24, calculate A2, B2, and set Ec
max =

max(EH
max,

min(A2,B2)
2 );

12: end if

13: Output Ec
max.

V. SIMULATIONS

In this section, we verify the results in Sections III and IV

via simulations. The parameters used in Section II are chosen

based on a typical residential home setting. The GHI data is

the measured GHI between July 13 and July 16, 2010 at La

Jolla, California. In our simulations, we use η = 0.15, and

S = 10(m2). Thus Ppv(t) = 1.5 ×GHI(t)(W ). We choose

t0 as 0000 h LST on Jul 13, 2010, and the hourly PV output

is given in Fig. 2 for the following four days starting from

t0. The PV generation roughly satisfies Assumption 2. Note

that 0 ≤ Ppv(t) < 1500(W ) for t ∈ [t0, t0 + 96].
We set Cgp = 7.8¢/kWh, which is the semipeak rate for

the summer season proposed by SDG&E (San Diego Gas &
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Fig. 3. A typical residential load profile.

Electric) [8]. For the battery, we choose EBmin = 0.4×EBmax,

and then Emax = 0.3 × EBmax. Tc is chosen to be between

2(h) and 14(h) with the step size 1(h). We choose Pload

to be between 0 and 1500(W ), and the load is used from

t0 to t0 + T to satisfy Assumption 2. To run simulations,

we discretize the battery dynamic equation in Section II-C

as EB(k + 1) = EB(k) + PB(k) using one hour as the

sampling interval.

A. Dynamic Loads

We first examine the upper bound in Proposition 1 using

dynamic loads. The load profile for one day is given in Fig. 3,

which resembles the residential load profile in Fig. 8(b)

in [7]. For multiple day simulations, the same load profile

is used for all days. We study how the cost function J
changes as Emax varying from 0 to 6000(Wh) with the

step size 10(Wh), by solving the optimization problem in

Eq. (3) via linear programming using the CPlex sover [9]. If

T = 24(h) and Tc = 2(h) (or Tc = 7(h), respectively),

the plot of the minimum costs versus Emax is given in

Fig. 4(a) (or (b), respectively). The plots confirm the result in

Lemma 1, and also show the existence of the unique Ec
max.

The corresponding Ec
max values are shown in the column

“Sim” with T = 24(h) in Table I, which can be identified

from Fig. 4. The upper bounds in Proposition 1 are shown

in the column “UB” with T = 24(h) in Table I. Similarly,

for T = 48(h) and T = 96(h), we can calculate the

values of Ec
max given Tc = 2(h) or Tc = 7(h), and also

the corresponding upper bounds. The results are listed in

Table I. The upper bound holds for all cases though the

difference between the upper bound and Ec
max increases when

T increases. This is due to the fact that for multiple days

battery can be repeatedly charged and discharged; however,

this fact is not taken into account in the upper bound in

Proposition 1.
TABLE I

VALUES AND UPPER BOUNDS ON Ec
max(Wh)

T = 24(h) T = 48(h) T = 96(h)
Tc(h) Sim UB Sim UB Sim UB

2 2560 3095 3100 6051 3100 11742

7 3500 3500 3570 6051 3650 11742

B. Constant Loads

In this subsection, we first set Pload = 200(W ), and

increase the battery capacity Emax from 0 to 1000(Wh) with

the step size 10(Wh). Then for Tc = 2(h) (or Tc = 7(h),
respectively), the value for Ec

max is calculated to be 499(Wh)
(or 700(Wh), respectively). If we try to use the result in

Proposition 2 by replacing PBmax and PBmin in Proposition 2
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(b) Tc = 7(h)

Fig. 4. Plots of minimum costs versus Emax obtained via simulations with
the load profile in Fig. 3 and T = 24(h).

with Eq. (2) and then solving Ec
max = min(A1,B1)

2 as an

implicit equation of Ec
max, we obtain Ec

max = 499(Wh) for

Tc = 2(h), and Ec
max = 1(Wh) for Tc = 7(h). Even though

the theoretical value for Tc = 2(h) is very consistent with

the value obtained via simulations, the theoretical value for

Tc = 7(h) is far from correct. However, if we apply Al-

gorithm 1 to both cases, the theoretical values are 499(Wh)
and 700(Wh), which are consistent with the values obtained

via simulations.

Now we run more simulations to examine the results

obtained using Algorithm 1. We choose Pload from 200(W )
to 1200(W ) with the step size 200(W ), Tc from 2(h) to

14(h) with the step size 1(h), and T to be 24(h), 48(h),
and 96(h), and then calculate Ec

max. The results are plotted

in Fig. 5. For example, in Fig. 5(a), we fix T = 24(h),
and plot the theoretical values (i.e., the curves with the �

marker) and the values obtained via simulations (i.e., the

curves with the + marker) of Ec
max as Tc varies from 2 to

14 hours. The theoretical values are very close to the values

obtained via simulations for T = 24(h), which is also true

for T = 48(h) as shown in Fig. 5(b). However, for T =
96(h), there are slightly larger variations in the difference

between the theoretical values and the values obtained via

simulations for Pload = 200(W ) and Pload = 400(W ), as

shown in Fig. 5(c). By examining the electricity purchase

history (namely, Pgp(t)), the discrepancy is due to the fact

that the PV generation is not perfectly periodic, which can

be verified based on the PV output plot in Fig. 2.

VI. CONCLUSIONS

In this paper, we studied optimal sizing of battery storages

used in grid-connected PV systems assuming that the maxi-

mum battery charging/discharging rate scales linearly with its

capacity. In future work, we would like to take into account

the dynamic time-of-use pricing of the electricity purchase

from the grid, and extend the results to wind energy storage

systems.
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Fig. 5. Plots of the values obtained via simulations (namely, ’Ex’)
and theoretical values (namely, ’Th’) of Ec

max for Pload from 200(W ) to
1200(W ) with the step size 200(W ) and T = 24, 48, 96(h).
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