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Abstract— In this paper, we study a multi-vehicle coverage
control problem in constant flow environments while taking
into account both energy consumption and traveling time. More
specifically, the metric (called the mixed energy-time metric) is
a weighted sum of the energy consumption and the traveling
time for a vehicle to travel from one point to another in constant
flows when using the minimum energy control, and the objective
is to find vehicle locations that can minimize the expected mixed
energy-time required for the set of vehicles to cover a region.
We propose a refined gradient based control law of which the
convergence is proved via Hybrid Systems Theory. Simulations
show that the refined gradient based control can achieve similar
performance as the exact gradient based control.

I. INTRODUCTION

Deployment of a group of mobile vehicles to collectively

cover a certain region has been studied extensively [1]–[4]

(for a more comprehensive treatment, refer to Chapter 5

in [5]). The objective is usually to maximize/minimize a

function related to the sensing performance (e.g., the work

in [1], [3]) or the traveling time (e.g., the work in [2],

[4]). The underlying vehicle models can be either holonomic

(e.g., [1], [4]) or nonholonomic (e.g., [2], [3]). There is

limited work on coverage control in river environments; for

example, in [4], mobile vehicles cannot run against flow and

the objective is to deploy them to maximize the total area

reachable in a fixed amount of time. For nonurgent tasks, the

energy consumption of mobile vehicles powered by batteries

of limited capacity can be more critical compared with the

traveling time. In [6], we study the minimum energy control

for holonomic vehicles in constant flow environments and

propose a minimum energy metric to assign regions of the

environment to them (for details, refer to Proposition 1).

In this paper, we study a coverage control problem in river

environments while taking into account both traveling time

and energy consumption. This is motivated by the facts that

mobile vehicles are usually powered by batteries of limited

capacity and for certain relatively urgent tasks the traveling

time also needs to be taken into account. Therefore, we

introduce a mixed energy-time metric based on the minimum

energy control for mobile vehicles in constant flows, to

capture a compromise between traveling time and energy

consumption. Our objective is to drive a group of vehicles to

a vehicle location configuration that locally minimizes this

metric. Since the mixed metric induces Voronoi partitions

that might not be convex and are difficult to compute exactly,

we introduce lower and upper approximations that can be
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refined to be arbitrarily close to the exact partition. We

propose a refined gradient based control law and prove its

convergence by formulating vehicle evolutions as a hybrid

system and utilizing the Hybrid Invariance Principle [7].

In our algorithm, region refinement is produced when a

condition that guarantees objective minimization is violated,

similarly in spirit to the self-triggered strategy of [8] for the

sporadic update of vehicles’ locations. Thus, our approach

could be combined with [8] and provides a general method-

ology to deal with general metrics for which Voronoi regions

are hard to compute but which can be approximated with an

arbitrary precision at the expense of higher computational

costs. Simulations show that the refined gradient based

control can achieve similar performance as the exact gradient

based control.

II. PROBLEM FORMULATION

The studied flow environment is described by a bounded

two-dimensional region D = {(x y)T ∈ R
2 | 0 ≤ x ≤

L, |y| ≤ W
2 }, where L > 0 (or W > 0) is the length

(or width) of the region. The velocity field is a mapping

v : D → R
2 which maps (x y)T to (B 0)T with B > 0,

i.e., the flow is only in the x direction.

A vehicle runs at speed u = (ux uy)
T , and then its

dynamics can be described by

dx

dt
= ux +B ,

dy

dt
= uy . (1)

We assume that vehicles can run against the flow. To quantify

the minimum energy required for a vehicle to move from one

point to another in the region D among all possible controls,

we recall a (pseudo)-metric (and its expression) as introduced

in [6].

Definition 1 Given two points p1 and p2 in the flow en-

vironment D, the energy metric J(p1, p2) is defined as

J(p1, p2) = min
∫ tf

0
uTudt, where tf is free, u satisfies

Eq. (1), and x(0) = xp1 (i.e., the x coordinate of p1), y(0) =
yp1 (i.e., the y coordinate of p1), x(tf ) = xp2 , y(tf ) = yp2 .

Proposition 1 [6] Given p1 and p2 in D with the velocity

field v = (B 0)T , the minimum energy is J(p1, p2) =
2B(dp1p2 + xp1 − xp2), and the optimal control is u(t) =

− 1
2 (C1 C2)

T for t ∈ [0, tf ], where C1 = 2B(1 +
x
p1

−x
p2

d
p1p2

),

C2 =
2B(y

p1
−y

p2
)

d
p1p2

, and tf =
d
p1p2

B
. ♦

Given a set of n vehicles {1, 2, ..., n} with locations P =
{p1, p2, ..., pn} and a task at q ∈ D, we are interested in as-

signing a vehicle from P to serve the task using the minimum



energy control. We do so using a multi-center function [5].

To capture the importance of the location q, we consider a

continuous density function φ : D → R≥0. The larger the

value φ(q), the more important the location q is. Analogously

to [5], one can use H1(P ) =
∫

D
minpi∈P J(pi, q)φ(q)dq to

determine a locally optimal sensor configuration and region

partition. At a local minimum, a task at q is assigned to pi iff

it can be reached with smaller energy from pi than from any

other pj using the minimum-energy control of Proposition 1.

Alternatively, let t(pi, q) be the traveling time from pi to q

along a straight line with velocity w (i.e., the minimum-time

control with velocity w). Similarly to what has been done in

multi-objective optimization, one could consider the mixed

objective
∫

D
minpi∈P (βJ(p

i, q) + (1− β)t(pi, q))φ(q)dq to

balance between energy consumption and traveling time to

serve q, where β ∈ [0, 1]. However, it is not clear how pi

should be controlled to reach an assigned q under this cost as

the underlying control strategies (minimum energy/minimum

time) are different — or how to find u with the mixed cost

βJ(pi, q) + (1− β)t(pi, q).
Using exclusively the minimum-energy control, we can

factor in a time cosideration in H1 as follows. For β ∈ [0, 1],
define:

Jmix(p
1, p2) = βJ(p1, p2) + (1− β)tf . (2)

Then minpi∈P Jmix(p
i, q) is the minimum mixed energy-time

required for the set of vehicles to serve the task at q using

the minimum-energy control. The expected minimum mixed

energy-time for P to cover D is then given as:

H(P ) =

∫

D

(

min
pi∈P

Jmix(p
i, q)

)

φ(q)dq . (3)

Observe that, when β = 0, a locally optimal solution to H
assigns q to pi iff it can be reached with less time from

pi than from any other pj but using the minimum-energy

control. Other mixed metrics can be defined by choosing

alternative motion control strategies (e.g., the minimum time

control).

Now our coverage control problem is to find an algorithm

that takes vehicles from their initial locations to local minima

of H(P ). The region assignment is given in terms of the

following generalized Voronoi partition.

Definition 2 Let P = {p1, p2, ..., pn} ⊂ R
2 be a set of

distinct points, where n ≥ 2. We call the region given by

V (pi) = {p ∈ D | Jmix(p
i, p) ≤ Jmix(p

j , p) for j 6= i, j ∈ In}
the mixed Voronoi cell associated with pi, and the set

given by V = {V (p1), V (p2), ..., V (pn)} the mixed Voronoi

partition generated by P , where In := {1, 2, ..., n}. Now, pi

and pj for i 6= j are Voronoi neighbors if V (pi) ∩ V (pj) is

non-empty and non-trivial (i.e., not a single point). We use

NV (p
i) to denote the set of Voronoi neighbors of pi.

Using the Voronoi partition just introduced, the function

H(P ) can be equivalently rewritten as

H(P ) =

n
∑

i=1

∫

V (pi)

Jmix(p
i, q)φ(q)dq . (4)

Since the mixed energy-time metric induced Voronoi parti-

tion plays an important role in the algorithm design (refer to

Section IV), we study such partition in the next section.

III. MIXED VORONOI CELLS: APPROXIMATION

In this section, we first study the exact Voronoi cells, and

then propose their lower and upper approximations.

A. Exact Voronoi Cells for Two Generators

By plugging in the expressions of J(p1, p2) and tf
of Proposition 1 into Eq. (2), we obtain Jmix(p

1, p2) =
A1dp1p2 + A2(xp1 − xp2), where A1 = 2Bβ + 1−β

B
and

A2 = 2Bβ. Since β ∈ [0, 1], we have 0 ≤ A2 ≤ A1, and

A1 > 0.

We study the Voronoi partition of two generators p1,

p2. Following Definition 2, we have V (p1) = {p ∈ D |
Jmix(p

1, p) ≤ Jmix(p
2, p)}. Based on the expression of

Jmix(p
i, p), Jmix(p

1, p) ≤ Jmix(p
2, p) is equivalent to

A1dp1p +A2(xp1 − xp) ≤ A1dp2p +A2(xp2 − xp) ,

dp1p − dp2p ≤ A2

A1
(xp2 − xp1) . (5)

Now we have V (p1) = {p ∈ D | dp1p − dp2p ≤ A2

A1

(xp2 −
xp1)}, and the boundary between p1 and p2 is any p ∈ D

that satisfies dp1p − dp2p = A2

A1

(xp2 − xp1).
Without loss of generality, we assume that xp1 < xp2 and

yp1 < yp2 . If β = 0, then A2 = 0. The Voronoi cell boundary

is the perpendicular bisector of p1p2, and the Voronoi cells

are polygons. In the following, we assume that 0 < β ≤ 1.

For any point p on the boundary, we have dp1p − dp2p =
A2

A1

(xp2 − xp1) > 0, which defines a hyperbolic curve. To

derive its equation, we first transform the coordinate from

x − y plane to x′ − y′ plane such that the origin is at

(
x
p1

+x
p2

2

y
p1

+y
p2

2 )T and the positive x′ direction is from

p1 to p2. Any point p with coordinates (xp yp)
T , has new

coordinates

x′
p = (xp −

x
p1

+x
p2

2 ) cosα+ (yp −
y
p1

+y
p2

2 ) sinα , (6)

y′p = −(xp −
x
p1

+x
p2

2 ) sinα+ (yp −
y
p1

+y
p2

2 ) cosα , (7)

where α satisfies tanα =
y
p2

−y
p1

x
p2

−x
p1

and is shown in Fig. 1(a).

The boundary is shown in Fig. 1(b) as the red dashed line

in the x′ − y′ plane, and can be described by the equation
(x′

p)
2

a2 − (y′

p)
2

b2
= 1, where a =

(x
p2

−x
p1

)A2

2A1

, c =
d
p1p2

2 , b =√
c2 − a2, and x′

p ≥ a. The coordinates for p∗ in Fig. 1(b)

(namely, the intersection point between the boundary and the

x′ axis) are (a 0)T . The transformation given by Eqs. (6)

and (7) can be used to obtain the expression of the boundary

in the x − y plane. Similarly, we can derive boundary

equations for the cases with xp1 ≥ xp2 and/or yp1 ≥ yp2 .

It can be verified that V (p1) is not convex. In general,

the Voronoi partition of n generators will contain non-

convex regions. Calculating the exact V (pi), for i ∈ In,

is challenging because the cell boundary consists of pieces

of hyperbolas, which requires solving 4th order equations in

general. Instead, we will study approximations of Voronoi

cells in the next subsection.
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Fig. 1. Voronoi partition generated by {p1, p2} satisfying x
p1

< x
p2

and
y
p1

< y
p2

. The red dashed line is the boundary.

B. Voronoi Cells for Two Generators: Approximations

In this subsection, we present lower and upper approx-

imations of Voronoi cells through hyperbola asymptotes,

along the lines of [6] (only the case β = 1 is considered

in [6]). Here, we focus on two points p1 and p2 satisfying

xp1 < xp2 and yp1 < yp2 . In the x′ − y′ plane of Fig. 1(b),

the equation for l1 (or l2) is y′ = b
a
x′ (or y′ = − b

a
x′), where

a =
(x

p2
−x

p1
)A2

2A1

and b =
√
c2 − a2. It can be verified that

D′
lower(p

1|p2) = {(x′ y′)T ∈ D′ | x′ ≤ a
b
y′ if y′ ≥ 0, x′ ≤ −a

b
y′ if y′ < 0} ,

i.e., the lower approximation of V ′(p1) given p2, satisfies

D′
lower(p

1|p2) ⊆ V ′(p1), where D′
lower(p

1|p2) (or V ′(p1))
is the region Dlower(p

1|p2) (or the Voronoi cell V (p1)) in

the transformed x′ − y′ plane. Going back to the x − y

plane, we have Dlower(p
1|p2) ⊆ V (p1). Similarly, V (p2) ⊆

Dupper(p
2|p1) = D \Dlower(p

1|p2).
To obtain an upper approximation for V (p1), we use l3

(which is parallel to l1) and l4 (which is parallel to l2) passing

through p∗ in Fig. 1(b). The equation for l3 (or l4) is y′ =
b
a
(x′ − a) (or y′ = − b

a
(x′ − a)). It can be verified that

D′
upper(p

1|p2) = {(x′ y′)T ∈ D′ | x′ ≤ a
b
y′ + a if y′ ≥ 0, x′ ≤ −a

b
y′ + a if y′ < 0}

satisfies V ′(p1) ⊆ D′
upper(p

1|p2). Going back to the x − y

plane, we have V (p1) ⊆ Dupper(p
1|p2). Similarly, we obtain

Dlower(p
2|p1) = D \Dupper(p

1|p2) for V (p2).
Since l1, . . . , l4 play an important role in the approxima-

tions, we present their equations in the x− y plane. For l1,

we have y′ = b
a
x′. Using Eqs. (6) and (7), we obtain:

y − y
p1

+y
p2

2 = (x− x
p1

+x
p2

2 )× A2 sinα+cosα
√

A2

1
secα2−A2

2

A2 cosα−sinα
√

A2

1
secα2−A2

2

. (8)

For l2, y′ = − b
a
x′. Using Eqs. (6) and (7), we obtain:

y − y
p1

+y
p2

2 = (x− x
p1

+x
p2

2 )× A2 sinα−cosα
√

A2

1
secα2−A2

2

A2 cosα+sinα
√

A2

1
secα2−A2

2

. (9)

Since l3 (or l4) is parallel to l1 (or l2) and passes through

p∗ = p1+ c+a
2c (p2−p1), we can similarly obtain its equation

in the x− y plane. The asymptote equations for xp1 ≥ xp2

and/or yp1 ≥ yp2 can be readily obtained.

When we calculate the control in Section IV, the calcu-

lation will depend on integrals over Voronoi cells. Since the

exact Voronoi cells are difficult to obtain, we will use lower

and upper approximations instead. To reduce the error in

control actions, we need a procedure to refine the approx-

imations. Suppose we have obtained lower approximations

for p1 and p2 as in Fig. 2. That is, V (p1) is lower approx-

imated by Dlower(p
1|p2) (i.e., the polygon p1p6p7p11p10p4),

p0
p2

p1 p2

p4 p3
p5

p∗

p1

p6

p7

p8

p9
p10

p11

Fig. 2. Refined Voronoi cells.

and V (p2) is lower approximated by Dlower(p
2|p1) (i.e.,

the polygon p8p9p5p
∗). Select one point on the Voronoi

boundary inside D (such as p0 in Fig. 2), then draw a

tangent line of the boundary at p0, which intersects with the

environment boundary at p2, p3. The union of the polygons

p1p6p7p11p10p4 and p1p2p3p4 is a better lower approxima-

tion of V (p1). For V (p2), we can form the triangle p∗p0p5,

and then take the union of the polygon p8p9p5p
∗ with the

triangle p∗p0p5, which is a better lower approximation of

V (p2). Repeating the above procedure by adding more dis-

tinct points like p0, the refined approximation Drefined
lower (p1|p2)

(or Drefined
lower (p2|p1)) can be made arbitrarily close to V (p1)

(or V (p2)). At the same time, we also get refined upper

approximations Drefined
upper (p

1|p2) = D \ Drefined
lower (p2|p1) and

Drefined
upper (p

2|p1) = D \Drefined
lower (p1|p2).

C. Voronoi Cells for Multiple Generators: Approximations

The idea of refined approximations can be generalized to

multiple generators using the concept of Voronoi neighbors

in Definition 2. In general, if there are n points, we can get

the lower and upper approximations of V (pi) using

Vlower(p
i) = ∩pj∈NV (pi)Dlower(p

i|pj) , (10)

Vupper(p
i) = ∩pj∈NV (pi)Dupper(p

i|pj) , (11)

and the refined lower and upper approximations using

V refined
lower (pi) = ∩pj∈NV (pi)D

refined
lower (pi|pj) , (12)

V refined
upper (pi) = ∩pj∈NV (pi)D

refined
upper (p

i|pj) . (13)

The regions V refined
upper (pi) and V refined

lower (pi) can be made arbi-

trarily close to V (pi) using the procedure in the previous

subsection.

IV. MOTION COORDINATED CONTROL

In this section, we propose a gradient-based control law

calculated using the lower approximation of Voronoi cells,

and study its convergence property.

A. Approximate Gradient Based Control

To find P that (locally) minimizes H(P ) in Eq. (4), we

use a gradient based control. More specifically, we take the

partial derivative of H with respect to each point pi, and

obtain

∂H
∂pi

=

∫

V (pi)

(

A1
pi − q

‖pi− q‖ +A2

[

1
0

])

φ(q)dq , (14)

which is derived based on Theorem 2.16 in [5]. We im-

plement the gradient based control policy by setting U =



− ∂H
∂pi − (B 0)T . Therefore, the closed loop system for the

vehicle i is dpi

dt
= − ∂H

∂pi .

Note that to calculate the control law, we need compute

the gradient, which involves the calculation of the integral

over Voronoi cells. Since it is difficult (if not impossible)

to obtain the exact Voronoi cells, we use the refined lower

approximation V refined
lower (pi) in Eq. (12) to calculate the ap-

proximated gradient as

∂H
∂pi

∣

∣

∣

approx

x
=

∫

V refined
lower

(pi)

(

A1
x
pi

−xq

‖pi−q‖ +A2

)

φ(q)dq , (15)

∂H
∂pi

∣

∣

∣

approx

y
=

∫

V refined
lower

(pi)
A1

y
pi

−yq

‖pi−q‖φ(q)dq . (16)

Now the control U is given as U = − ∂H
∂pi |approx − (B 0)T ,

and the closed loop system for the vehicle i is

dpi

dt
= −∂H

∂pi
|approx . (17)

If the true gradient in Eq. (14) is used, it can be verified

(by a proof similar to the one to Theorem 5.5 in [5]) that

the vehicles will converge to a set of locations that locally

minimize the function H(P ). However, this is not necessarily

the case when the approximated gradient is utilized. In the

following theorem, we show that under certain condition

on the approximated gradient, the control based on the

approximated gradient in Eqs. (15) and (16) will strictly

decrease the function H(P ).

Theorem 1 Given the closed loop dynamics for vehicle i in

Eq. (17), for i ∈ In:

(i) Suppose that, for every vehicle i and any time t,

Gi × Si(t) < ‖Ki(t)‖ , (18)

whenever ‖Ki(t)‖ > 0, where Ki(t) = ∂H
∂pi |approx(t),

Gi = suppi∈D,q∈D ‖∂Jmix(p
i,q)

∂pi φ(q)‖, and Si(t) =

area(V refined
upper (pi(t)) \ V refined

lower (pi(t))). Now, if there is

at least one i for which ‖Ki(t)‖ > 0 holds, then
dH(P )

dt
< 0.

(ii) Suppose that, for every vehicle i and any time t, Eq. (18)

is satisfied whenever ‖Ki(t)‖ > 0. Then
dH(P )

dt
= 0 if

and only if for every vehicle i, ∂H
∂pi |approx = (0 0)T (or

equivalently, ‖ ∂H
∂pi |approx‖ = 0).

Proof: Part (i). It can be verified that

dH(P )

dt
=

n
∑

i=1

∂H
∂pi

· dp
i

dt
= −

n
∑

i=1

Ji ·Ki , (19)

where · is the dot product, Ji =
∂H
∂pi , and Ki =

∂H
∂pi |approx.

Therefore, for vehicle i satisfying ‖Ki‖ = 0, it does not

contribute to
dH(P )

dt
. We can show

dH(P )
dt

< 0 as long as

Ji ·Ki > 0 for every i satisfying ‖Ki‖ > 0. We first bound

‖Ji −Ki‖ as below.

‖Ji −Ki‖ = ‖
∫

V (pi)\V refined
lower

(pi)

∂Jmix(p
i, q)

∂pi
φ(q)dq‖

≤ sup
pi∈D,q∈D

‖∂Jmix(p
i, q)

∂pi
φ(q)‖×

‖
∫

V (pi)\V refined
lower

(pi)

1dq‖

≤Gi × Si .

If Gi×Si < ‖Ki‖ as in Eq. (18), we have |‖Ji‖−‖Ki‖| ≤
‖Ji −Ki‖ ≤ Gi × Si < ‖Ki‖, which implies that

0 < ‖Ki‖ −Gi × Si ≤ ‖Ji‖ ≤ ‖Ki‖+Gi × Si . (20)

Now we can check Ji ·Ki. It can be verified that Ji ·Ki =
‖Ji‖

2+‖Ki‖
2−‖Ji−Ki‖

2

2 . Therefore,

Ji ·Ki ≥
(‖Ki‖ −Gi × Si)

2 + ‖Ki‖2 − (Gi × Si)
2

2
= ‖Ki‖(‖Ki‖ −Gi × Si) . (21)

Since 0 ≤ Gi × Si(t) < ‖Ki‖, Ji ·Ki > 0.

Therefore, if there is at least one i for which ‖Ki(t)‖ > 0,

then
dH(P )

dt
< 0.

Part (ii). The if part is straightforward since
dH(P )

dt
=

−∑n
i=1 Ji · Ki where Ki = ∂H

∂pi |approx. Now we prove the

only if part. During the evolution of vehicle i, since Eq. (18)

is satisfied if ‖ ∂H
∂pi |approx(t)‖ > 0, then ‖Ki‖(‖Ki‖ − Gi ×

Si) ≥ 0 always holds. By combining Eqs. (19) and (21), we

have
dH(P )

dt
= −∑n

i=1 Ji ·Ki ≤ −∑n
i=1 ‖Ki‖(‖Ki‖−Gi×

Si) ≤ 0. If
dH(P )

dt
= 0, then we must have ‖Ki‖(‖Ki‖ −

Gi × Si) = 0 for every vehicle i. If ‖Ki‖ > 0, we have

Gi×Si < ‖Ki‖, which implies that ‖Ki‖(‖Ki‖−Gi×Si) >
0. Therefore, the only possibility is that ‖Ki‖ = 0 for every

vehicle i, i.e., ∂H
∂pi |approx = (0 0)T for every vehicle i. �

Since Gi ≤
√

A2
1 + (A1 +A2)2 supq∈D φ(q), Si and

‖ ∂H
∂pi |approx‖ can be calculated (because the approximated

Voronoi cells are polygons), the condition in Eq. (18) can be

checked. If the condition is violated, we can refine the lower

and upper approximations so that it holds again as long as

‖ ∂H
∂pi |approx(t)‖ > 0. The importance of Theorem 1 is that

as long as the condition in Eq. (18) holds for every vehicle,

the control policy based on the approximated gradient strictly

decreases the value of the function H until the approximated

gradient for every vehicle becomes zero.

Now the basic idea of seeking P to minimize H(P ) is the

following: for each vehicle i, it starts at a location pi(0) ∈ D;

and then follows the closed loop dynamic in Eq. (17) while

guaranteeing that, if ‖ ∂H
∂pi |approx(t)‖ > 0 but Eq. (18) does

not hold, then it refines its own approximated Voronoi cell

until Eq. (18) holds again. The detailed algorithm is given

in Algorithm 1. In the algorithm, we introduce prescribed

ǫ > ǭ > 0 so that i) if ‖Ki(t)‖ < ǫ, U(t) = −(B 0)T ,

ii) if ‖Ki(t)‖ ≥ ǫ and Gi × Si(t) + ǭ ≥ ‖Ki(t)‖ (which

implies that the condition in Eq. (18) is violated since ǭ can

be arbitrarily small), then the approximated Voronoi cells are



Algorithm 1 Coverage Control Algorithm

Input: The region D, B, β, φ(q) for q ∈ D, initial locations

of all vehicles {p1(t0), p2(t0), ..., pn(t0)}, infinitely small

δt, and prescribed ǫ > ǭ > 0
Output: Continuous control actions U(t)

Each vehicle i ∈ {1, 2, ..., n} performs the following actions:

1: Initialize A1 = 2Bβ + 1−β
B

and A2 = 2Bβ;

2: Set Gi =
√

A2
1 + (A1 +A2)2 supq∈D φ(q);

3: Initialize t = t0;

4: Compute the approximations Vlower(p
i) and Vupper(p

i)
using Eqs. (10) and (11);

5: Calculate Ki(t) = ∂H
∂pi |approx(t), and Si(t) =

area(Vupper(p
i(t)) \ Vlower(p

i(t)));
6: if ‖Ki(t)‖ ≥ ǫ then

7: if Gi × Si(t) + ǭ ≥ ‖Ki(t)‖ then

8: Refine the lower and upper approximations of

V (pi) using the procedure in Section III-B and

Eqs. (12), (13) until the updated K ′
i(t) and S′

i(t)
satisfy either a) Gi × S′

i(t) + ǭ ≤ ‖K ′
i(t)‖ or b)

‖K ′
i(t)‖ ≤ ǫ;

9: Set U(t) = −K ′
i(t) − (B 0)T if a) holds, and

U(t) = −(B 0)T otherwise;

10: else

11: Set U(t) = −Ki(t)− (B 0)T ;

12: end if

13: else

14: Set U(t) = −(B 0)T ;

15: end if

16: Apply U(t) between t and t+ δt;

17: Update t with t+ δt and go to Step 4;

refined and appropriate controls are calculated based on the

updated K ′
i(t) and S′

i(t) (refer to Step 8 in the algorithm).

The introduction of ǫ and ǭ is for the sake of convergence

proof (and also leads to implementations that are more robust

to finite numerical precision). One assumption we made is

that each vehicle has continuous access to the locations of

its Voronoi neighbors.

B. Convergence

In this subsection, we show that the refined gradient based

control converges.

Theorem 2 Given the optimization problem H(P ) in

Eq. (4), for any ǫ > ǭ > 0 and any initial vehicle

locations in D, vehicles following the refined gradient based

control in Algorithm 1 asymptotically converge to the set

{P = {p1, ..., pn}, pi ∈ D | |dH(P )
dt

| ≤ ǫMn}, where

M = sup ‖ ∂H
∂pi ‖ < ∞ and n is the number of vehicles.

Proof: The proof is based on formulating the evolution of

Algorithm 1 as a hybrid system and utilizing the Hybrid

Invariance Principle [7]. For details, refer to [9]. �

Remark 1 If β = 0, then Jmix(p
1, p2) = tf =

d
p1p2

B
,

which is essentially the Euclidean distance metric. Therefore,
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Fig. 3. Trajectories of vehicles 1 and 2 with the exact gradient based
control (the solid red curve), the refined gradient based control (the dotted
black curve), and the approximate gradient based control (the dashed blue
curve).

the Voronoi partition is the standard Voronoi partition. In

this case, the upper and lower approximations proposed in

Section III-C coincide with the exact Voronoi cells, which

implies that Si = 0. Therefore, the condition in Eq. (18)

is always true as long as ‖ ∂H
∂pi ‖ 6= 0. In other words, the

gradient based control is always minimizing the function

H(P ) for the Euclidean distance metric until ‖ ∂H
∂pi ‖ = 0

for every i, which is consistent with existing results. ♦
V. SIMULATIONS

For the studied region D, we set L = 30, W = 10. For

simplicity, we use B = 1 for the flow, and β = 0.5 in the

mixed energy-time metric, φ(q) = 1 for the density, and

δt in Algorithm 1 is chosen to be 0.01. We first focus on

two vehicles, i.e., vehicle 1 with initial location (10 1)T and

vehicle 2 with initial location (9 −1)T . In this case, the exact

Voronoi cell as well as the exact gradient can be calculated;

therefore, we can compare the performance of the control

based on the approximate gradient and the exact gradient.

When the gradient is calculated based on the exact Voronoi

cell (or the refined lower approximation in Eq. (12) while

guaranteeing that the condition in Eq. (18) holds, or the lower

approximation in Eq. (10), respectively), correspondingly the

control is referred to as the exact gradient based control

(or the refined gradient based control, or the approximate

gradient based control, respectively), and the trajectories1

for vehicles 1 and 2 are plotted in Fig. 3 using the solid

red curves (or the dotted black curves, or the dashed blue

curves, respectively). It can be observed that for vehicle 1, the

trajectory using the exact gradient based control is slightly

different from the trajectory using the refined gradient based

control but the final locations in both case are very close.

In contrast, not only the trajectory but also the final location

using the exact gradient based control are very different from

those using the approximate gradient based control. Similar

observations also hold for vehicle 2 but the differences are

smaller.

When comparing the evolutions2 of H(P ) using three

different controls, they are very close as shown in Fig. 4(a).

1Note that the simulation duration is chosen to be around 7. This is
because for the refined gradient based control, after 7 the refined gradient
is close to zero and the condition in Eq. (18) can hardly be satisfied even
after repeated refinement of the approximations.

2In general, the cost H(P ) can be calculated based on Eq. (3). For two
generators, since the exact Voronoi cell can be obtained, the cost can also
be calculated based on Eq. (4).
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(a) Evolution of the cost func-
tion.
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(b) Enlarged portion of the cost
function.

Fig. 4. The evolution of H(P ) using the exact gradient based control (the
solid red curve), the refined gradient based control (the dotted black curve),
and the approximate gradient based control (the dashed blue curve).

A closer look at the cost at the end of the simulations, the

costs using the exact gradient based control and the refined

gradient based control are almost indistinguishable, and

they are slightly lower than the cost using the approximate

gradient based control (similar results are observed for more

simulations). Note that the slight reduction in the cost (more

accurately, the relative percentage of cost reduction is 0.15%)

is at the expense of tremendous efforts that are necessary

to calculate the exact gradient and the refined gradient. For

more than two generators, it is very difficult to calculate

the exact gradient (due to the difficulty of calculating the

intersection of multiple hyperbolas) and the refined gradient

(because the Matlab built-in procedure for calculating the

unions of polygons is not reliable, and the unions of polygons

are needed when refining the approximations as explained in

Section III-B). Therefore, we will only use the approximate

gradient based control in the following simulation.

We now examine seven vehicles, of which the initial

locations are denoted using the circle marker in Fig. 5(a).

Using the approximate gradient based control, the trajectories

of the seven vehicles are shown in Fig. 5(a) with the

square marker denoting the final locations and the polygons

denoting the approximated Voronoi cells; the evolution of

the cost function is plotted in Fig. 5(b). One interesting

observation is that the approximate gradient based control

may occasionally increase the cost slightly and then decrease

it again; this might be because for this control, the condition

in Eq. (18) is not guaranteed. However, the vehicles do

converge to a fixed configuration. This is also observed by

more extensive simulations; the results are not illustrated due

to the limited space.

VI. CONCLUSIONS

In this paper, we studied a multi-vehicle coverage control

problem in constant flow environments while taking into

account both the energy consumption and the traveling

time. We proposed a gradient based control law which is

calculated based on the refined approximated Voronoi cells

and proved its convergence using the Hybrid Invariance

Principle. Simulations show that the refined gradient based

control can achieve similar performance as the exact gradient

based control.

In this work, we assume that each vehicle has continuous

access to the locations of its Voronoi neighbors. We are

looking into radius adjusting algorithms (that generalize the

algorithm in Table 1 of [1] for standard Voronoi partitions)
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(b) Evolution of the cost.

Fig. 5. Trajectories of seven vehicles and the corresponding evolution of
the cost function using the approximate gradient based control.

to enable a vehicle to calculate its approximated Voronoi

cell more efficiently. In addition, we plan to explore the

self-triggered idea in [8] to enable a vehicle to request

other vehicle’s locations only when a certain condition holds

(instead of continuous requests). In terms of generalizing the

current work, possible directions could be i) exploring more

complicated agents’ dynamics and extending the introduced

metric, ii) bounding the lower approximation and its effects

on the convergence of the refined gradient based control,

iii) examining the convergence of the approximate gradi-

ent based control though simulations show that it always

converges, and iv) investigating the possibility of agents’

collision when running the algorithms, and more efficient

ways to refine approximated Voronoi cells.
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