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Abstract— This paper proposes a decentralized algorithm
that allows a group of Plug-in Electric Vehicles (PEVs) to arrive
at an optimal strategy to charge their batteries during the day.
By communicating repeatedly with an energy coordinator, the
PEVs adjust their battery-charging plans by means of a price-
feedback signal that accounts for the aggregated demand. The
algorithm allows PEVs to adjust their plan simultaneously while
respecting schedule constraints at every iteration. The collective
strategy is optimal in that it minimizes the overall price of
the supplied energy and leads to an off-peak utilization of
the grid. The algorithm is proven to converge to a solution
by means of nonlinear analysis tools of discrete-time systems.
In order to show convergence, we present a refinement of
the LaSalle invariance principle for discrete-time systems.
Simulations demonstrate the proficiency of the algorithm in
two particular scenarios.

I. INTRODUCTION

Motivation: The large adoption of Plug-in Electric Vehi-

cles (PEV) can bring important economic and environmental

benefits as the dependence on petroleum and carbon emis-

sions from the transportation sector would be significantly

reduced. However, a large penetration of PEVs would seri-

ously affect the operation of the power grid, from energy

production levels to grid capacity, as well as energy prices.

Due to this, the development of novel PEV charging strate-

gies which can have a limited impact on the grid is necessary.

Energy pricing models [1], [2] are largely based on the

premise that, the larger the power demand is at a given instant

of time, the larger the production cost per Kilowatt-hour

should be. The increment in the production cost per Kilowatt-

hour is not beneficial either for the utility company—which

does not increase its profit—or for the end user, who ends up

paying a higher rate for the same amount of energy. To lower

the burden on both productivity and prices, most approaches

on PEV charging advocate for peak-shaving solutions. That

is, solutions by means of which PEVs tend to charge in

low-demand hours while avoiding to charge in high-demand

hours. However, in a more realistic scenario, PEVs may have

different usage schedules during the day. In this way, while

some vehicles may be able to charge all night long, others

may charge during a few hours during the night, and even

some vehicles may charge during part of the day. This can

lead to situations where vehicles may not be able to charge

at exactly the valley hours, which can incur into additional

demand peaks, increasing prices for all grid users.

Literature Review: A recent research effort has been

articulated to study the implications among the PEV-grid-

environment factors. While some works aim to study the

impact of penetration of large amounts of PEVs [3], [4], oth-

ers aim to evaluate the environmental footprint, the potential

benefits or drawbacks of different technologies and energy

sources [5], [6], [7]. Finally, charge-strategy planning is also

receiving increased attention, which is the problem that this

work focuses on. The work [1] introduces a decentralized

algorithm that computes optimal charging strategies for a

large population of PEVs. A bargain is performed between

an energy coordinator and the PEVs, which leads to a valley-

filling solution that minimizes the overall energy price. In this

work, all PEVs are considered to have the same charging

schedule. In [8], optimal charging trajectories are computed

using linear programming. In particular, two decentralized

algorithms to solve the problem are proposed there. The first

one requires information about a centralized solution, partic-

ularly about the cost function gradient, while the second one

assumes that each PEV computes a valley-filling solution

based on the average charge requirements from all PEVs.

The work in [9] presents an optimization-based strategy that

leads to a valley-filling solution. In [10], a centralized PEV

charging coordination strategy is proposed in order to shave

demand peaks as well as minimize distribution losses. A

supervisor controls the battery charging policies for all the

PEVs in [11], with the aim of minimizing costs and regu-

lating voltage. Finally, [12] introduces a pricing-based two-

layer control algorithm for charging/discharging of PEVs.

The algorithm is distributed, exploiting consensus-algorithm

ideas. The characterization of the solutions and performance

analysis are made via game theory and nonlinear analysis.

Neither of the above works considers schedule constraints.

In [13], a problem with schedule constraints is considered,

using a very similar algorithm to that of [1].

Contributions: The main contribution of this work is a

novel PRICE LEVELING algorithm: a decentralized algorithm

to compute an optimal charging strategy for each PEV when

subject to schedule constraints. We define an optimization

problem where the cost function is the overall cost of the

energy delivered to the grid, and constraints take into account

the daily usage schedule for each vehicle. The algorithm re-

allocates dynamically charging slots by means of a greedy

procedure, that is, vehicles aim to charge at times when

energy is cheaper. The allocation does not require the knowl-

edge of the function that determines the price-per Kilowatt

due to the instant energy demand. We analyze the algorithm

convergence to an optimal solution using invariance theory.

To this end, we introduce a novel invariance result, which is

an extension of the work in [14], to discrete-time systems.
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Organization: This paper is organized as follows: In

Section II, we formulate the PEV charging problem under

specified constraints, as an optimization problem, and we

also characterize the optimal solution of this problem. In

Section III, we introduce the PRICE LEVELING algorithm.

Section IV presents the convergence analysis of the in-

troduced algorithm, including some supporting results. In

Section V, we show simulation results for a specific sce-

nario. Conclusions and future directions are presented on

Section VI.

Notation: In what follows, we let R≥0 denote the set of

real nonnegative numbers. For a function f : R → R, let f ′

be the derivative of f . Let X be a subset of R
n, and p a

point in R
n. We define dist(X, p) = miny∈X ‖p− y‖.

II. OPTIMAL PEV CHARGING WITH SCHEDULE

CONSTRAINTS

We consider a set of PEVs, indexed by i ∈ I =
{1, . . . , N}, to be charged during the day. The day is

discretized into T time slots, indexed by t ∈ τ = {1, . . . , T },

and each vehicle is able to charge its battery only during the

time slots corresponding to a subset Zi ⊂ τ , i ∈ I , when

it remains idle, either before or after being used. Vehicles

aim to utilize a strategy that leads to the minimization of the

energy price, as well as the avoidance of peaks of demand

on the grid. Each vehicle must be charged according to the

following battery dynamics:

zi,t+1 = zi,t +
αi
βi
ui,t, i ∈ I,

where zi,t is the normalized amount of energy in the ith

vehicle’s battery, at time slot t. Let zi ∈ R
T
>0 be zi =

[zi,1, . . . , zi,T ]
⊤, for all i ∈ I . The parameter αi is the

charger efficiency for the vehicle i, and the parameter βi is

the maximum charge capacity of ith vehicle’s charge. After

a day, it must hold that zi,T = 1 for all i ∈ I . Therefore, it

must hold that ui ∈ {u ∈ R
T
≥0 | ut = 0, ∀t /∈ Zi,

∑

t∈τ ut =

γi}, where γi = (1 − xi,1)
βi

αi
, for i ∈ I . Define the vector

u = [u⊤1 , . . . , u
⊤
N ]

⊤ = [ui,t] ∈ R
NT . Then, the control

strategy in u aims to minimize the cost function

J(u) =
∑

t∈τ

p(Dt +
∑

j∈I

uj,t)



Dt +
∑

j∈I

uj,t



,

whereD ∈ R
T
≥0 is a known vector that represents the demand

on the grid that comes from non-PEV loads, and p : R≥0 →
R>0 is a continuous function that relates the demand with

the electricity price. This cost function corresponds exactly

to the overall price of the energy supplied by the power

grid [1].

In all, the optimal charging strategies for the PEV corre-

spond to the solution of the following optimization problem:

min
u∈R

NT
≥0

J(u),

s.t. u ∈ F ({Zi}, {γi}), (1)

where F ({Zi}, {γi}) = {u ∈ R
NT
≥0 | ui,t = 0, ∀t /∈

Zi,
∑

q∈τ ui,q = γi, ∀i ∈ I} is the feasible set of the

problem.

Assumption 2.1 (Properties of the price function p):

The function p is convex, strictly increasing, and there exists

p′min > 0, such that p′(x) ≥ p′min, for all x ∈ F ({Zi}, {γi}).
Under this assumption, we provide a characterization of the

solutions to problem in (1):

Lemma 2.1 (Necessary conditions for optimality): If u⋆

is an optimizer of the problem in (1), then:

• for each i ∈ I and for all t, q ∈ Zi such that u⋆i,t, u
⋆
i,q >

0, it holds that Dt +
∑

j u
⋆
j,t = Dq +

∑

j u
⋆
j,q,

• for each i ∈ I and for each q ∈ Zi, such that u⋆i,q = 0,

it holds that Dq+
∑

j u
⋆
j,q ≥ Dt+

∑

j u
⋆
j,t, for all other

t ∈ Zi such that u⋆i,t > 0. •
Let us introduce some additional shorthand notation. For

each t ∈ τ , we let xt =
∑

i∈I ui,t, and given u⋆, satisfying

the optimal-solution characterization of Lemma 2.1, we let

x⋆t =
∑

i∈I u
⋆
i,t. By Lemma 2.1, and given u⋆ satisfying

the properties of the lemma, we can generate a partition of

the set τ , denoted {Υl}
m+1

l=1
, m < T , corresponding to the

times that result into the same price. In other words, for any

pair t, q ∈ Υl, l ∈ {1, . . . ,m}, it holds that x⋆t , x
⋆
q > 0

and p(Dt + x⋆t ) = p(Dq + x⋆q). The set Υm+1 consists of

those t ∈ τ such that x⋆t = 0. The collection {Υl}
m+1

l=1
is

ordered according to the corresponding price values, from

the cheapest to the priciest. In other words, l1 < l2, l1, l2 ∈
{1, . . . ,m + 1}, if and only if p(Dt + x⋆t ) < p(Dq + x⋆q)
for all t ∈ Υl1 , and q ∈ Υl2 . The following is an immediate

consequence of Lemma 2.1.

Corollary 2.1 (Optimality leads to best feasible prices):

Let u⋆ satisfy the necessary conditions for optimality of

Lemma 2.1. If i ∈ I is such that u⋆i,t > 0 for some t ∈ Υl,

l ∈ {2, . . . ,m}, then Zi ∩
⋃l−1

r=1
Υr = ∅. •

Next, for a solution u⋆ define the sets Il(u⋆), l ∈
{1, . . . ,m} as Il(u⋆) = {j ∈ I | ∃q ∈ Υl s.t. u⋆j,q > 0}.

With this definition, we have that i) Il1(u
⋆) ∩ Il2(u

⋆) = ∅
for all l1, l2 ∈ {1, . . . ,m}, such that l1 6= l2, and ii)
⋃m

l=1
Il(u⋆) = I . The following result shows that this

partition is equal for all optimal solutions u⋆ of the problem.

Lemma 2.2 (Uniqueness of x⋆, {Υl}
m+1

l=1
, and {Il}ml=1):

Let u⋆, and v⋆ be optimal solutions of problem in (1)

with associated aggregated loads x⋆t =
∑

i∈I u
⋆
i,t and

y⋆t =
∑

i∈I v
⋆
i,t, respectively, and with associated partitions

{Il(u⋆)}ml=1
, {Il(v⋆)}ml=1

. Then:

• x⋆t = y⋆t , for all t ∈ τ , and {Υl}
m+1

l=1
is unique,

• Il(u⋆) = Il(v⋆) ≡ Il, for all l ∈ {1, . . . ,m}. •

III. PRICE LEVELING ALGORITHM

In this section, we propose a PRICE LEVELING algorithm

for the PEVs. This is a learning mechanism that the PEVs run

at the beginning of the day by interacting repeatedly with the

energy coordinator, which is an entity from the utility with

the task of determining the demand-based energy price. As

in [1], the utility receives the intended battery usage profile

from each vehicle and, given the overall demand, i.e., the sum

of the non-PEV demand forecast and the PEV population
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demand, it provides feedback by pricing the time slots of the

day. Next, according to the new price, the PEVs update their

strategy, and send it to the energy coordinator, which again

computes the prices. This procedure is run repeatedly until

some error-based stop criterion is reached. More precisely,

at each iteration, the system evolves following the dynamics

uk+1 = g(uk), where g : R
NT
≥0 → R

NT
≥0 is such that uk+1

i,t =

gi,t(u
k). This is specified as follows:

uk+1
i,t =uki,t +

∑

q∈Zi

pkt<p
k
q

uki,q
T
ψi(p

k
q − pkt )−

∑

q∈Zi

pkt>p
k
q

uki,t
T
ψi(p

k
t − pkq ),

(2)

for each t ∈ Zi, for all i ∈ I , for each k ≥ 0. The

function ψi : R≥0 → [0, 1] is non-decreasing and such that

ψi(0) = 0, for all i ∈ I . We denote pkt = p(Dt + xt), for

all t ∈ τ . Intuitively, each PEV adjusts its charging policy

at each iteration with the aim of exploiting the cheapest

time slots in its schedule, while avoiding the priciest slots.

This learning mechanism can be considered to be a greedy

policy, in that it always aims for the cheapest slots. The way

the charging strategy for each PEV evolves resembles the

structure of a consensus algorithm in that the ith PEV tries

to reach consensus in its price for all t ∈ Zi, manipulating the

charge it gets from each time slot. Next, let us introduce some

additional shorthand notation. Let us define Lt = Dt + xt,
for all t ∈ τ . Define Lmin = mint∈τ (Dt+xt). Besides, given

that the amount of charge the set of PEVs is taking during the

time window is finite, there exists an upper bound L such that

L ≥ Lkt for all t, k. The following is a sufficient condition

that allows us to prove convergence of the algorithm to an

optimal profile.

Assumption 3.1 (Properties of the functions ψi): Let

xmax be such that xt ≤ xmax, for all t ∈ τ . The function

ψi is Lipschitz, with Lipschitz constant riψ such that

riψ < T/((T − 1)xmaxp
′(L)), for all i ∈ I .

The above can be understood as a “coordinating property” of

the PEVs’ update law, and will be employed as follows. Since

p is convex and increasing, we have that p′(L) ≥ p′(Lkt ), and

p′(Lkt ) is the Lipschitz constant of p for the interval [0, L].
Then, we have that:

p(L1)− p(L2) ≤ p′(L)(L1 − L2),

with L1 ≤ L2. Since ψi is increasing, and Lipschitz we have:

ψ(p(L1)− p(L2)) ≤ ψi(p
′(L)(L1 − L2))

≤ riψp
′(L)(L1 − L2).

Using Assumption 3.1, with L2 = Lmin, we obtain

ψi(p(L
k
t )− p(Lkmin)) <

T

(T − 1)xmax

(Lkt − Lkmin), (3)

for all i, t, k.

Lemma 3.1 (Invariance of the feasible set): The feasible

set F ({Zi}, {γi}) of the optimization problem in (1) is

invariant under the PRICE LEVELING algorithm. •

IV. CONVERGENCE ANALYSIS

In this section, we analyze the convergence of the

PRICE LEVELING algorithm introduced in Section III. To

this end, we require some results on invariance theory

that we present first. These results are a novel discrete-

time counterpart of the work for continuous-time systems

presented in [14].

A. Invariance Theory

Consider a discrete-time dynamical system given by

xk+1 = f(xk), k ≥ 0, (4)

where the state xk belongs to a compact submanifold M of

R
n, and f : M → M is a continuous map. We denote by

φ(k, x0), k ≥ 0, a solution starting from the initial condition

x0 ∈ M. Note that any solution of (4) will be bounded,

hence compact.

Definition 4.1 (Limit point, Omega-limit set): Consider a

solution of (4), φ(·, x0), with initial condition x0. A point

p is said to be a limit point of φ if there exists a se-

quence {kj}∞j=0, with kj → ∞ as j → ∞, such that

limj→∞ φ(kj , x
0) = p. The omega-limit set of φ denoted

as Ω(φ) is the set of all limit points of φ.

Since M is compact and f is continuous, the omega-limit

set of φ is nonempty, closed, invariant under the dynamics

in (4), invariantly connected, and it is the smallest set that

φ(k, x0) approaches as k goes to infinity, see [15], [16].

Assumption 4.1 (Height function on S containing Ω(φ)):
Assume that:

• Ω(φ) is contained in a submanifold S ⊆ M.

• There exists a compact neighborhoodK of Ω(φ) in M,

such that O = int(K) is an open neighborhood of Ω(φ).
• There is a continuous function W : K → R such that

W (f(x))−W (x) ≤ 0 on S ∩O. Let E be the defined

as E = {x ∈ S ∩ O | W (f(x)) −W (x) = 0}. Then

W (f(x))−W (x) < 0 on (S ∩O) \ E.

The following results are inspired by [14]. The invariance

Lemma 4.2 admits a generalization to E being contained in

a countable number of level sets of W as in [14], but we

state a version that is sufficient to prove our main result.

Lemma 4.1: Let Assumption 4.1, on the existence of a

height function on S containing Ω(φ), hold. Then, it must

be that Ω(φ) ∩ E 6= ∅. •

Lemma 4.2 (Invariance Result): Let Assumption 4.1, on

the existence of a height function on S containing Ω(φ) hold.

If E is contained in a single level set of W , then Ω(φ) ⊆ E.

Proof: This proof follows the proof of the first and

second cases on Theorem 4 in [14]. The difference lies in

that a solution φ of a discrete-time system is discontinuous,

then it is necessary to show that if the solution approaches

arbitrarily a limit point p where W ◦ f −W is zero, then

it is a contradiction that it can approach another point q for

which W ◦ f −W is negative. Extended details will appear

in a forthcoming publication.
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B. Main Result

Theorem 4.1: The PRICE LEVELING algorithm defined

by equation (2) converges to an optimal solution of the

problem.

Proof: Let us define functions Vl, l ∈ {1, . . . ,m}, with

m ≤ T , where

Vl(u) = min
q∈Θl

p(Dq + x⋆q)− min
t∈Θl

p(Dt + xt), (5)

Θl = ∪m+1

r=l Υr. (6)

Recall that xt =
∑

i∈I ui,t. Define sets El, for l ∈
{0, . . . ,m}, such that E0 = F ({Zi}, {γi}) and

El ={u ∈ El−1 | xt = x⋆t , ∀t ∈
l
⋃

r=1

Υr,

Dq + xq ≥ Dt + xt, ∀t ∈
l
⋃

r=1

Υr, q ∈ τ \
l
⋃

r=1

Υr},

(7)

l ∈ {1, . . . ,m}. Note that, if u ∈ El, then ui,t, with i ∈ I ,

and t ∈ ∪lr=1Υr can be extended to an optimal solution

profile vi,t, i ∈ I , t ∈ τ as follows:

vi,t =

{

ui,t, i ∈ I, and t ∈ τ \Θl+1 = ∪lr=1Υr,

u⋆i,t, i ∈ I, and t ∈ Θl+1 = ∪m+1

r=l+1
Υr.

Then v defined above satisfies the necessary conditions of

optimality in Lemma 2.1. The proof is based on showing

that Vl is decreasing in El−1 \ El, while Vl = 0, for each

l ∈ {1, . . . ,m}. Then, we use it, along with Lemma 4.2

to systematically conclude that the Omega-limit set of a

solution lies in El, for each l ∈ {1, . . . ,m} until Em
corresponds to the optimizer set of the problem in (1). Full

details will be shown in a forthcoming publication.

V. SIMULATIONS

In order to demonstrate the PRICE LEVELING algorithm

performance, we carry out simulations for two different

cases. For both cases, we have a scenario of 24 hours, starting

at 12:00 p.m. and ending at the same time the next day. This

time window is divided in 48 time slots with equal duration,

that is, each slot is half-hour long. For both cases we consider

the same non-PEV demand profile, and a population of 20
PEVs. Each PEV has a particular energy requirement, given

by γi for i ∈ {1, . . . , 20}. We consider a function p such that

p(x) = x2. The functions ψi are linear functions of the form

ψi(x) = riψx, with riψ = rψ for all i ∈ I . Even though our

theoretical result presents an upper bound on the Lipschitz

constant for the functions ψi, we use constants larger than

the bound, which still lead to convergence in smaller time.

If we use Lipschitz constants riψ that satisfy the theoretical

bounds, the algorithm may take as much as 8000 iterations

to converge. This number of iterations may vary depending

on the initial conditions and the parameters D, γi, Zi for all

i ∈ I .

For the first case, we have that the first PEV can charge

from 20:00 to 1:00. The second can charge from 20:30 to
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Fig. 1. Initial demand profile. The non-PEV demand is shown in light
grey. Other colors show each PEV’s charging profile.
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Fig. 2. Optimal demand profile. The non-PEV demand is shown in light
grey. Other colors show each PEV’s charging profile.

1:30. Each PEV i can charge starting half-hour after i − 1
starts, during exactly 5 hours, thus, the 20th PEV can charge

from 5:30 to 10:30.

For the second case, we have that out of the 20 PEVs, 6
can charge during the whole time window, and 14 PEVs can

charge from 12:00 to 2:30 and from 5:00 to 12:00. Then, each

element of the second group of PEVs has a disconnected Zi.
On Figures 1, 4 we show the non-PEV demand profile,

colored in light grey, while the PEV demand is shown in dark

colors. In both cases, each PEV has as an initial charging

strategy to obtain the same amount of energy from each q ∈
Zi. On Figure 2,we show that the different Zi and γi for all

i ∈ I , joint with the values of D lead to a two-level optimal

solution. It means that PEVs will be only divided in two

groups of different prices. On Figure 5, a two-level optimal

configuration is achieved. Note that the higher level is split

into two groups of time slots. This is due to the choice of

Iteration (k)
100 200 300 400 5000

0

2

4

6

|x
⋆ t
−
x
k t
|

fo
r

al
l
t

Fig. 3. Error on xt for each t ∈ τ .
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Fig. 4. Initial demand profile. The non-PEV demand is shown in light
grey. Other colors show each PEV’s charging profile.
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Fig. 5. Optimal demand profile. The non-PEV demand is shown in light
grey. Other colors show each PEV’s charging profile.

Zi for the 14 PEVs that cannot charge in the lowest-demand

slots. Figures 3, 6 show the convergence of the xkt towards

x⋆t for each t as iterations go by.

VI. CONCLUSIONS AND FUTURE WORK

This work addresses a problem of computing charging

strategies for a group of PEV subject to schedule constraints,

which can optimize the overall energy cost supplied by

the grid. A complete characterization of the solution set

for this problem is provided. We propose a decentralized

PRICE LEVELING algorithm that satisfies the constraints

at any iteration. The algorithm does not require PEVs to

know the pricing function, instead it is based on a learning

approach which does not require a direct gradient estimation.

To this end, an invariance result for discrete-time systems is

presented that allows us to provide convergence guarantees

towards an optimal solution. Finally, an application exam-

Iteration (k)
100 200 300 400 5000

0

5

10

15

|x
⋆ t
−
x
k t
|

fo
r

al
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Fig. 6. Error on xt for each t ∈ τ .

ple with simulation is shown, in order to demonstrate the

algorithm performance.

In future work, we will aim to study how to include

additional constraints the usage schedule to account for how

much energy each vehicle may spend during certain hours.

The convergence speed as well as the algorithm convergence

properties under time-varying interactions between PEVs and

the energy coordinator are being investigated as well.
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