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Self-triggered Best-Response Dynamics for Continuous Games

Andres Cortés and Sonia Mart́ınez

Abstract

Motivated by the development of novel and practically implementable coordination algorithms for multi-agent

systems, here we investigate the adaptation of classical best-response dynamics by means of self-triggered com-

munications. First, we show that, if the best-response dynamics is defined for a continuous-action-space potential

game, convergence towards the Nash Equilibria set is guaranteed under some continuity assumptions on utilities

and component-wise concavity on the potential function. Then, we modify the best-response dynamics to account

for a self-triggered communication strategy, with the aim of producing economic communications while ensuring

convergence to the equilibrium set. The proposed algorithm is then analyzed using hybrid systems theory. We

illustrate the results in an example of autonomous agents for their optimal deployment on a one-dimensional

environment. Finally, we present some simulations that demonstrate the performance of the proposed strategy for

the sensor network.

I. Introduction

The last years have witnessed an intense research activity in the development of novel distributed algorithms for

multi-agent systems with performance guarantees. A particular effort has been devoted to the study of game-theoretic

approaches that can model and regulate selfish agent interactions. By means of these, the multi-agent coordination

objective is formulated in terms of Nash Equilibria (NE), which correspond to the natural emergent behavior arising

from the interaction of selfish players. Due to their modularity, game dynamics can easily be implemented by agents

relying on local information, leading to a robust performance. Even though the resulting emerging behavior may not

be optimal, it is generally expected that the behavior is as close as possible to that of the benchmark given by a

centralized design. Modularity also leads to a more robust performance when facing local failures. However, finding

algorithms to reach a NE is not always an easy task, mainly due to the fact that for some games, the NE is very

difficult to compute, and even some games do not have any.

The best-response dynamics describes an interaction in which each player is able to compute its own best action

against other players’ action profile. Then, the player’s action evolves continuously towards its best-response set.

Convergence of the best-response dynamics has been studied for games under well defined conditions. In [1], this

convergence is proven for finite zero-sum games with bilinear payoff functions. In [2] the authors study convergence

of the best-response dynamics for potential games with continuously differentiable potential function. Unlike these

results, our work considers potential games for which the potential function is not differentiable everywhere. In [3], the

authors consider best response dynamics for two-player zero-sum games, with concave and convex payoff functions.

Convergence to the saddle point set is proven, since this set corresponds to the NE set of the game. In [4], the authors

extend the above result to a two-player zero-sum continuous game with quasiconcave and quasiconvex continuous

payoff functions. Our work differs from these because we consider n-player potential games with component-wise
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pseudo-concave, component-wise quasiconcave, potential function. For discrete-time dynamics (iterated games) in

potential games with bilinear payoffs, a NE can be reached [5].

Probably the most favored field with developments in multi-agent control, is the control of robotic networks, which

includes coverage control. The objective is to allocate a set of agents, each one with a specific radius of action, to

a bounded environment, in such a way that the final agents’ position maximize certain performance metric [6]. A

recent body of work formulates coverage control by means of non-cooperative games. In this way, each (selfish)

player tries to maximize its own utility (sensing quality) in a competitive way leading eventually to an emergent

global welfare (area coverage). Works in [7], [8] formulate sensor network deployment as potential games, in a finite

action environment. These papers adapt learning mechanisms from Game Theory to handle partial information and

constrained motions in sensor networks.

The idea of restricting communication efforts to time instants at which it is absolutely necessary to have current

information leads to the self-triggered and event-triggered concepts; e.g. see [9], [10], [11] and references therein.

This idea has been recently extended to the context of multi-agent systems and distributed optimization with

applications to cooperative control [12], [13], [14], [15]. The present work contributes further to this area by studying

a complementary game-theoretic setting. A main difference with gradient-based methods is given by the need of

estimating the evolution of best-response sets as agents’ actions change with time.

More precisely, we start by analyzing the convergence properties of the continuous-time best-response dynamics

for a continuous-action-space game by means of the invariance theory for set-valued dynamical systems. We show

that all the solutions of the best-response dynamics converge to the NE set of the potential game for component-wise

pseudo-concave, component-wise quasiconcave potential functions. The continuous-time best-response dynamics is

not practically implementable as it requires continuous communications, thus we introduce a novel self-triggered best-

response dynamics relying on Lipschitz payoff functions. Then, we prove how this strategy still ensures convergence

to the set of NE while regulating the communication effort according to its need. The results are applied to a 1D

agent deployment problem formulated as a potential game, where agents can vary both their position and their

coverage radius. A similar result has been presented in [16], where the self-triggered best-response dynamics is used

for 1D agent deployment where agents can vary their positions, but have fixed radius. A self-triggering law based

on the Lipschitz c ontinuity of the best-response sets for all players is introduced.

The paper is organized as follows. In Section II, we introduce briefly some game theoretical concepts that are

used throughout the paper. Section III contains the description of the best-response dynamics, as well as its

convergence analysis towards the NE set. In Section IV, we present our self-triggered communication strategy and

show convergence of the solutions to the NE set. Then, in Section VI, we present a complete agent-deployment

example modeled as a potential game that holds the properties to use the best-response dynamics. We show some

simulations demonstrating the performance of the proposed self-triggered best-response dynamics on the example.

Notations. In what follows, sign : R → R is defined as sign(x) = 1 if x > 0, sign(x) = −1 if x < 0, and

sign(x) = 0 if x = 0. Let S be a subset of Rn, then co(S) denotes the convex hull of S, S denotes the closure of

S, and ρ(S) denotes the diameter of S, ρ(S) = supx,y∈S ‖x − y‖. If f is a map, dom(f) represents the domain of

f . The open ball with radius r centered at x is denoted as Br(x). Given f : Rn → R, we define a level set of f as

f−1(r) = {x ∈ dom(f) | f(x) = r}. For A, B two subsets of Rn, we denote A \ B = {x ∈ A | x < B}. Let A be a

subset of Rn. Then, int(A) represents the interior, and bnd(A) represents the boundary of the set.
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II. Game Theoretical Notions

In this section, we first introduce some basic definitions from Game Theory [5] and an adaptation from [8] to deal

with constrained motion coordination problems.

Definition 2.1: A continuous-action-space game is a 3-tuple Γ = (I, X, u), such that (i) I = {1, . . . , N} is the set

of N players, (ii) X =
∏N

i=1 Xi ⊂ Rd is the action space of the game, with Xi ⊂ Rni , i ∈ I, d =
∑

i ni, a compact

and convex set representing the action space of the ith player, and (iii) u : X → RN is a function whose component

ui : X → R defines the payoff of the ith player, i ∈ I.

As opposed to discrete-action games, note that the possible action of a player can take values in a compact and

convex set, resulting into a continuous-action-space game.

Let xi ∈ Xi ⊂ Rni be the action for the ith player and x ∈ X be the action profile for all players, such that

x = (x1, . . . , xN )⊤. In the sequel, we will use the notation x = (xi, x−i), where x−i ∈ X−i =
∏

j∈I,j,i Xj , for all

i ∈ I, are the actions of all players except that of the ith player.

A repeated, continuous-time, game associated with Γ, R(Γ), is a game in which, at each time t ∈ R≥0, each agent

i ∈ I modifies xi(t) ∈ Xi simultaneously while receiving ui(x(t)). This is in contrast to repeated, discrete-time games,

which follow a discrete-time schedule.

In the context of (vehicle) motion coordination, agents’ actions can be identified with system states, and thus it

makes sense that these change in continuous time according to some vehicle dynamics. In particular, the way in

which player i modifies xi(t) can be constrained by a (state-dependent) set W . Let Wi(xi, x−i) ⊂ Xi be a constraint

subset associated with x ∈ X, W (x) = Πi∈IWi(x) ⊂ X, and W = ∪{(x, W (x)) | x ∈ X} ⊆ X × X. We will refer

to W as a fiber bundle over X. The introduction of W leads to the notion of constrained repeated game associated

with Γ and W , RW (Γ), and the following equilibrium concept.

Definition 2.2: Let Γ = (I, X, u) be a continuous-space game and W a fiber bundle over X. A constrained Nash

Equilibrium (NE) for Γ with respect to W is an action profile (x⋆
i , x⋆

−i) ∈ X such that ui(xi, x⋆
−i) ≤ ui(x

⋆
i , x⋆

−i), for

all xi ∈ Wi(x
⋆
i , x⋆

−i) and all i ∈ I.

We will use such W to represent collision-avoidance type of constraints, or restricted reachable sets, thus it will be

additionally assumed that x ∈ W (x). For example, a velocity saturation constraint of vmax may simply be expressed

by the limited reachable set Wi(x) = Wi(xi) = Bvmax
(xi).

Out of different classes of games, the notion of potential game [17] is of particular interest since the incentives for

all players can be captured by a single function.

Definition 2.3: Consider a game Γ = (I, X, u). Let us assume that there exists a function Φ : X → R such that

sign (ui(xi, x−i) − ui(x
′
i, x−i)) = sign (Φ(xi, x−i) − Φ(x′

i, x−i)) ,

for xi, x′
i ∈ Xi, x−i ∈ X−i, for all i ∈ I. Then, the game is called an ordinal potential game. Moreover, if

ui(xi, x−i) − ui(x
′
i, x−i) = Φ(xi, x−i) − Φ(x′

i, x−i),

for xi, x′
i ∈ Xi, x−i ∈ X−i, then the game is called an exact potential game.
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III. Continuous-time best-response dynamics

Here, we introduce some basic facts about continuous-time best-response dynamics [18] and show their convergence

to the set of equilibria under some general conditions.

Let Γ = (I, X, u) be a continuous-space game, let W be a continuous fiber bundle over X, such that Wi(x) convex

and compact for all x ∈ X, i ∈ I, and consider the constrained repeated game associated with Γ and W , RW (Γ).

Definition 3.1: The best-response dynamics for RW (Γ) is defined by the differential inclusion F : X ⇒ Rd,

Fi(x) = BRi(x−i) − xi = argmaxy∈Wi(x) ui(y, x−i) − xi, for all i ∈ I. That is,

ẋi ∈ Fi(x) := BRi(x−i) − xi, i ∈ I. (1)

We denote F (x) = BR(x) − x for conciseness. Existence of solutions for differential inclusions is guaranteed for F ,

nonempty, upper semicontinuous and taking compact and convex values. Let us assume that payoff functions ui are

continuous maps on X. By compactness of X, ui reaches its maximum value on X, and the set of maximizers is

compact. Then, Fi is nonempty and takes compact values. Further, let us assume that ui is quasiconcave on W .

Then, the set of maximizers of ui and Fi are convex for each x ∈ W 1. By continuity of ui on X, and continuity of

W , we can apply directly the maximum theorem [19] to conclude that Fi is upper semicontinuous for each i ∈ I.

Alternatively, in potential games, one can exchange the continuity assumption on the ui by continuity on Φ. Since

Fi is nonempty, compact, convex and upper semicontinuous at every x ∈ X, and each i ∈ I, there exists a solution

to (1) for every initial condition. These solutions are absolutely continuous functions, ϕ : [0, +∞) → X, such that

ϕ̇i(t) ∈ BRi(ϕ−i(t)) − ϕi(t), for almost every t ∈ [0, +∞), and for all i ∈ I; see [20]. The equilibria set of system (1)

is

X⋆ = {x ∈ X | xi ∈ BRi(x−i), ∀i ∈ {1, . . . , N}} . (2)

This set corresponds exactly to the set of constrained Nash equilibria for Γ with respect to W .

The above theorem will be used to analyze the best-response dynamics associated with a potential game. The

potential function should satisfy the following property.

Definition 3.2: Let Y ⊆ Rd be a convex set. A potential function Φ : Y → R is said to be component-wise pseudo-

concave (respectively component-wise pseudo-convex) if for every i ∈ I, and every w = (wi, w−i), y = (yi, y−i) ∈ Y ,

and s ∈ (0, 1), with y−i = w−i, it holds that if Φ(w) > Φ(y), then Φ(swi + (1 − s)yi, w−i) ≥ sΦ(yi, w−i) + (1 −

s)sb(wi, yi) where b(wi, yi) is a positive function (respectively if Φ(w) < Φ(y), then Φ(swi + (1 − s)yi, w−i) ≤

Φ(yi, w−i) + (1 − s)sb(wi, yi) where b(wi, yi) is a negative function).

Similarly, Φ is said to be component-wise quasiconcave (respectively component-wise quasiconvex) if for every i ∈ I,

and every w = (wi, w−i), y = (yi, y−i) ∈ Y , and s ∈ (0, 1), with y−i = w−i, it holds that Φ(swi + (1 − s)yi, w−i) ≥

min{Φ(wi, w−i), Φ(yi, w−i)} (respectively if Φ(swi + (1 − s)yi, w−i) ≤ max{Φ(wi, w−i), Φ(yi, w−i))}).

In the following, we make use of Theorem 1.1 to show convergence of the best-response dynamics to its equilibria

set under certain conditions. Definitions of regular function, generalized gradient, set-valued Lie derivative, and

generalized LaSalle’s Invariance Principle can be found in Appendix A, B.

Theorem 3.1: Let Γ = (I, X, u) be an ordinal potential game with potential function Φ. Let W be a continuous

fiber bundle over X such that Wi(x) is compact and convex for all x ∈ X, i ∈ I. Assume that Φ is component-wise

1Alternatively, the same result holds for a potential game with a component-wise quasiconcave potential function (Definition 3.2).
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quasiconcave, component-wise pseudoconcave with bi continuous over each W (x), x ∈ X, Lipschitz, and regular over

X. Let F : X ⇒ Rd be the best-response dynamics for RW (Γ). Then, all solutions of the system ẋ ∈ F (x) converge

to the set X⋆ of constrained Nash equilibria defined in (2).

Proof: Consider Ψ = −Φ. Since Φ is component-wise pseudoconcave, then Ψ is component-wise pseudoconvex.

We will see that Ψ is a Lyapunov function for our set-valued map; that is, it holds that max LF Ψ(x) ≤ 0, for all

x ∈ X.

Let x be a point in X. Any v ∈ F (x) has the form v = x⋆−x, with x⋆ ∈ BR(x). Define ΩΨ ⊂ X as the zero-measure

set for which Ψ is non-differentiable. Consider a ζ ∈ ∂Ψ(x) of the form ζ = limk ∇Ψ(yk), with yk → x, yk
< ΩΨ. If

x⋆ = x, then it trivially holds that vT ζ = 0. Suppose that x⋆
, x. Since BR is nonempty and upper-semicontinuous

for all x ∈ X, it holds that there exists a sequence xk,⋆ → x⋆ such that xk,⋆ ∈ BR(yk), for all k. Thus, we have

vT ζ = (x⋆ − x)T limk ∇Ψ(yk) = limk(xk,⋆ − yk)T ∇Ψ(yk) .

Let us define ∇iΨ ∈ Rni as the partial derivative of Ψ with respect to the action of the ith player. Since Ψ is

differentiable at yk, the term (xk,⋆ −yk)T ∇Ψ(yk) is the directional derivative of Ψ at yk along the direction xk,⋆ −yk.

In particular,

vT ζ = lim
k→∞

(xk,⋆ − yk)T ∇Ψ(yk)

= lim
k→∞

∑

i∈I

(xk,⋆
i − yk

i )∇iΨ(yk)

= lim
k→∞

∑

i∈I

(xk,⋆
i − yk

i , 0−i)
T ∇Ψ(yk)

= lim
k→∞

∑

i∈I

lim
h→0

Ψ(yk
i + h(xk,⋆

i − yk
i ), yk

−i) − Ψ(yk)

h
,

where in the last equality we have used the limit definition of directional derivative.

Notice that since xk,⋆ ∈ BR(yk), then it holds that Ψ(yk) ≥ Ψ(xk,⋆
i , yk

−i) for any i ∈ I. Moreover, since x , x⋆,

we have that there is a k1 < ∞ for which yk
, xk,⋆ for all k > k1. Next, assume that x < BR(x), then there is an

i ∈ I such that xi < BRi(x). By continuity of Ψ, the set BR(x) is closed, therefore for each xi ∈ Wi(x) \ BRi(x)

there exists ε such that Bε(x) ∩ Wi(x) ⊂ Wi(x) \ BRi(x). Therefore, there is k2 < ∞ such that yk
i < BRi(x

k,⋆) for

all k > k2. Thus, when we study the behavior as k → ∞, we will consider only sequences yk such that yk
, xk,⋆ and

yk
< BR(yk).

Using the fact that yk
i < BRi(y

k) and by component-wise pseudoconvexity of Ψ, it holds that since Ψ(xk,⋆
i , yk

−i) <

Ψ(yk), then Ψ(yk
i +h(xk,⋆

i −yk
i ), yk

−i) ≤ Ψ(yi, yk
−i)+(1−h)hbi(x

k,⋆
i , yk

i ), for any h ∈ (0, 1), and each i ∈ I. From here,

Ψ(yk
i + h(xk,⋆

i − yk
−i), yk

−i) − Ψ(yk) ≤ (1 − h)hbi(x
k,⋆
i , yk

i ), which implies that limh→0
Ψ(yk

i +h(x
k,⋆

i
−yk

i ),yk
−i)−Ψ(yk)

h
≤

bi(x
k,⋆
i , yk

i ). Now, for each j ∈ I such that yk
j ∈ BRj(yk), we have that Ψ(yk) = Ψ(xk,⋆

j , yk
−j). It means that yk

j and

x⋆
j are minimizers of Ψ(·, yk

−j). By component-wise quasiconvexity, the set of minimizers of Ψ(·, yk
−j) is convex, then

Ψ(yk
j + h(xk,⋆

j − yk
j ), yk

−j) = Ψ(yk) = Ψ(xk,⋆), therefore we can conclude that limh→0
Ψ(yk

i +h(x
k,⋆

i
−yk

i ),yk
−i)−Ψ(yk)

h
= 0.
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Then, it follows by using the continuity of bi that

vT ζ = lim
k→∞

(xk,⋆ − yk)∇Ψ(yk)

≤ lim
k→∞

∑

i∈I

yk
i <BRi(yk)

bi(x
k,⋆
i , yk

i ) =
∑

i∈I
xi<BRi(x)

bi(x
⋆
i , xi). (3)

Now, consider the case when x ∈ BR(x). In this case, if x ∈ int(BR(x)), there exists ε > 0 such that Bε(x) ⊂ BR(x).

Note that for h → 0, (xi + h(x⋆
i − xi), x−i) ∈ Bε(x) ⊂ BR(x). Then, Ψ(xi + h(x⋆

i − xi), x−i) = Ψ(xi, x−i), and

limh→0
Ψ(xi+h(x⋆

i −xi),x−i)−Ψ(x)
h

= 0, for each i ∈ I. It implies that vT ζ = 0. If x ∈ bnd(BR(x)), there are: i)

sequences yk → x such that for every k, yk
< BR(yk), ii) sequences such that yk ∈ BR(yk) for all k, and iii)

sequences such that there is a subsequence {yk,l}l ⊂ BR(yk) and a subsequence {yk,l}l ⊂ W (x) \ BR(yk). In case

i) we follow the same analysis as that for x < BR(x), then vT ζ < 0, in case ii) the analysis is analogous to that for

x ∈ int(BR(x)), to show that vT ζ = 0. In the third case, if x is a point of non-differentiability, the gradient of Ψ at

yk does not converge, then we do not need to consider these sequences. If Ψ is differentiable at x, then, as xi is a

minimizer of Ψ(·, x−i), for all i ∈ I, we have that vT ζ = 0. Hence, vT ζ ≤ 0 for all x ∈ bnd(BR(x)). Then, we can

conclude that for all x ∈ X, it holds that vT ζ ≤ 0 for all sequences yk → x, such that yk
< ΩΨ and limk ∇Ψ(yk) = ζ.

Now consider any ζ ∈ ∂Ψ(x). By the definition of generalized gradient, there exist α1, . . . , αl, with 0 ≤ αs ≤ 1,

and α1 + · · · + αl = 1, and sequences {yk1}, . . . , {ykl} converging to x such that ζ = α1 limk1
∇Ψ(yk1) + · · · +

αl limkl
∇Ψ(ykl). Then it follows that vT ζ = α1vT ζ1 + · · ·+αlv

T ζl. Using the previous analysis for each ζs, it follows

that vT ζ ≤ 0. From here we conclude that max LF Ψ(x) ≤ 0 for all x ∈ X. From the generalized LaSalle’s invariance

principle, we have that all solutions will converge to the largest invariant set contained in X ∩ {x ∈ Rd | 0 ∈ LF Ψ}.

In the following, we prove that the largest invariant set is contained in X⋆.

Suppose that x < BR(x), and x belongs to the invariant set. Take a x⋆ ∈ BR(x), define v = x⋆ − x, and

take a ζ ∈ ∂Ψ(x) such that ζ = limk ∇Ψ(yk), with yk → x, when k → +∞. From (3), we have that vT ζ ≤
∑

i∈I
xi<BRi(x)

bi(x
k,⋆
i , yk

i ) < 0, where, the second inequality follows from the fact that there is a j ∈ I such that

xj < BRj(x−j). Taking the maximum over BR(x), we have that

max
x⋆∈BR(x)

(x⋆ − x)T ζ = max
v

vT ζ ≤ max
x⋆∈BR(x)

∑

i∈I
xi<BRi(x)

bi(x
⋆
i , xi) =

∑

i∈I
xi<BRi(x)

bi(x̄
⋆
i , xi).

That is, the continuous function
∑

i∈I bi(x̄
⋆
i , xi) achieves its maximum over the compact BR(x) at some x̄⋆ ∈ BR(x).

Note that the inequality holds for all ζ of the form considered. Since x < BR(x), x̄⋆
, x, then Ψ(x̄⋆

i , x−i) < Ψ(x) for

some i ∈ I, hence we have that
∑

i∈I
xi<BRi(x)

bi(x̄
⋆
i , xi) < 0.

Now consider any ζ that is a convex combination of ζs = lims ∇Ψ(yks). From the above considerations, we have

that

vT ζ = α1vT ζ1 + · · · + αlv
T ζl

≤ α1

∑

i∈I
xi<BRi(x)

bi(x̄
⋆
i , xi) + · · · + αl

∑

i∈I
xi<BRi(x)

bi(x̄
⋆
i , xi)

=
∑

i∈I
xi<BRi(x)

bi(x̄
⋆
i , xi) < 0,
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for all v and ζ. From here we conclude that 0 < LF Ψ(x), if x < BR(x). Thus, x does not belong to X∩{x ∈ Rd | 0 ∈ LF Ψ},

which is a contradiction.

IV. Self-triggered Communications in Best-Response Dynamics

In this section, we present a sufficient self-triggered communication law as in [13] to lower the frequency at

which neighbors’ information needs to be updated while still guaranteeing convergence to the set of NE. It is worth

highlighting that the amount of neighbors from which information needs to be updated for each player, depends

uniquely on the sparsity of the game. That is, our law does not deal with generating a distributed execution of a

non-distributed game, but it rather has to do with reducing the time-between-updates. Proofs for all results in this

section can be found in Appendix C.

Let {ti
k}∞

k=0 ⊆ R>0, such that ti
k < ti

k+1, be the time sequence at which player i updates information about other

players, for each i ∈ I. Assume that the ith player has obtained up-to-date information of agent j ∈ I \ {i} at some

time ti
k. In what follows, we aim to estimate the largest possible time ti

k+1 > ti
k that an agent i can wait for in order

to update information about neighbors while guaranteeing convergence to the set of NE of the game. To do this,

we assume that each player has available up-to-date information about its own state at every time t > ti
0. The ith

player’s action is driven by

ẋi(t) ∈











BRi(x−i(t
i
k)) − xi(t), if xi(t

i
k) < BRi(x−i(t

i
k)),

{0}, otherwise,

(4)

for time t ∈ (ti
k, ti

k+1]. See Remark 4.1 about the introduction of zero when xi(t
i
k) ∈ BRi(x−i(t

i
k)).

In the sequel, let us assume that each agent payoff function is Lipschitz continuous with Lipschitz constant Li > 0;

that is, |ui(x
1) − ui(x

2)| ≤ Li‖x1 − x2‖, for any x1, x2 ∈ X. Let us assume that player i knows Li. This will help us

to compute a self-triggering condition which makes each agent update information whenever its payoff is no longer

increasing. First, let us find an upper bound on uncertainty about other player’s action with respect to time.

At time ti
k, player i knows other players’ actions, and thus can compute precisely its best-response set, as well as

the value of ui(x
⋆
i (ti

k), x−i(t
i
k)), where x⋆

i (ti
k) ∈ BRi(x−i(t

i
k)). Let j ∈ I be an arbitrary agent j , i. Let l be such that

t
j
l+1 > ti

k ≥ t
j
l for the given k. Notice that since BRj(x−j(tj

l )) is compact, there exists a point xfast
j ∈ BRj(x−j(tj

l ))

such that xfast
j ∈ argmax

y∈BRj(x−j(t
j

l
)) ‖y − xj(ti

k)‖. Then, the magnitude of ẋj(t) defined in (4) is maximized by

xfast
j , for all time t ∈ (ti

k, t
j
l+1] (i.e., ẋj(t) = xfast

j − xj(t) has maximum norm). Assume that xj(ti
k) < BRj(tj

l ). Thus,

a fastest solution of (4) for t ∈ (ti
k, t

j
l+1], is xj(t) = xfast

j − (xfast
j − xj(ti

k))e−(t−ti
k). This implies that the distance

‖xj(t)−xj(ti
k)‖ is upper bounded by ‖xfast

j −xj(ti
k)‖

(

1 − e−(t−ti
k)

)

, for t ∈ (ti
k, t

j
l+1]. However, the ith player does not

know the jth player’s best-response set, then, the only option is to compute the worst possible case with the available

information. Assume that all agents know the action space X. Then, the ith agent can find a point xfar
j (ti

k) ∈ Xj ,

which maximizes the distance from the last known position of j. That is, xfar
j (ti

k) ∈ argmaxy∈Xj
‖xj(ti

k) − y‖. Then,

‖xfast
j − xj(ti

k)‖
(

1 − e−(t−ti
k)

)

≤ ‖xfar
j − xj(ti

k)‖
(

1 − e−(t−ti
k)

)

,

holds for every t ∈ (ti
k, t

j
l+1]. Since the left-hand side of the inequality above is an upper bound for the movement of
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j, for t ∈ (ti
k, t

j
l+1], we have that

‖xj(t) − xj(ti
k)‖ ≤ ‖xfar

j (ti
k) − xj(ti

k)‖
(

1 − e−(t−ti
k)

)

. (5)

At this point, we can neglect the assumption of xj(ti
k) < BRj(tj

l ), since, if xj(ti
k) ∈ BRj(tj

l ), then the solution is

trivially xj(t) = xj(ti
k), for t ∈ (ti

k, t
j
l+1]. Therefore, the upper bound in (5) holds.

Lemma 4.1: Inequality (5) holds for all ti
k < t.

Next, we can find an upper bound for ‖x−i(t) − x−i(t
i
k)‖ as

∑

j∈I\{i}

‖xj(ti
k) − xfar

j (ti
k)‖

(

1 − e−(t−ti
k)

)

≥ ‖x−i(t) − x−i(t
i
k)‖. (6)

This upper bound only depends on information available to player i up to time ti
k. We will use it next to determine

the time-update instant ti
k+1.

Next, we use the Lipschitz property of ui, to obtain

ui(x
⋆
i (ti

k), x−i(t)) ≥ui(x
⋆
i (ti

k), x−i(t
i
k)) − Li‖x−i(t) − x−i(t

i
k)‖, (7)

and similarly,

ui(xi(t), x−i(t
i
k)) ≤ui(xi(t

i
k), x−i(t

i
k)) + Li‖x−i(t) − x−i(t

i
k)‖. (8)

The following lemma states a combination of the bounds in ui in equations (7), (8), and the bound on ‖x−i(t) −

x−i(t
i
k)‖ from Lemma 4.1, to formulate the self-triggering update condition for each player.

Lemma 4.2: Let Γ = (I, X, u) be an ordinal potential game with potential function Φ, fulfilling all properties

defined in Theorem 3.1. Assume that u is Lipschitz over X. Let W be a continuous fiber bundle over X such that

Wi(x) is compact and convex for all x ∈ X, i ∈ I. Let us consider the self-triggered best-response dynamics as

defined in equation (4). Let ε > 0, and suppose ti
k > t0 is the last time instant when agent i updated information

about other agents. Consider any x⋆
i (ti

k) ∈ BRi(x−i(t
i
k)). Let ti

wait be a positive constant. If ti
k+1 > ti

k is such that

either

ui(x
⋆
i (ti

k), x−i(t
i
k)) − 2Li

∑

j∈I\{i}

‖xj(ti
k) − xfar

j (ti
k)‖

(

1 − e−(ti
k+1−ti

k)
)

= ui(xi(t
i
k+1), x−i(t

i
k)) + ε, (9)

provided xi(t
i
k) < BRi(x−i(t

i
k)), or ti

k+1 = ti
k + ti

wait, if xi(t
i
k) ∈ BRi(x−i(t

i
k)), then it holds that Φ(xi(t), x−i(t)) <

Φ(x⋆
i (ti

k), x−i(t)) for all t ∈ (ti
k, ti

k+1], such that xi(t
i
k) < BRi(x−i(t

i
k)), and Φ(xi(t), x−i(t)) = Φ(xi(t

i
k), x−i(t)), for

all t ∈ (ti
k, ti

k+1], if xi(t
i
k) ∈ BRi(x−i(t

i
k)).

Notice that the difference ti
k+1 − ti

k is upper bounded as

ti
k+1 − ti

k

≤ max
{

log
(

2LiN maxj∈I ρ(Xj)
2LiN maxj∈I ρ(Xj)−Liρ(Xi)−ε

)

, ti
wait

}

.

It can be shown that this upper bound follows from (9), but we omit its computation for brevity. This bound will

be important to establish precompactness of solutions in the analysis in Section V.
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Remark 4.1: Here, we analyze the behavior of player i if its dynamics was given by

ẋi ∈ BRi(x−i(t
i
k)) − xi(t), (10)

for t ∈ (ti
k, ti

k+1]. If for some time in (ti
k, ti

k+1], player i is not in its best-response set, the self-triggering time-update

policy of Lemma 4.2 guarantees that the payoff at time t is at worst less than the last known best payoff by some

ε > 0, provided xi(t
i
k) < BRi(x−i(t

i
k)). Notice that ti

k+1 is the maximum time when this property holds. Then, at

ti
k+1 information is updated by player i and uncertainty becomes zero again, leading to a new best-response set.

This will produce a larger or equal payoff than the current action’s payoff. In particular, if the payoff value is the

same, then xi(t
i
k+1) ∈ BRi(x−i(t

i
k+1)).

Suppose a player has reached its best-response set and follows the dynamics (10). Once in BRi(x−i(t
i
k)), the

motion of player i can evolve arbitrarily in the set. In the meantime, the evolution of BRi(x−i(t)) can lead to

a situation where BRi(x−i(t)) , BRi(x−i(t
i
k)), while xi(t) ∈ BRi(x−i(t)). In this case, moving toward a point

y ∈ BRi(x−i(t
i
k)) \ BRi(x−i(t)) will clearly produce a lower payoff. Thus, the set of velocities that an agent can

take needs to be restricted, and it makes necessary to estimate how the best-response set will evolve. Alternatively,

one can leverage the fact that xi(t
i
k) ∈ BRi(x−i(t

i
k)), to prescribe the agent velocity to be zero. This motivates the

definition of a self-triggered best-response dynamics as in (4), and not as in (10). By means of this, one can guarantee

Φ(xi(t
i
k), x−i(t)) = Φ(xi(t), x−i(t)) if and only if xi(t) ∈ BRi(x−i(t

i
k)).

�

Remark 4.2: The self-triggered best-response dynamics in (4) may lead to a zeno-behavior in some examples.

That is, as agents approach their best-response sets, they may require information updates more and more often,

creating an accumulation point in the time-update sequence. This is a typical trait of general event and self-triggered

dynamics. In general, the only way to guarantee a lower bound on the time between updates by this approach is to

force it, for example by taking the (k + 1)th update time as max{tk
i + ∆tmin, tk+1

i }, where ∆tmin is a small positive

number. Introducing this constant is an acceptable trade-off: on the one hand, the nature of the self-triggered

approach is still preserved as much as possible, i.e., if possible, communications will be reduced by being triggered

at times larger than ∆tmin until being close to converge, leading to a type of practical convergence. On the other

hand, the zeno-behavior is forced to disappear.

�

V. System analysis via invariance theory

In order to formally analyze the self-triggered best-response dynamics, we overapproximate it by means of a

larger hybrid system whose solutions include those of interest. To do this, first we associate each agent with a

data structure P i = (xi, xi
−i, ti) ∈ X × R≥0, where xi

−i = (xi
j)j∈I ∈ X−i represents the information that agent i

maintains on all other agents j , i, i.e., xi
−i(t) = x−i(t

i
k) for t ∈ (ti

k, ti
k+1], and ti = t − ti

k for t ∈ (ti
k, ti

k+1]. Then,

P = (P 1, . . . , P N ) ∈ (X × R≥0)N = O is an extended state that includes the data structure P i for each agent.

Finally, let us define the projection π : O →
∏

i∈I R
ni as π(P ) = (πi(P )) = (x1, . . . , xN ). Using this new notation,

we can write the self-triggering condition of Lemma 4.2 as ∆i(P ) ≤ 0, where

∆i(P ) = ui(x
⋆
i , xi

−i) − 2Li

∑

j∈I\{i}

‖xi
j − xfar

j ‖
(

1 − e−ti
)

− ui(xi, xi
−i) − ε, (11)
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with ‖xi
j −xfar

j ‖ = maxy∈Xj
‖xi

j −y‖, and x⋆
i ∈ BRi(x

i
−i). We now define a hybrid system on O = (Rd×R)N as follows.

First, let C ⊂ O be the set C = ∩i∈ICi = ∩i∈I({P ∈ O | ∆i(P ) ≥ 0, xi ∈ Wi(xi, xi
−i) \ BRi(xi

−i)} ∪ {P ∈ O | ti ≤

ti
wait and xi ∈ BRi(x

i
−i)}). Secondly, we let D = ∪i∈I({P ∈ O | ∆i(P ) ≤ 0 and xi ∈ Wi(xi, xi

−i) \ BRi(xi
−i)} ∪ {P ∈

O | ti ≥ ti
wait and xi ∈ BRi(x

i
−i)}). Define the flow map F : O ⇒ O as F (P ) = Πi∈IFi(P ), with Fi(P ) =

{(x⋆
i − πi(P ), 0, 1) | x⋆

i ∈ BRi(x
i
−i)}, for all i ∈ I. Define the jump map G : O ⇒ O so that Y ∈ G(P ) if and only if

Y i ∈ {P, (xi, x−i, 0)}, for each i ∈ I. Finally, define the hybrid system H = (F, G, C, D) as

H :











Ṗ ∈ F (P ), if P ∈ C,

P + ∈ G(P ), if P ∈ D.

Solutions for this system are given by functions φ : E → O, such that for each j ∈ N it holds that t 7→ φ(t, j)

is locally absolutely continuous on the interval Ij = {t ∈ R≥0 | (t, j) ∈ E}, where E is a hybrid domain; see the

Appendix E for the definition of this concept. Let SH be the set of all solutions of H. By definition of H, for each

P ∈ D, it holds that P ∈ G(P ). It means that the hybrid system overapproximation generates solutions that remain

at the same fixed point P via infinite switching. However, note that these are not solutions of the self-triggered

best-response dynamics. Additionally, the set SH contains trajectories that allow motion inside BRi(x
i
−i) when xi

has reached BRi(x
i
−i), see Remark 4.1. Given that ∆i is a continuous function of P , the sets C and D are closed

sets in O. Under the assumption that the ui are Lipschitz over X, and Φ is component-wise quasiconcave, one can

see that F has compact, convex values, it is also locally bounded, and outer semicontinuous in C. The map G is

outer semicontinuous by construction.

Let Ψ = −Φ, and consider its extension Ψ̃ : O → R defined as Ψ̃(P ) = Ψ(π(P )) = Ψ(x1, . . . , xN ). In this way,

Ψ̃ is a continuous function on O, and a locally Lipschitz function on a neighborhood of C. We now focus on the

trajectories of H whose velocities take values in a subset of the differential inclusion. In other words, we define

F : O ⇒ O as F = Πi∈IF i(P ), where

F i(P ) =











(0, 0, 1), if xi < int(BRi(x
i
−i)),

(BRi(x
i
−i) − xi, 0, 1), otherwise.

We have that F (P ) ⊆ F (P ) for all P ∈ O. Note that F selects the velocities according to the self-triggered dynamics.

Lemma 5.1: The following holds:

max L
F

Ψ̃(P ) ≤ 0, ∀ P ∈ C,

max
P +∈G(P )

Ψ̃(P +) − Ψ̃(P ) ≤ 0, ∀ P ∈ D,

Moreover, if P ∈ C is such that for some i ∈ I, xi < BRi(x
i
−i), then max L

F
Ψ̃(P ) < 0.

Proof: The condition maxP +∈G(P ) Ψ̃(P +) − Ψ̃(P ) ≤ 0 holds trivially, as Ψ̃(P +) = Ψ̃(P ) for any P ∈ O and

P + ∈ G(P ). In order to verify the first condition, we follow along the lines of the proof of Theorem 3.1.

Consider P ∈ C. Any V ∈ F (P ) can be written as V = (V 1, . . . , V N ), where each component V i has the

form V i = (x⋆
i − xi, 0, 1), for some x⋆

i ∈ BRi(x
i
−i) if xi < BRi(x

i
−i), or V i = (0, 0, 1) if xi ∈ BRi(x

i
−i). Let us write

V = P ⋆−P , for an appropriate P ⋆. Consider any ζ ∈ ∂Ψ̃(P ) such that ζ = limk ∇Ψ̃(Y k), with Y k → P , and Y k
< ΩΨ̃.

For convenience, let us recall that ΩΨ̃ is the set of points at which Ψ̃ is non-differentiable. Since Ψ̃ is independent
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of the components xi
−i, ti, note that ζi = (πi(ζ), 0, 0). If V i = (0, 0, 1) for all i, then it holds trivially that ζT V = 0.

Suppose then that V i
, 0 for some i ∈ I. Since Y k → P we can write V T ζ = limk→∞(P ⋆ −Y k)∇Ψ̃(Y k). Denote and

yk = π(Y k). Using component-wise pseudoconvexity and component-wise quasiconvexity of Ψ, the computations in

the proof of Theorem 3.1 can be repeated until we reach that V T ζ ≤
∑

i∈I
xi<BRi(x)

bi(x
⋆
i , xi), for all ζ ∈ ∂Ψ̃(P ).

Now, for P ∈ C, either the condition ∆i(P ) ≥ 0 holds for some i or xi ∈ BRi(x
i
−i), for all i ∈ I. Then, by

Lemma 4.2 it is true that Ψ(x⋆
i , x−i) − Ψ(x) ≤ 0, for all i ∈ I. Thus, we have that V T ζ ≤ 0. The result can be

extended for any ζ ∈ ∂Ψ̃(x) similarly to Theorem 3.1. Therefore, max
F

L
F

Ψ̃(P ) = maxV,ζ V T ζ ≤ 0.

To prove the second part of this lemma, note that max
F

L
F

Ψ̃(P ) = maxV,ζ V T ζ, and maxV,ζ V T ζ ≤ maxx⋆∈{y | yi∈BRi(xi
−i

)}
∑

i∈I
xi<BRi(x)

bi(x
⋆
i , xi). Since bi(x

⋆
i , xi) is continuous for all i ∈ I, and BRi(x

i
−i) is a compact set, the right-hand side of

the above inequality achieves its maximum at some x̄⋆
i ∈ BRi(x

i
−i) for all i ∈ I. Then, if for some i ∈ I, xi < BRi(x

i
−i),

since P ∈ C, it must be that ∆i(P ) ≥ 0. By Lemma 4.2, this implies bi(x
⋆
i , xi) < 0 for all x⋆

i ∈ BRi(x
i
−i) and, in

particular, bi(x̄
⋆
i , xi) < 0. Thus, the strict inequality max L

F
Ψ̃(P ) < 0 follows.

Theorem 5.1: Let Γ = (I, X, u) be an ordinal potential game with potential function Φ, fulfilling all properties

defined in Theorem 3.1. Assume that u is a Lipschitz continuous function over X. Let W be a continuous fiber

bundle over X such that Wi(x) is compact and convex for all x ∈ X, i ∈ I. Let (4) be the self-triggered best-

response dynamics for RW (Γ). Then, all precompact solutions of the self-triggered best-response dynamics converge

to the set X⋆ of constrained Nash Equilibria.

Proof: Consider a precompact solution φ of the self-triggered best response dynamics which, in particular, is

a precompact solution of H. Then, the ω-limit set Ω(φ) is nonempty, compact, and weakly invariant [21]. Since

Ψ̃ satisfies Lemma 5.1, then Ω(φ) ⊆ Ψ̃−1(r) for some r. First, the conditions in Lemma 5.1 imply that Ψ̃ ◦ φ is

non-increasing and bounded below. Let r satisfy that limt→∞,j→∞ Ψ̃(φ(t, j)) = r. Take any P ∈ Ω(φ). By definition,

liml→∞ φ(tl, jl) = P , with (tl, jl) ∈ E. Since Ψ̃ is continuous, then it holds that limk→∞ Ψ̃(φ(tk, jk)) = Ψ̃(P ) = r.

Take a P ∈ Ω(φ). Since Ω(φ) is weakly forward invariant, there exists a solution to the self-triggered best response

dynamics such that P = φ(t0, j0) for some (t0, j0). Suppose that there is an i such that for Pi = (xi, xi
−i, ti), we have

xi < BRi(x
i
−i). Then, by Lemma 5.1 we have that max L

F
Ψ̃(P ) < 0. If P ∈ C, and the solution flows, then it must

be that Ψ̃(φ(t+
0 , j0)) < r, which contradicts P ∈ Ψ̃−1(r). Thus, it must be that P ∈ D \ C. This implies that there

exists an i such that either ∆i(P ) ≤ 0 or ti
wait ≤ ti. However, after the jump, P = φ(t0, j0 + 1) ∈ C. Then, either we

have that πi(P ) ∈ BRi(π(P )), for some i ∈ I, in which case the conclusion follows, or else it will continue flowing

afterwards, which leads to a contradiction again.

VI. An example: Coverage Control

Throughout this section we describe the problem of optimally deploying a set of N agents in a one-dimensional

scenario as a Potential Game. This example will serve to illustrate the proposed coordination strategy using the

best-response dynamics and self-triggered control. Proofs for the results in this section can be found in Appendix D.

Let us consider a set of N agents whose movement is constrained to a set [0, L] ⊆ R, where L > 0. Thus, all

positions of the agents are given by the vector z = [z1, . . . , zN ]⊤ ∈ [0, L]N . In order to gather information, each

agent i is equipped with a sensor that is able to continuously monitor an interval [zi − ri, zi + ri], where ri > 0

denotes its effective range. We consider that the sensing action is energy costly, therefore each agent i is able
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to adjust its own radius ri limited to a set [0, ri], where ri represents a physical bound on the sensing capacity.

We now consider any deployment task as an absolutely continuous map ϕ : [0, ∞) →
∏N

i=1 ([0, L] × [0, ri]), where

ϕ(t) = [z1(t), r1(t), . . . , zN (t), rN (t)]⊤.

In the following, we formulate our deployment problem as a continuous-space game. In order to do this, we let our

players be the set of agents to be deployed, the action space X =
∏N

i=1 ([0, L] × [0, ri]), their actions are given by

the vector xi = [zi, ri]
⊤ ∈ Xi ⊂ R2. Let us also define the set Qi(x) = {j ∈ I \ {i} | |zi − zj | < ri + rj}. Notice that

Qi(x) is the set of agents that are sensing areas also monitored by i, and that i ∈ Qj(x) if and only if j ∈ Qi(x).

Let us split the set Qi(x) in the sets Ql
i(x) = {j ∈ Qi(x) | j < i}, and Qr

i (x) = {j ∈ Qi(x) | j > i}. Define the set

W = {x ∈ X | [zi − ri, zi + ri] 1 (zj − rj , zj + rj) for any i, j ∈ I} ∩ {x ∈ X | zj ≤ zi, if j ∈ Ql
i(x)} ∩ {x ∈ X | zi ≤

zj , if j ∈ Qr
i (x)}. We let the payoff functions be given by

ui(x) =2ri − α
∑

j∈Qi(z,r)

v(zi, zj , ri, rj) − α lossi(xi)

for i ∈ I, where

lossi(xi) = max{zi + ri − L, 0} + max{zi − ri, 0},

and v(zi, zj , ri, rj) is defined as:

v(zi, zj , ri, rj) = max{min{zi + ri, zj + rj} − max{zi − ri, zj − rj}, 0},

for i ∈ I, j ∈ Qi(x). The parameter α is given to weight the sensor overlapping in the payoff function. On the

other hand, the value of v(zi, zj , ri, rj) is equal to the length of the interval sensed simultaneously by i and j. In the

following, we show that this is an exact potential game.

Lemma 6.1: The deployment game stated above is an exact potential game with potential function:

Φ(x) =
1

2

N
∑

i=1

(ui(x) + 2ri − α lossi(xi)). (12)

Lemma 6.2: The set W is compact and convex.

Next, we analyze the concavity properties of Φ over W .

Lemma 6.3: The potential function Φ of the agent deployment game is component-wise concave in W .

Given that concavity implies pseudoconcavity and also quasiconcavity, this game holds the properties on Φ that

are required on Theorem 5.1. From (25) we can also see that Φ is a linear combination of pointwise maximum of

linear functions; hence a locally Lipschitz function of its argument. Furthermore, since W is a compact set, then Φ

is globally Lipschitz on W .

Lemma 6.4: Define ubi = zi+1 − ri+1, and lbi = zi−1 + ri−1, for i = 2, . . . , N − 1, ub1 = z2 − r2 and lb1 = 0,

ubN = L and lbN = zN−1 + rN−1. If α > 1, the best-response set of the ith player is given by:

• If 2ri > ubi − lbi and 0 ≤ lbi + ubi

2 ≤ L.

BRi(x−i) = {xi} =

{(

lbi + ubi

2
,

| ubi − lbi |

2

)}

.
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• If 2ri > ubi − lbi and 0 > lbi + ubi

2

BRi(x−i) = {xi} = {(0, − ubi)} .

• If 2ri > ubi − lbi and L < lbi + ubi

2

BRi(x−i) = {xi} = {(0, lbi −L)} .

• If 2ri ≤ ubi − lbi

{xi ∈ Wi(xi, x−i) | lbi +ri ≤ zi ≤ ubi −ri, ri = ri}.

Next, we present some simulations to gain a better understanding of the solution’s performance.

The simulation scenario consists of a set of 3 agents, which are covering a 1-dimensional set [0, 10]. Each agent i

has a maximum action radius ri = 2, and follows the self-triggered communication law as established in Theorem 5.1.

The Lipschitz constant for the self-triggered updates is Li = 1, and we take ti
wait = 1 second. We use a first order

Euler method to integrate the equation. Our simulation horizon is 10 seconds, the step time chosen for integration

is 2.5 × 10−4 seconds. We use a value ∆tmin = 0.1. Further, in order to simulate the differential inclusion, at each

time we pick one element of the best response set with uniform probability distribution. Figure 1 shows the actual
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C
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Fig. 1. Coverage vs. time. It is possible to tell which area is covered by each agent. They are organized from bottom to top from 1
through 3.

coverage provided by each agent. Notice that since player 3 stops as soon as it gets into its best-response set, there

is a segment near the upper end of the set that is uncovered. This does not happen in the lower end, because agent 1

never reaches its maximum radius, then, whenever the upper bound of this player’s sensing region touches the lower

bound of agent 2 sensing region, its position is going to move down to the middle value of the interval [0, z2−r2], while

the radius is increasing towards z2−r2

2 . It is worth to point out that the achieved Nash Equilibrium is not optimal,

because it does not guarantee full coverage. Clearly, an action profile such as
∑3

i=1 ri = 10, z1 = r1, z2 = 2r1 + r2

and z3 = 10 − r3 is an optimal Nash Equilibrium for this game, because it guarantees full coverage, showing zero

overlapping. Figure 2 shows the update times used by each agent to get information about the current state of the
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Fig. 2. Information update times for each agent.

game. We can see that when players approach their best-response sets, update times tend to accumulate, however,

due to the parameter ∆tmin, this accumulation does not happen, and in practice, the agent does not move away

from the best-response set. Thus, the parameter ∆tmin is an effective countermeasure against Zeno-behavior, as it

has been discussed in Remark 4.2. Finally, Figure 3 demonstrates the theoretical result on the monotonic increase
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Fig. 3. Potential function Φ vs. time.

of Φ along the solutions of the self-triggered best-response dynamics.
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VII. Conclusions

In this work, we characterize the convergence properties of the continuous time best-response dynamics for a

continuous-action-space potential game, with N players and ni-dimensional action space for each player i. We show

under general conditions that all solutions of the best-response dynamics of a potential game will converge to the set

of Nash equilibria set of the game. With the aim of making the best-response dynamics more practical, a self-triggered

communication strategy is proposed to reduce communications among agents while still guaranteeing convergence to

the desired configurations. The self-triggered best-response dynamics is modeled as a hybrid system, and convergence

analysis is made using analysis tools in [21].

As an example, we characterize the 1D deployment of a mobile sensor network as a potential game, where we

implement the self-triggered best-response dynamics. The objective of the game, is to maximize the sensor overall

coverage, avoiding footprint overlapping. Simulations show in a more intuitive way all theoretical results. Future

work will be devoted to study the effects of delays in the self-triggered best response dynamics.

Appendix

A. Some definitions on real analysis

Definition 1.1: [22] A function V : Rn → R is called regular at x if:

• for all v ∈ Rn the right directional derivative V ′(x, v) exists:

• for all v ∈ Rn, V ′(x, v) = V◦(x, v) = lim infy→x,h→0+
V (y+hv)−V (y)

h
.

Definition 1.2: [23] The set-valued map F : X ⊆ Rn ⇒ Rm is upper semicontinuous at a point x0 ∈ X if for

each ε > 0 there exists a δ > 0 such that if |x − x0| < δ, F (x) ⊆ F (x0) + Bδ(0).

In order to analyze the convergence of the best-response dynamics to the set of equilibria, we must introduce some

additional definitions related to stability analysis [22], [24].

Definition 1.3: Let f : Rd → R be a locally Lipschitz function. Let Ωf be the set of points at which f is

not differentiable. By Rademacher’s theorem, Ωf is a zero-measure set with respect to the Lebesgue measure. The

generalized gradient ∂f : Rd ⇒ Rd of f is given by

∂f(x) , co({ lim
i→∞

∇f(xi) | xi → x, xi < Ωf }). (13)

As seen in [20], [22], [21], the stability of a system defined by a differential inclusion can be analyzed by means

of non-continuously differentiable Lyapunov functions and generalized invariance principles based on set-valued Lie

derivatives. We recall these tools next.

Definition 1.4: Given a locally Lipschitz function f : Rd → R and a set-valued map G : Rd ⇒ Rd, the set-valued

Lie derivative LGf : Rd ⇒ R of f with respect to G is given by

LGf(x) = {a ∈ R | ∃v ∈ G(x) such that ζ⊤v = a, for all ζ ∈ ∂f(x)}. (14)

B. LaSalle’s invariance principle for differential inclusions and nonsmooth Lyapunov functions

The following theorem is an extension of the classical LaSalle’s invariance principle.

Theorem 1.1 ([20], [22]): Let G : Rd ⇒ Rd be a locally bounded, upper semicontinuous set-valued map which

takes nonempty, compact and convex values, and let f : Rd → R be a locally Lipschitz and regular function, according
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to the definition of regularity in [20] (see also the Appendix). Let S be a compact and strongly invariant set for

ẋ ∈ G(x), and assume that max LGf(y) ≤ 0 for each y ∈ S. Then, all solutions x : [0, ∞) → Rd of ẋ ∈ G(x) converge

to the largest weakly invariant set M contained in

S ∩ {x ∈ Rd | 0 ∈ LGf}.

�

C. Proofs of results on Section IV

1) Proof of lemma 4.1: We have already showed that the upper bound holds for t ∈ (ti
k, t

j
l+1]. Next we show that

the inequality also holds for t > t
j
l+1. With a slight abuse of notation, let xfast

j ∈ BRj(xj(tj
l+1)) denote a point such

that xfast
j ∈ argmax

y∈BRj(x−j(t
j

l+1
)) ‖y − xj(ti

k)‖. Assume that xj(ti
l+1) < BRj(tj

l+1). In this way, the solution of (4)

which maximizes ‖xj(t) − xj(ti
k)‖, for all t ∈ (tj

l+1, t
j
l+2] is given by xfast

j −
(

xfast
j − xj(tj

l+1)
)

e−(t−t
j

l+1
). Therefore,

we have

‖xj(t) − xj(ti
k)‖ ≤ ‖xfast

j −
(

xfast
j − xj(tj

l+1)
)

e−(t−t
j

l+1
) − xj(ti

k)‖, (15)

for t > t
j
l+1. By adding and subtracting xj(ti

k)e−(t−t
j

l+1
) inside the norm of the right-hand side of (15), and then

using the triangular inequality, we obtain

‖xfast
j −

(

xfast
j − xj(tj

l+1)
)

e−(t−t
j

l+1
) − xj(ti

k)‖ ≤‖xfast
j − xj(ti

k)‖
(

1 − e−(t−t
j

l+1
)
)

+ ‖xj(tj
l+1) − xj(ti

k)‖e−(t−t
j

l+1
).

(16)

Now, from (15) and (16) we derive

‖xj(t) − xj(ti
k)‖ ≤ ‖xfast

j − xj(ti
k)‖

(

1 − e−(t−t
j

l+1
)
)

+ ‖xj(tj
l+1) − xj(ti

k)‖e−(t−t
j

l+1
).

Applying (5) with t = t
j
l+1, and then replacing ‖xj(tj

l+1) − xj(ti
k)‖ in the inequality above, we have

‖xj(t) − xj(ti
k)‖ ≤‖xfast

j − xj(ti
k)‖

(

1 − e−(t−t
j

l+1
)
)

+ ‖xfar
j (ti

k) − xj(ti
k)‖

(

1 − e−(t
j

l+1
−ti

k)
)

e−(t−t
j

l+1
).

(17)

Notice that the following equality holds for all t

‖xfar
j (ti

k) − xj(ti
k)‖

(

1 − e−(t−ti
k)

)

=‖xfar
j (ti

k) − xj(ti
k)‖

(

1 − e−(t−t
j

l+1
)
)

(18)

+ ‖xfar
j (ti

k) − xj(ti
k)‖

(

1 − e−(t
j

l+1
−ti

k)
)

e−(t−t
j

l+1
).

From the definition of xfar
j (ti

k), we have that ‖xfar
j (ti

k) − xj(ti
k)‖ ≥ ‖xfast

j − xj(ti
k)‖. Therefore, the first term of the

right-hand side of (18) is an upper bound for the first term of the right-hand side of (17), while both expressions’

second terms of the right-hand side are equal. This implies that the left-hand side of (18) is an upper bound of

‖xj(t) − xj(ti
k)‖ for t

j
l+1 < t < t

j
l+2.

Now, we can see that if xj(tj
l+1) ∈ BRj(tj

l+1), the unique solution is xj(t) = xj(tj
l+1), and the computed upper

bound holds trivially.

The same reasoning holds for t > t
j
l+m, for m ∈ N, and the result follows. �
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2) Proof of lemma 4.2: At time ti
k, player i has exact information about other players’ actions. Assume that

xi(t
i
k) < BRi(x−i(t

i
k)), then ui(x

⋆
i (ti

k), x−i(t
i
k)) > ui(xi(t

i
k), x−i(t

i
k)). Using equations (7), (6), we can obtain a lower

bound for ui(x
⋆
i (ti

k), x−i(t)) as follows

ui(x
⋆
i (ti

k), x−i(t)) ≥ ui(x
⋆
i (ti

k), x−i(t
i
k)) − Li

∑

j∈I\{i}

‖xj(ti
k) − xfar

j (ti
k)‖

(

1 − e−(t−ti
k)

)

. (19)

Similarly, using equations (8) and (6), an upper bound for ui(xi(t), x−i(t)) is found as follows

ui(xi(t), x−i(t)) ≤ ui(xi(t), x−i(t
i
k)) + Li

∑

j∈I\{i}

‖xj(ti
k) − xfar

j (ti
k)‖

(

1 − e−(t−ti
k)

)

. (20)

In order to guarantee that ui(x
⋆
i (ti

k), x−i(t)) ≥ ui(xi(t), x−i(t)) holds, it is sufficient to ensure that the right-hand

side of (20) is less or equal than the right-hand side of (19). That is, if

ui(x
⋆
i (ti

k), x−i(t)) − 2Li

∑

j∈I\{i}

‖xj(ti
k) − xfar

j (ti
k)‖

(

1 − e−(t−ti
k)

)

≥ ui(xi(t), x−i(t
i
k)) + ε. (21)

for some positive and sufficiently small ε, which in particular, must satisfy ε < ui(x
⋆
i (ti

k), x−i(t
i
k))−ui(xi(t

i
k), x−i(t

i
k)),

then ui(x
⋆
i (ti

k), x−i(t
i
k)) > ui(xi(t

i
k), x−i(t

i
k)). Next, notice that if i did not update its information about other players,

then xi(t) would approach BRi(x−i(t
i
k)) as t → ∞, according to the differential inclusion in (4). Therefore, the value

ui(xi(t), x−i(t
i
k)) would converge to ui(x

⋆
i (ti

k), x−i(t
i
k)). However, the second term at the left-hand side of (21) is

negative and decreasing on time, while the whole expression is continuous on time. Therefore, for each ε > 0 there

exists a finite time for which (21) does not hold anymore. The first time for which the equality happens is given by

ti
k+1 in (9). Then, for t ∈ [ti

k, ti
k+1], it holds that ui(x

⋆
i (ti

k), x−i(t)) > ui(xi(t), x−i(t)). Since Γ is a potential game,

this inequality holds if and only if

Φ(x⋆
i (ti

k), x−i(t)) > Φ(xi(t), x−i(t)). (22)

The second part of the theorem, assuming that xi(t
i
k) ∈ BRi(x−i(t

i
k)) holds trivially, given that by ith player

dynamics, xi(t) = xi(t
i
k) for t ∈ (ti

k, ti
k+1]. �

D. Results on the agent deployment example

1) Proof of lemma 6.1: First, note that we can rewrite Φ(x), for x = (xi, x−i) ∈ X, as follows:

Φ(x) =
N

∑

k=1

2rk −
1

2
α

N
∑

k=1
k,i

∑

j∈Qk(x)
j,i

v(zk, zj , rk, rj)

− α
∑

j∈Qi(x)

v(zi, zj , ri, rj) − α

N
∑

k=1

lossk(xk).

(23)
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Now, let us take x′ = (x′
i, x−i), with x′

i = [z′
i, r′

i] and compute Φ(x)−Φ(x′) for some i ∈ I. Using the expression (23),

the difference simplifies to:

Φ(x) − Φ(x′) =2ri − α
∑

j∈Qi(x)

v(zi, zj , ri, rj) − 2r′
i + α

∑

j∈Qi(x′)

v(z′
i, zj , r′

i, rj)

− α lossi(xi) + α lossi(x
′
i)

=ui(x) − ui(x
′).

(24)

This shows that Φ is a potential function for the deployment game we have defined above, and thus the latter

becomes an exact potential game. �

2) Proof of lemma 6.2: In order to prove convexity, we recast the conditions for x to be in W as follows:

• For every i ∈ I, and for every j ∈ Ql
i(x), zi − ri ≥ zj − rj , zi + ri ≥ zj + rj , and zj ≤ zi.

• For every i ∈ I, and for every j ∈ Qr
i (x), zi − ri ≤ zj − rj , zi + ri ≤ zj + rj , and zi ≤ zj .

Define x, x′ ∈ W , as: x = [z1, r1, . . . , zN , rN ]⊤, and x′ = [z′
1, r′

1 . . . , z′
N , r′

N ]⊤. From the inequalities above we have

that if j ∈ Ql
i(x), szi − sri ≥ szj − srj , and (1 − s)(z′

i − ri) ≥ (1 − s)(z′
j − r′

j), for any s ∈ [0, 1]. Summing up these

inequalities, we obtain szi + (1 − s)z′
i − (sri + (1 − s)r′

i) ≥ szj + (1 − s)z′
j − (srj + (1 − s)r′

j). Following the same

procedure for all inequalities, (involving also those for j ∈ Qr
i (x)), we have that sx + (1 − s)x′ ∈ W . Thus, W is

convex. Finally, compactness follows directly from the definition of W as a closed subset of X. �

3) Proof of lemma 6.3: If x ∈ W , the maps v(zi, zj , ri, rj) can be expressed in a more straightforward form, and

the potential function Φ rewritten as follows:

Φ(x) =

N
∑

k=1

2rk + 2ri −
1

2
α

N
∑

k=1
k,i

∑

j∈Qk(x)
j,i

v(zk, zj , rk, rj) − α

i
∑

j=1

max{zj + rj − (zi − ri), 0}

− α

N
∑

j=i

max{zi + ri − (zj − rj), 0} − α

N
∑

k=1

lossk(xk),

(25)

for any i ∈ I. The expressions max{zj + rj − (zi − ri), 0}, and max{zi + ri − (zj − rj), 0} come from simplifying

v(zi, zj , ri, rj) on W . First, note that the map v becomes zj + rj − (zi − ri) if j ∈ Ql
i(x), or zi + ri − (zj − rj)

if j ∈ Qr
i (x), if x ∈ W . Since for each j < Qi(x), v(zk, zj , rk, rj) ≤ 0, we use the maximum between v and 0,

in order to have summation indices that are independent from x. The expressions max{zj + rj − (zi − ri), 0} and

max{zi + ri − (zj − rj), 0} are the point-wise maxima of linear maps of xi, thus their sum is a convex function of

xi, for every i ∈ I. The same occurs with the function lossi(xi). Due to the negative sign affecting these sums, Φ

becomes a concave function of xi for all i ∈ I; thus it is component-wise concave on W . �

4) Proof of lemma 6.4: First, notice that we can find an upper bound for the payoff function ui(x) as

ui(x) ≤ 2ri − α max{0, zi + ri − ubi} − α max{0, lbi −(zi − ri)}.

Let x
†
i be an element of the set we want to prove is the best-response set. Let us analyze the first case. Assume that

2ri > ubi − lbi and 0 ≤ lbi + ubi

2 ≤ L. In addition, assume that ubi ≥ lbi. We obtain a payoff ui(x
†
i , x−i) = ubi − lbi.

Then, consider a deviation off the defined best-response set, this is, a vector γ = [γz, γr]⊤ ∈ R2, where ‖γ‖ is
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arbitrarily small, and x
†
i + γ ∈ Wi(x

†
i + γ, x−i). Then, we obtain

ui(x
†
i + γ, x−i) ≤ ubi − lbi +2γr − α max{0, γz + γr} − α max{0, −γz + γr}.

If γr < 0, clearly ui(x
†
i + γ, x−i) < ui(x

†
i , x−i). If γr = 0, then ui(x

†
i + γ, x−i) ≤ ubi − lbi −α|γz|. If γr > 0,

and γr ≥ |γz|, then, γr + γz ≥ 0, and also γr − γz ≥ 0, therefore ui(x
†
i + γ, x−i) ≤ ubi − lbi −2(α − 1)γr. If

γr > 0, and γr < |γz|, then either γr + γz, or γr − γz is less than zero, but the other is greater than zero, then

ui(x
†
i + γ, x−i) ≤ ubi − lbi −2α(γr + |γz|), leading to ui(x

†
i + γ, x−i) ≤ ui(x

†
i , x−i).

Now, let us assume that lbi > ubi. In this case, ui(x
†
i + γ, x−i) ≤ (1 − α)(lbi − ubi). Notice that the only choices

of γ such that x
†
i + γ ∈ Wi(x

†
i + γ, x−i) are those that hold γz ≤ γr, γz + γr ≥ 0 which imply that γr ≥ 0. The upper

bound for the payoff is given by

ui(x
†
i + γ, x−i) ≤ ubi − lbi +2γr − α max{0, lbi − ubi +γz + γr}

− α max{0, lbi − ubi −γz + γr}.

Since we choose γ arbitrarily small, and lbi − ubi > 0, it holds that ui(x
†
i + γ, x−i) ≤ (1 − α)(lbi − ubi +2γr). We

have seen that for each particular case, regardless of the choice of γ the payoff for the best-response singleton greater

than any of its neighborhood, then by concavity of ui, the maximum is global, and the result follows.

The proof for second and third cases, is analogous to that of the first case, then we omit it.

For the last case, the proof is rather simple. just consider that by structure of the payoff functions, ui(x
†
i , x−i) =

2ri ≥ ui(xi, x−i) for all xi ∈ Wi(xi, x−i), i ∈ I. Then, any choice of ri different from ri leads to a lower payoff.

Finally, consider any point xi such that ri = ri, but either lbi +ri < zi, or zi > ubi −ri. It leads the maximum

functions that determine the upper bound for the payoff, to be positive, and then the payoff is smaller. �

E. Notions of set-valued analysis and hybrid systems analysis

The following two definitions are taken from [21].

Definition 1.5: The set-valued map F : Rn ⇒ Rm is outer semicontinuous at a point x0 ∈ X if for every

sequence of points xk convergent to x and any convergent sequence of points yk ∈ F (xk), it holds that y ∈ F (x),

where y = limk→∞ yk. The map is outer semicontinuous if it is outersemicontinuous at each x ∈ Rn. Given a set

X ⊂ Rn, F is outer semicontinuous relative to X if the set-valued map defined by F (x) for x ∈ X and ∅ for x < X

is outer semicontinuous at each x ∈ X.

Definition 1.6: A subset E ⊂ R≥0 × N is a compact hybrid time domain if

E =

J−1
⋃

j=0

([tj , tj+1, j]) , (26)

for some finite sequences of times 0 = t0 ≤ t1 ≤ . . . ≤ tJ . Moreover, E is a hybrid time domain if for all (T, J) ∈ E,

E ∩ ([0, T ] × {0, 1, . . . , J}) is a compact hybrid time domain.

The hybrid system H is well-posed if it satisfies the following basic conditions:

• C and D are closed subsets of O;

• F is outer semicontinuous (see definition of outer semicontinuity in Appendix) and locally bounded relative to

C ⊆ O, and F (P ) is convex for every P ∈ C;
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• G is outer semicontinuous and locally bounded relative to D ⊆ O.
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