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Abstract— This paper proposes two continuous-time dynamic
average consensus filters for networks described by balanced
and weakly-connected directed topologies. Our distributed
filters, termed 1st-Order-Input ( FOI-DCF ) and 2nd-Order-
Input Dynamic (SOI-DCF ) Consensus Filters, respectively,
allow agents to track the average of their dynamic inputs
within an O(ǫ)-neighborhood. The convergence results and
stability analysis rely on singular perturbation theory for non-
autonomous systems. The only requirement on the set of
reference inputs involves continuous bounded derivatives, up
to the second derivative for FOI-DCF and up to the third
derivative for SOI-DCF . For the special case of dynamic inputs
offset by a static value, we show thatSOI-DCF converges to the
exact dynamic average with no steady-state error. Numerical
examples show how the proposed algorithms closely track the
average of dynamic inputs.

I. I NTRODUCTION

This paper deals with the dynamic average consensus prob-
lem for a network of agents. This problem involves designing
an algorithm for each agent which tracks the average of
the network agents’ time-varying inputs using only local
and neighboring agents’ information. In recent years, the
dynamic average consensus problem of multi-agent systems
has attracted increasing attention due to its broad application
in areas such as multi-robot coordination [1], distributedesti-
mation [2], sensor fusion [3], [4], and distributed tracking [5].

The work [6] proposes a dynamic average consensus al-
gorithm which is able to track the average of ramp refer-
ence inputs with zero steady-state error. In addition to the
limited inputs that it can track, the filter is not robust to
estimator initialization errors. Instead, [3] proposes a low-
pass consensus filter which tracks, with a steady state error,
the average of identical inputs with a uniformly bounded
rate. The work [7] also proposes a consensus filter which
achieves dynamic average consensus over a common time-
varying reference signals. However, the algorithm assumes
that agents know the nonlinear model which generates the
time-varying reference signals. Using input-to-state stabil-
ity analysis, [8] proposes a proportional dynamic average
consensus algorithm that can track the average of bounded
reference inputs with bounded derivatives with bounded
steady-state error. This approach is generalized in [9] to
achieve robust dynamic average consensus of a broad class
of time-varying inputs, assuming model information about
them is available when designing the filter.
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The stability and performance of the aforementioned al-
gorithms are studied in a continuous-time setting. The
work [10] develops instead a discrete-time dynamic aver-
age consensus estimator. The convergence analysis for the
proposed dynamic average consensus algorithms relies upon
the input-to-output stability property of discrete-time static
average consensus algorithms in the presence of external
disturbances. With a proper initialization of the internal
states, the proposed estimator can track, with bounded steady
state error, the average of the time-varying inputs whosenth-
order difference is bounded. In the special case where the
nth-order difference is asymptotically zero, the estimatesof
the average converge to the true average asymptotically with
one time step delay. The conditions on the initialization,
similarly to [6], makes the results in [10] not robust to
initialization errors.

In this paper, we propose two novel continuous-time dynamic
average consensus algorithms that allow a group of agents
to track the average of their reference inputs within aO(ǫ)-
neighborhood. We term these algorithms1st-Order-Input
Dynamic Consensus Filter(FOI-DCF) and 2nd-Order-Input
Dynamic Consensus Filter(SOI-DCF), respectively. These
filters perform the task starting from any finite initial condi-
tion when the interaction network is described by a balanced
and weakly-connected directed graph. The convergence and
stability analysis relies on an original application to dynamic
consensus problems of singular perturbation theory of non-
autonomous systems. The only requirement on the set of
reference inputs involves continuous and bounded derivatives
of the inputs (up to second-order derivatives forFOI-DCF
and up to third-order derivatives forSOI-DCF). For the
special case of dynamic inputs offset by a static value,
we show thatSOI-DCF converges to the exact dynamic
average with no steady-state error. For static inputs, both
filters converge to the exact input average. Numerical ex-
amples show good tracking performance of the algorithms.
Simulations also show that the proposed filters are robust to
sporadic switching network topologies and tracking inputs
that are not necessarily differentiable. This is a reasonable
expected behavior if dwelling times are sufficiently large.
Additionally, the proposed filters are able to handle, with
no extra adjustments, permanent changes in the network
topology due to agents joining or leaving the network. One
can attribute this robustness properties to the global stability
and convergence properties of the proposed filters.

The paper organization is as follows. Section II introduces
the main notation used throughout the paper and reviews the
static consensus filter proposed in [8]. Section III motivates



the use of singular perturbation theory to generate dynamic
consensus algorithms. Section IV contains the main results
on the proposed dynamic average consensus algorithms.
To demonstrate the effectiveness of the proposed filters,
Section V presents various numerical examples. For the
convenience of the reader, the Appendix gives a brief review
of the Singular Perturbation problem definition and the main
result we use to characterize the properties of our dynamic
consensus filters.

II. N OTATION AND PRELIMINARIES

The vector 1n represents ann-dimensional vector with
all elements equal to one, andIn represents the identity
matrix with dimensionn. We denote byAT the transpose
of matrix A. For matricesA ∈ R

n×m and B ∈ R
p×q,

we let A⊗B denote their Kronecker product. We denote
δ1(ǫ) ∈ O(δ2(ǫ)) if there exist positive constantsc and k
such that

|δ1(ǫ)| ≤ k|δ2(ǫ)|, ∀ |ǫ| < c.

For time-varying variables, e.g.v(t), most of the time, we
drop the time dependency; only when the emphasis on the
time dependency is necessary we will use the complete
notation.

In the following, we present some basic notions from al-
gebraic graph theory (for more details see [11] or [12]). A
directed graph, or simply digraph, is a pairG = (V, E),
whereV = {1, · · · , N} is a finite set called the vertex set and
E ⊆ V×V is the edge set. A graph is undirected if(u, v) ∈ E
anytime(v, u) ∈ E . We denote byA ∈ R

N×N theadjacency
matrix ofG, with the property thataij > 0 if (vi, vj) ∈ E and
aij = 0, otherwise. Theout-degreeand in-degreeof a vertex
vi, i ∈ {1, · · · , N}, are respectively,dout(vi) =

∑n

j=1 aij

and din(vi) =
∑N

j=1 aji. The out-degree matrixDout is
the diagonal matrix defined by(Dout)ii = dout(vi), for all
i ∈ {1, · · · , N}. The Laplacian matrix is L = Dout − A.
Note thatL1N = 0. An undirected graph is calledconnected
if, for every pair of vertices inV, there is a path that has them
as its end vertices. The digraph is calledweakly connected
if it is connected when viewed as an undirected graph, that
is, a disoriented digraph. Here, a digraph is calledbalanced
if, for every vertex, the in-degree and out-degree are equal.
The network considered here is composed ofN > 1 agents
whose communication topology is described by a weakly-
connected and balanced digraph. We useD to refer to such
a graph. For this type of networks, we haverank(L) = N−1,
1T
NL = 0, andL+ LT is a positive semi-definite matrix.

For network problems involving internal states of dimension
n > 1, we defineLn = L⊗ In. The local variables at each
agent are distinguished by a superscripti, e.g.,ui(t) is the
local dynamic input of agenti. If pi ∈ R

n is a local vector
at agenti, the aggregatedpi’s of the network is represented
by pT =

[

p1 T · · · pN T
]T
∈ R

nN .

We use the following lemma from the literature to develop
our main results:

Lemma 2.1 (Static average consensus filter [8]):Given a
networked system with topologyD, and constant inputs
ui ∈ R

n, for i = 1, · · · , N , consider the following solver at
each agenti:

żi = −(zi − ui)−
N
∑

j=1

Lij(z
j + νj),

ν̇i =

N
∑

j=1

Lijz
j .

From any initial conditionz(0) ∈ R
n and ν(0) ∈ R

n, zi

converges to1
N

∑N

i=1 u
i exponentially.

III. M OTIVATION TO USE SINGULAR PERTURBATION

THEORY TO GENERATE CONSENSUSALGORITHMS

In this section, we motivate the use of singular perturbation
theory in devising distributed dynamic average consensus
algorithms. The simplest dynamics that generatesxi(t) →
1
N

∑N

i=1 u
i(t), asymptotically, in each agent is the following:

ẋi = −(xi −
1

N

N
∑

i=1

ui(t)) +
1

N

N
∑

i=1

u̇i(t).

To decentralize this dynamics, we can make use of a mech-
anism that generates the average of the inputs and also the
average of the derivative of inputs,rapidly, in each agent in a
distributed fashion. Then, the distributed dynamic consensus
algorithm becomes a two-time scale operation, a fast dynam-
ics to generate each average and a slow dynamics to track the
input average. A singularly perturbed dynamical system is
an appropriate platform to construct such an algorithm. The
aforementioned fast and slow dynamics could be realized
by means of the following—seemingly more straightforward
and systematic—mixed discrete/continuous-time algorithm
running synchronously at each nodei ∈ {1, · · · , N}:

1: (Initialization) atk = 0 initialize xi(0) ∈ R
n

2: while data existsdo
3: Obtain inputsui(k) and u̇i(k)
4: Initialize zi(0),νi(0) ∈ R

n

5: Solve the following dynamical equation, until it
reaches its equilibrium point











ǫ żi(t) = −(zi(t) + ui(k) + u̇i(k))

−
∑N

i=j Lij(z
j(t) + νj(t)),

ǫ ν̇i(t) =
∑N

j=1 Lijz
j(t),

(1)

6: Let zi converge to equilibrium̄zi

7: Define:

xi(k + 1) = xi(k)−∆t
(

xi(k) + z̄i(k)
)

(2)

8: k ← k + 1
9: end while

In the above algorithm∆t is the time-step and0 < ǫ ≪ 1
is a scalar value. Note that using the result of Lemma 2.1,



at each time stepk, the dynamical system (1) acts as a
static consensus filter with static inputui(k) + u̇i(k). This
filter converges exponentially tōzi(k) = − 1

N

∑N

i=1(u
i(k)+

u̇i(k)). For very smallǫ, the convergence rate of (1) is high.
Therefore, at any time-stepk, (2) becomes:

xi(k + 1) = xi(k)−∆t

(

xi(k)−
1

N

N
∑

i=1

(ui(k) + u̇i(k))

)

,

for i = 1, · · · , N . For small ∆t, the stability and con-
vergence of the above difference equation can be studied
using the following continuous-time model (represented in
compact form):

ẏT = −yT , (3)

where yT = xT − 1N ⊗ ( 1
N

∑N

i=1 u
i). The dynamical

system (3) is a stable linear system with all eigenvalues equal
to −1. Therefore, (3) converges to zero exponentially. As a
result, xi in (2) converges to1

N

∑N

i=1 u
i(t) exponentially,

for all i = 1, · · · , N .

The aforementioned algorithm performs dynamic average
consensus with an exponential convergence rate. However,
this algorithm is a conceptual algorithm; the cost of solv-
ing (1) at each time-step is the main drawback of this algo-
rithm which virtually makes it un-implementable. Inspired
by the multi time-scale structure observed above, we next
make use of singular perturbation theory to weave together
steps 5–7 and devise a continuous-time dynamic average
consensus filter. By doing so, we avoid solving the fast
dynamical system at each iteration of the algorithm, i.e., the
slow dynamics does not need to wait for the fast dynamics
to converge.

IV. DYNAMIC CONTINUOUS-TIME CONSENSUSFILTERS

VIA SINGULARLY PERTURBEDDYNAMICS

Here, we employ singular perturbation theory to construct
new continuous-time dynamic average consensus algorithms.
The main advantage of these filters is their convergence
irrespectively of the initial condition and, therefore, their
robustness against initialization errors across the network.
Furthermore, the convergence of the filters does not require
any knowledge of the dynamics generating the inputs.

Consider the following distributed filters, listed based onthe
complexity of the structure:

• 1st-Order-Input Dynamic Consensus Filter(FOI-DCF):

for i = 1, · · · , N
{

ǫ żi = −(zi + β ui + u̇i)−
∑N

i=j Lij(z
j + νj),

ǫ ν̇i =
∑N

j=1 Lijz
j ,

(4a)

ẋi = −β xi − zi, (4b)

whereβ is a positive scalar.

• 2nd-Order-Input Dynamic Consensus Filter(SOI-DCF):

for i = 1, · · · , N










ǫ żi = −(zi + β ui + u̇i)−
∑N

j=1 Lij(z
j + νj)

− ǫ(β u̇i + üi),

ǫ ν̇i =
∑N

j=1 Lijz
j ,

(5a)

ẋi = −β xi − zi, (5b)

whereβ is a positive scalar.

In the following, we show that these filters generate an
O(ǫ)-approximation of the average of the dynamic inputs
1
N

∑N

i=1 u
i(t), in a distributed fashion, for networks with

graph topologyD.

Theorem 4.1 (Convergence ofFOI-DCF): Consider a net-
worked system with topologyD. If the first and the second
derivatives of the input signalui at each agent are continuous
and bounded fort ≥ 0, then there is a small enoughǫ⋆ > 0
such that, for allǫ ∈ (0, ǫ⋆], the trajectories of the filter
FOI-DCF, starting from any finite initial conditions, satisfy
‖xi(t)− 1

N

∑N

i=1 u
i(t)‖ < O(ǫ) in finite time.

Theorem 4.2 (Convergence ofSOI-DCF): Consider a net-
worked system with topologyD. If the first, the second,
and the third derivatives of the input signalui at each agent
are continuous and bounded fort ≥ 0, then there is a small
enoughǫ⋆ > 0 such that, for allǫ ∈ (0, ǫ⋆], the trajectories of
the filterSOI-DCF, starting from any finite initial conditions,
satisfy‖xi(t)− 1

N

∑N

i=1 u
i(t)‖ < O(ǫ) in finite time.

The proof of Theorems 4.1 and 4.2 are very similar, there-
fore, we present them together.

Proof of Theorems 4.1 and 4.2:The proof is based
on showing the filters satisfy the conditions of Theorem A.1
globally. The boundary layer dynamics (fast dynamics) for
both FOI-DCF andSOI-DCF is (for i = 1, · · · , N )
{

d z
i

dτ
= −(zi + β ui(t) + u̇i(t))−

∑N

i=1 Lij(z
j + νj),

d ν
i

dτ
=
∑N

i=1 Lijz
j .

(6)
Invoking Lemma 2.1, this fast dynamics converges to the
following values for each filter exponentially and globally:

zi = −
1

N

N
∑

i=1

(β ui + u̇i), i = 1, · · · , N. (7)

Substituting (7) into (4b) (similarly, in (5b)), we obtain the
following reduced system (slow dynamics), for the filters
FOI-DCF andSOI-DCF:

ẋi = −β xi +
1

N

N
∑

i=1

(β ui + u̇i), i = 1, · · · , N. (8)

Consider the following change of variables:

yi = xi −
1

N

N
∑

i=1

ui, i = 1, · · · , N.



In the new coordinates, (8) is represented as

ẏi = −β yi, i = 1, · · · , N. (9)

For β > 0, the system (9) is a stable linear system with
system matrix eigenvalues equal to−β. Thus, (9) converges
globally exponentially to zero, which is equivalent toxi

exponentially converging to1
N

∑N

i=1 u
i(t), i = 1, · · · , N .

Both filters, based on the corresponding required condi-
tions for input signals, satisfy the differentiability andLip-
schitz conditions of Theorem A.1 on any compact set of
(xT , zT ,νT ). Thus, all the conditions of Theorem A.1 are
satisfied globally, and the estimates of (17), (18) and (19)
hold, for all t ≥ 0 and for any bounded initial states.
Note that the slow dynamics at each agent is globally expo-
nentially approaching the average1

N

∑N

i=1 u
i(t), therefore,

‖xT (t)− 1N ⊗
1
N

∑N

i=1 u
i(t)‖ < O(ǫ) in a finite time, and

as a result‖xi(t)− 1
N

∑N

i=1 u
i(t)‖ < O(ǫ) in finite time.

The slow and fast dynamical analysis of the filtersFOI-
DCF and SOI-DCF is exactly the same. The guaranteed
convergence bound is also of the same order. In the follow-
ing, we show that the filterSOI-DCF has advantages over
FOI-DCF, at the price of a slight increase in the complexity
of the filter, and the extra condition on the input signals.
For example, one can show that forSOI-DCF, we have
∑N

i=1 x
i(t) →

∑N

i=1 u
i(t) as t → ∞, for any ǫ > 0.

The main advantage of the filterSOI-DCF overFOI-DCF is
stated in the following result.

Corollary 4.1 (SOI-DCF for inputs offset by a static value):
Consider a networked system with topologyD as in
Theorem 4.1, subject to similar assumptions on the input
signals of agents. When the difference in the input signals
is a static offset, i.e.,ui(t) = u(t) + ūi where ūi is
a constant vector, the filterSOI-DCF converges to the
exact input average with no steady-state error. That is,
xi(t)→ 1

N

∑N

i=1 u
i(t), for any ǫ > 0.

Proof: Consider the following change of the variables:
{

pi = zi + β u+ u̇,

qi = xi − u,
, i = 1, · · · , N.

Then, we can re-write (5), as follows (compact form)
{

ǫ ṗT = −(pT + β ūT )−Ln(pT + νT ),

ǫ ν̇i(t) = LnpT ,
(10a)

q̇T = −β qT − pT . (10b)

We can show that the equilibrium points of this system
are at (̄pi = − β

N

∑N

i=1 ū
i, q̄i = 1

N

∑N

i=1 ū
i, ν̄i) for

i = 1, · · · , N , where

−Lnν̄T = (p̄T + β ūT ).

Consider the following Lyapunov function, wherẽqT =
qT − q̄T , p̃T = pT − p̄T , and ν̃T = νT − ν̄T :

V =
β

2
q̃2
T +

ǫ

8
p̃2
T +

ǫ

8
ν̃2
T .

The derivative of this Lyapunov function along the trajecto-
ries of (10) is

V̇ =−
1

4
p̃T
T (Ln +L

T
n )p̃T − (

1

2
p̃T − β q̃T )

2,

which is negative semi-definite. It is zero in the setS =
{p̃T , q̃T , ν̃T ∈ R

nN | p̃T = 1N ⊗α, p̃T = 2β q̃T }, where
α ∈ R

n. We can show that{q̃T = 0, q̃T = 0, ν̃T =
1N ⊗ γ}, where γ ∈ R

n, is the smallest invariant set
contained inS. From the LaSalle Invariance Principle it
now follows that q̃T → 0 as t → ∞. This results in
xi(t) → u(t) + 1

N

∑N

i=1 ū
i = 1

N

∑N

i=1 u
i(t) as t → ∞,

for i = 1, · · · , N , in the filter SOI-DCF.

Remark 4.1 (Convergence for static inputs):Following an
argument similar to the proof of Corollary 4.1, we can show
that, for static inputs, for anyǫ > 0, both proposed filters
converge to the exact input average with no steady-state error.
�

Remark 4.2 (Role ofβ): As it is shown in the proof of
Theorems 4.1, and 4.2,β is the rate of convergence of the
slow dynamics. By choosing a largeβ, we can increase
the rate of convergence. However, to keep the two time-
scale structure of the filters,β has to be chosen smaller
relative to ǫ−1. Quantifying the convergence neighborhood
and the effect ofβ on the size of this neighborhood is left
as a future work. Furthermore, one should notice thatβ is
a global variable known to all agents in the network. To
guarantee convergence to the right dynamic input average
of 1

N

∑N

i=1 u
i(t), in its O(ǫ) neighborhood, every agent

should agree upon a common value forβ before running the
consensus filters. The following filter allows the agents to use
different values forβ and still converge to the right dynamic
average. However, note that to provide this robustness with
respect toβ, we are requiring extra communication channels.

for i = 1, · · · , N, (11a)
{

ǫ żi = −(zi + ui)−
∑N

i=j Lij(z
j + νj),

ǫ ν̇i =
∑N

j=1 Lijz
j ,

(11b)

{

ǫ ẏi = −(yi + u̇i)−
∑N

i=j Lij(y
j + µj),

ǫ µ̇i =
∑N

j=1 Lijy
j ,

(11c)

ẋi = −βi xi − βi zi − yi, (11d)

whereβi’s are all positive scalars. To guarantee convergence
to the O(ǫ) neighborhood of the dynamic input average,
the requirement on the input signals is the boundedness
and continuity of their first and second derivatives. Notice
that using differentβi results in different convergence rates
at each agent. Then one can expect that the tracking is
not coherent across the network agents. The stability and
convergence analysis of this filter is along the same lines of
the proof of Theorem 4.1 and omitted for brevity. �



Fig. 1. Network

V. NUMERICAL EXAMPLES

In order to give the reviewers a demonstration of the different
aspects of the proposed filters, in the following we provide an
extensive set of numerical examples. However, in the final
version of the paper, due to the space limitation, we need
to reduce the number of examples. Here, we mainly perform
simulations using the filterFOI-DCF. A more comprehensive
set of examples including simulations conducted using the
filter SOI-DCF can be found in [13].

In the following simulations, the thick dashed line is the
dynamic input average and the thin colored lines are the
time histories of the localxi states of the filters. In all the
simulations below, all the initial conditions for the proposed
filters here are selected uniformly randomly inU [−2, 2].

A. Example 1 (Performance evaluation of the filterFOI-
DCF over a large network)

Consider the randomly generated undirected network (using
Matlab BGL package [14]) shown in Fig. 1 which consists
of N = 100 agents. The local input signals are

ui(t) = ai sin(bi t+ ci), i = 1, · · · , N,

where the input coefficients are generated randomly uni-
formly in the following ranges:ai ∼ U [−5, 5], bi ∼ U [1, 2],
ci ∼ U [0, π/2].

Figures 2 shows the time histories of the local internal states
xi generated by the filterFOI-DCF and the dynamic input
average for the three cases of (ǫ = 0.01, β = 1), (ǫ = 0.001,
β = 1) and (ǫ = 0.001, β = 3). As expected, the smaller the
ǫ is, the better the tracking, and the larger theβ, the faster
the convergence to theO(ǫ) neighborhood is.

B. Example 2 (Comparison between the filterFOI-DCF and
the FODAC algorithm of [10])

Consider the weakly-connected and balanced directed graph
in Fig. 3 . The input signals are










u1(t) = 5 sin(t) + 10
t+2 + 1, u2(t) = 5 sin(t) + 10

(t+2)2 + 1,

u3(t) = 5 sin(t) + 10
(t+2)3 + 1,

u4(t) = 5 sin(t) + 10 e−t + 4, u5(t) = 5 sin(t).
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(a) ǫ = 0.01 andβ = 1
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(b) ǫ = 0.001 andβ = 1
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(c) ǫ = 0.001 andβ = 3

Fig. 2. Simulation results for example 1

1

2

3

4

5

Fig. 3. Network of example 2

In this example, we compare the performance of the pro-
posed filterFOI-DCF with the First-Order Dynamic Average
Consensus (FODAC) algorithm of [10]. Figures 4 shows the
result of the simulations. To generate the simulations for
FODAC algorithm of [10], we used the step sizeh = 0.001
which is higher than the bound for guaranteed convergence
(to accelerate the simulations). As Fig. 4 shows, the FO-
DAC algorithm of [10] starting from the required initial
conditions ofxi(0) = ui(−h), i = 1, · · · , N , has a higher
rate of convergence than the filterFOI-DCF. However, as
demonstrated in Fig. 3(c), for initial conditions other than
xi(0) = ui(−h) this filter produces a large steady sate
error. In this simulation, for the filterFOI-DCF, we used
ǫ = 0.01 and β = 1. In case of agent failure, the FODAC
algorithm requires an adjustment of the initial condition in
order to guarantee tracking. As we see in the following this
adjustment is necessary in our simulated algorithms.



0 1 2 3 4 5 6 7 8 9 10
−4

−2

0

2

4

6

8

time

xi

(a) Filter FOI-DCF with ǫ = 0.01 andβ = 1
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(b) The FODAC algorithm of [10] withxi(0) = ui(−h)
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(c) The FODAC algorithm of [10] withxi(0) ∈ U [−2, 2]

Fig. 4. Simulation results for example 2.

C. Example 3 (Performance of the filterFOI-DCF over a
network with time-varying topology)

Consider the time-varying weakly-connected and balanced
directed graph in Fig. 5. The input signals are











u1(t) = 6 cos(0.2 t), u2(t) = atan(0.2 t),

u3(t) = 3 sin(0.1 t+ 1), u4(t) = log(t+ 0.1),

u5(t) = 0.02 t, u6(t) = 0.5 (t− 25).

The simulation result is shown in Fig. 6. The onset of any
changes in the network topology is indicated by vertical
dotted lines. In Fig. 6, in order to convey clearly the
incidences of the agents joining or leaving the network, for
the time prior to joining and the time after departure, the
fixed initial value or departure value is used, respectively.
As the simulation shows in Fig. 6, the proposed filterFOI-
DCF handles the changes in the topology well. When the
change is just a switching in the network communication
the filter is almost indifferent to the change. In the cases
of agents joining or leaving the network, after a transient
period, the filter presumes its close tracking of the input
average. Here, we usedβ = 1 and ǫ = 0.01.

D. Example 4 (Comparison between the performance of the
proposed filtersFOI-DCF and SOI-DCFwhen input signals
are offset with a static value)

Consider the network depicted in Fig. 3 with the input signals
listed below:
{

u1(t) = u(t) + 1, u2(t) = u(t)− 1, u3(t) = u(t) + 4,

u4(t) = u(t) + 5, u5(t) = u(t) + 10,
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Fig. 5. Network of example 3
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Fig. 6. Simulation result for example 3.

where u(t) = 5 sin(t). These inputs differ from one and
other by a static value. Figure 7 shows the time history of the
error between the statesxi’s and the dynamic input average.
The dashed blue lines belong to the filterFOI-DCF and the
solid red lines belong toSOI-DCF. Figure 7(a) is generated
using ǫ = 1, and Fig 7(b) is generated usingǫ = 0.01.
As expected the filterSOI-DCF, regardless of the value of
ǫ, converges to the dynamic input average with no steady-
state error. For a smallǫ, the performance of the filterFOI-
DCF improves and almost matches the perfect performance
of the filter SOI-DCF.

E. Example 5 (Comparison between the performance of the
proposed filtersFOI-DCF and (11) when agents do not use
commonβ)

Consider the network depicted in Fig. 3 with the input signals
listed in Example 2. Here, we compare the performance of
the filtersFOI-DCF and (11), when agents use the following
βi’s

β1 = 1.2, β2 = 1, β3 = 0.8, β4 = 0.5, β5 = 0.2.
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Fig. 7. Simulation results for example 4.
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Fig. 8. Simulation results for example 5.

Simulation result, depicted in Fig. 8(a), indicate that the
filter FOI-DCF does not approach to the right dynamic input
average, as it is not robust with respect toβ. However, the
filter (11), which is designed to work for different values
of β at each agent, converges to the input average. For the
filter (11), as expected, the convergence rate at each agent is
defined by its correspondingβi; the larger theβi; the faster
the convergence is. Here we usedǫ = 0.001.

F. Example 6 (performance of the proposed filtersFOI-
DCF with respect to discontinuous inputs)

Consider the network depicted in Fig. 3. The followings are
the inputs at each agent










u1(t) = 3u(t) cos(0.2 t), u2(t) = u(t) tanh(0.2 t),

u3(t) = 3u(t) sin(0.1 t+ 1), u4(t) = u(t) log(t+ 0.1),

u5(t) = 0.02u(t) t.

whereu(t) =
∑

∞

i=0((−1)
iH(t − 20 i)), in which H is the

step function, i.e.,

H(t) =

{

0 t < 0,

1 t ≥ 0.
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Fig. 9. Simulation result for example 6.

The simulation result obtained using the proposed filter
FOI-DCF is shown in Fig. 9. Here we usedǫ = 0.01. As
shown in the figure, the proposed filterFOI-DCF achieves
a close tracking despite the discontinuity in the input signals
as long as dwell times are sufficiently large.

VI. CONCLUSIONS

We have proposed two continuous-time dynamic average
consensus filters for networks with balanced and weakly-
connected directed graph topology. The proposed filters have
a two-time scale structure and do not require model infor-
mation on the dynamic inputs. Using singular perturbation
analysis, we have shown that the proposed filters reach an
O(ǫ)-neighborhood of the dynamic input average in finite
time irrespectively of the initial condition. Simulation results
show that the filters are robust to switching network topolo-
gies, as long as the network stays balanced and weakly-
connected, and there is a large enough dwelling time between
each switchings. Future work will be devoted to rigorously
characterizing the convergence properties of the proposed
dynamic average consensus algorithms over networks with
switching topology.
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APPENDIX

For the sake of completeness, here we give a short review
of Singularly Perturbed dynamical system theory and its
terminology along with the theorem that we will employ
to derive our main result on dynamic average consensus
algorithms (see [15] for more details).

Consider the following system:

ẋ = f(t,x, z, ǫ), x(t0) = η(ǫ), (12a)

ǫ ż = g(t,x, z, ǫ), z(t0) = ζ(ǫ). (12b)

The use of a small constantǫ > 0 induces two time scales
in the system, resulting into a fast and a slow dynamics. The
analysis of such systems can be achieved with the aid of
Singular Perturbation Theory. Singular Perturbation Theory
establishes rigorous conditions under which the behavior of
the system follows that of the limiting system whenǫ goes
to 0. We assume thatf andg are continuously differentiable
in their arguments for(t,x, z, ǫ) ∈ [0,∞) × Dx × Dz ×
[0, ǫ0], whereDx ⊂ R

n andDz ⊂ R
m are open connected

sets. When we setǫ = 0 in (12), the dimension of the state
equation reduces fromn + m to n because the differential
equation (12b) degenerates into the algebraic equation

0 = g(t,x, z, 0). (13)

We say that the model (12) is in standard form if (13) has
k ≥ 1 isolated real roots

zi = hi(t,x), i = 1, · · · , k, (14)

for each(t,x) ∈ [0,∞)×Dx. This assumption assures that a
well-definedn−dimensionalreduced model(slow dynamics)
will correspond to each root of (13). To obtain theith reduced
model, we substitute (14) into (12a), atǫ = 0, to obtain

ẋ = f(t,x,h(t,x), 0), (15)

where we have dropped the subscripti from h. The
boundary-layersystem (fast dynamics) is

dz

dτ
= g(t,x, z, 0), τ =

t

ǫ
, (16)

wherex andt are treated as fixed parameters. In the analysis,
it is common to perform the change of variablesy = z −
h(t,x) that shifts the quasi-steady state ofz to the origin.

Theorem A.1 ([15]):Consider the Singular Perturbation
problem of (12) and letz = h(t,x) be an isolated root of
(13). Assume that, for all

[t,x, z− h(t,x), ǫ] ∈ [0,∞)×Dx ×Dy × [0, ǫ0],

whereDx ⊂ R
n andDy ⊂ R

m are domains which contain
their respective origins, the following conditions hold:

• On any compact subset ofDx × Dy, the functions
f , g, their partial derivatives with respect to(x, z, ǫ),
and the first partial derivative ofg with respect to
t are continuous and bounded; the functionsh(t,x)
and[∂g(t,x, z, 0)/∂z] have bounded first partial deriva-
tives with respect to their arguments; the function
[∂f(t,x,h(t,x), 0)/∂x] is Lipschitz inx, uniformly in
t; and the initial conditionsη(ǫ) and ζ(ǫ) are smooth
functions ofǫ;

• the origin is an exponentially stable equilibrium point
of the reduced system (15); that is, there is a Lyapunov
function V (t,x) that satisfies the conditions of [15,
Theorem 4.9] for (15) for(t,x) ∈ [0,∞) × Dx. In
other words, we have

W1(x) ≤ V (t,x) ≤W2(x),

∂V

∂t
+

∂V

∂x
f(t,x,h(t,x), 0) ≤ −W3(x),

whereW1, W2, andW3 are continuous positive definite
functions onDx, such that{W1(x) ≤ c} is a compact
subset ofDx;

• the origin is an exponentially stable equilibrium of the
boundary layer system, uniformly in(t,x). Let Ry ⊂
Dy be the region of attraction of

dy

dτ
= g(0,η(0),y + h(0,η(0)), 0),

y(0) = ζ(0)− h(0,η(0)),

andΩy be a compact subset ofRy.

Then, for each compact setΩx ⊂ {W2(x) ≤ ρc, 0 < ρ < 1}
there is a positive constantǫ⋆ such that for allt0 ≥ 0, η0 ∈
Ωx, ζ0 − h(t0,η0) ∈ Ωy, and 0 < ǫ < ǫ⋆, the singularly
perturbed system (12) has a unique solutionx(t, ǫ), z(t, ǫ)
on [t0,∞), and

x(t, ǫ)− x̄(t) = O(ǫ), (17)

z(t, ǫ)− h(t, x̄(t))− ŷ(t/ǫ) = O(ǫ) (18)

hold uniformly for t ∈ [t0,∞), where x̄(t) and ŷ(τ) are
the solutions of the reduced and boundary layer problems.
Moreover, given anytb > t0, there isǫ⋆⋆ ≤ ǫ⋆ such that

z(t, ǫ)− h(t, x̄(t)) = O(ǫ) (19)

holds uniformly fort ∈ [tb,∞) wheneverǫ < ǫ⋆⋆.


