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Abstract— This paper proposes two continuous-time dynamic The stability and performance of the aforementioned al-
average consensus filters for networks described by balanced gorithms are studied in a continuous-time setting. The
and weakly-connected directed topologies. Our distributed work [10] develops instead a discrete-time dynamic aver-

filters, termed 1st-Order-Input ( FOI-DCF) and 2nd-Order- timator. Th \vsis for th
Input Dynamic (SOI-DCF) Consensus Filters, respectively, age consensus estimator. The convergence analysis for the

allow agents to track the average of their dynamic inputs Proposed dynamic average consensus algorithms relies upon
within an O(e)-neighborhood. The convergence results and the input-to-output stability property of discrete-timeatgc
stability analysis rely on singular perturbation theory for non-  average consensus algorithms in the presence of external
autonomous_systems. The only requirement on the set of gisyrhances. With a proper initialization of the internal

reference inputs involves continuous bounded derivatives, u . .
to the secoﬁd derivative for FOI-DCF and up to the third P states, the proposed estimator can track, with boundedystea

derivative for SOI-DCF. For the special case of dynamic inputs  State error, the average of the time-varying inputs whdbe
offset by a static value, we show thaSOI-DCF converges to the order difference is bounded. In the special case where the
exact dynamic average with no steady-state error. Numerical pnth-order difference is asymptotically zero, the estimates
examples show how the proposed algorithms closely track the the average converge to the true average asymptotically wit
average of dynamic inputs. - o S

one time step delay. The conditions on the initialization,
similarly to [6], makes the results in [10] not robust to
initialization errors.

This paper deals with the dyna}mlc average consensus Prqn'this paper, we propose two novel continuous-time dynamic
lem for a_network of agents. This problem involves demgmngverage consensus algorithms that allow a group of agents
an algorithm for each agent which tracks the average @ yack the average of their reference inputs withi@@)-

the network agents’ time-varying inputs using only locaj,ejgnhorhood. We term these algorithnist-Order-Input
and ngghbonng agents’ information. In recent years, thﬁynamic Consensus FiltdffFOI-DCF) and 2nd-Order-Input
dynamic average consensus problem of _multl—agent.S)'/sterﬁmamiC Consensus FiltefSOI-DCP), respectively. These
has attracted increasing attention due to its broad apiplfta fjye,q nerform the task starting from any finite initial cond

in areas such as multi-robot coordination [1], distributstl- i, \yhen the interaction network is described by a balanced
mation [2], sensor fusion [3], [4], and distributed ragkiB]. 5,9 weakly-connected directed graph. The convergence and
The work [6] proposes a dynamic average consensus &tability analysis relies on an original application to dgric
gorithm which is able to track the average of ramp referconsensus problems of singular perturbation theory of non-
ence inputs with zero steady-state error. In addition to th@utonomous systems. The only requirement on the set of
limited inputs that it can track, the filter is not robust toreference inputs involves continuous and bounded derasti
estimator initialization errors. Instead, [3] proposesow-I Of the inputs (up to second-order derivatives fe@I-DCF
pass consensus filter which tracks, with a steady state, errand up to third-order derivatives foBOI-DCF). For the

the average of identical inputs with a uniformly boundedpecial case of dynamic inputs offset by a static value,
rate. The work [7] also proposes a consensus filter whiohe show thatSOI-DCF converges to the exact dynamic
achieves dynamic average consensus over a common tinagerage with no steady-state error. For static inputs, both
varying reference signals. However, the algorithm assumé#ers converge to the exact input average. Numerical ex-
that agents know the nonlinear model which generates tlanples show good tracking performance of the algorithms.
time-varying reference signals. Using input-to-statebista Simulations also show that the proposed filters are robust to
ity analysis, [8] proposes a proportional dynamic averaggporadic switching network topologies and tracking inputs
consensus algorithm that can track the average of boundéwt are not necessarily differentiable. This is a reasenab
reference inputs with bounded derivatives with boundeéxpected behavior if dwelling times are sufficiently large.
steady-state error. This approach is generalized in [9] #dditionally, the proposed filters are able to handle, with
achieve robust dynamic average consensus of a broad clags extra adjustments, permanent changes in the network
of time-varying inputs, assuming model information aboutopology due to agents joining or leaving the network. One
them is available when designing the filter. can attribute this robustness properties to the globalligyab

_ o and convergence properties of the proposed filters.
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the use of singular perturbation theory to generate dynamie@mma 2.1 (Static average consensus filter [8piven a
consensus algorithms. Section IV contains the main resultetworked system with topolog®, and constant inputs

on the proposed dynamic average consensus algorithmg.c R”, fori =1,---, N, consider the following solver at
To demonstrate the effectiveness of the proposed filtersach agent:
Section V presents various numerical examples. For the N
convenience of the reader, the Appendix gives a brief review 7= —(z' —u') — Z Lij(z' +v7),
of the Singular Perturbation problem definition and the main =
result we use to characterize the properties of our dynamic N
consensus filters. = Z Lz’
j=1

II. NOTATION AND PRELIMINARIES From any initial conditionz(0) € R™ and v(0) € R", z!

The vector 1, represents am-dimensional vector with CONverges tog SV, u’ exponentially.

all elements equal to one, arlg, represents the identity

matrix with dimensionn. We denote byA” the transpose !/l M OTIVATION TO USE SINGULAR PERTURBATION
of matrix A. For matricesA € R™ ™ and B € RP*Y, THEORY TO GENERATE CONSENSUSALGORITHMS
we let A ® B denote their Kronecker product. We denot
d1(e) € O(d2(e)) if there exist positive constants and k
such that

Sn this section, we motivate the use of singular perturlpatio
theory in devising distributed dynamic average consensus
algorithms. The simplest dynamics that generatgg) —
[d1(e)] < Klo2(€)], Vel <e. LS~V | ui(t), asymptotically, in each agent is the following:
For time-varying variables, e.gz(¢), most of the time, we N N

drop the time dependency; only when the emphasis on the X =—(x'— L Zui(t)) + L Zﬁi(t)_

time dependency is necessary we will use the complete N =1 N )

hotation. To decentralize this dynamics, we can make use of a mech-

In the following, we present some basic notions from alanism that generates the average of the inputs and also the
gebraic graph theory (for more details see [11] or [12]). Aaverage of the derivative of inputspidly, in each agentin a
directed graph, or simply digraph, is a pair = (V,&), distributed fashion. Then, the distributed dynamic cosasn
whereV = {1,--- , N} is afinite set called the vertex set andalgorithm becomes a two-time scale operation, a fast dynam-
£ C VxVisthe edge set. A graph is undirectedif v) € £ ics to generate each average and a slow dynamics to track the
anytime(v, u) € £. We denote byd € RV*¥ theadjacency input average. A singularly perturbed dynamical system is
matrix of G, with the property that;; > 0 if (v;,v;) € £and an appropriate platform to construct such an algorithm. The
ai; = 0, otherwise. Theut-degreeandin-degreeof a vertex aforementioned fast and slow dynamics could be realized

v, @ € {1,---, N}, are respectivelyd,,:(v;) = Z;f:l a;; by means of the following—seemingly more straightforward
and d;,(v;) = 3N L a;;. The out-degree matrixD,,; is and systematic—mixed discrete/continuous-time algorithm
i j=1 "7 L . . .

the diagonal matrix defined b§D .t )ii = doui(v;), for all ~ "UNNINgG synchronously at each node {1,--- ,N}:

i € {1,---,N}. The Laplacian matrix isL = D,,; — A.
Note thatl.1y = 0. An undirected graph is calletbnnected  1: (Initialization) atk = 0 initialize x*(0) € R™

if, for every pair of vertices iV, there is a path that has them 2: while data exist=do

as its end vertices. The digraph is callweakly connected 3: Obtain inputsu’(k) andu’ (k)

if it is connected when viewed as an undirected graph, thas: Initialize z°(0), v*(0) € R®

is, a disoriented digraph. Here, a digraph is calbetanced s: Solve the following dynamical equation, until it
if, for every vertex, the in-degree and out-degree are equal reaches its equilibrium point

The network considered here is composed\of> 1 agents i ; i i

whose communication topology is described by a weakly- ez'(t)=—(2 Jgt) +u'(k) + 10 (k))
connected and balanced digraph. We @séo refer to such =2y Lij (2 (1) + 7 (1)), 1)
a graph. For this type of networks, we hawek(L) = N—1, e (t) = Z;yzl L;;z’ (t),

14L =0, andL + L is a positive semi-definite matrix. i G
Let z* converge to equilibriunz’

For network problems involving internal states of dimensio 7: Define:
n > 1, we definel,, = L ® I,. The local variables at each i i i _

agent are distinguished by a supersciipé.g., u‘(t) is the xi(k+1) =x'(k) — At (x'(k) +2'(k)) ()
local dynamic input of agent If p? € R" is a local vector  s: k+—Fk+1

at agenti, the aggregateg’’s of the network is represented 9: end while

by py = [plT pNT]T c RV,
We use the following lemma from the literature to developn the above algorithm\t is the time-step anf < ¢ <« 1

our main results: is a scalar value. Note that using the result of Lemma 2.1,




at each time stepk, the dynamical system (1) acts as a 2nd-Order-Input Dynamic Consensus Fill&8OI-DCF):
static consensus filter with static input(k) + u'(k). This

filter converges exponentially & (k) = — & S | (u’ (k) + for 7 = L., N |
u'(k)). For very smalk, the convergence rate of (1) is high. [ez' = —(z' + fu’ + ') — Zj.vzl L;;(z +v7)
Therefore, at any time-stefny (2) becomes: — (B’ + 1), (5a)
1 N 6111 = Zjvzl Liij,
X'(k+1) =x"(k) — At (Xl(k) - NZ(ui(kHﬂl(k))), X' = —px —7, (5b)
=1
i iti lar.
for i = 1,---,N. For small At, the stability and con- where is a positive scalar

vergence of the above difference equation can be studiggl the following, we show that these filters generate an
using the following continuous-time model (represented i (¢)-approximation of the average of the dynamic inputs
compact form): + Zf;l u’(t), in a distributed fashion, for networks with

Yo =—Yr (3) graph topologyD.
where y; = x7 — 1y ® (4 Zf;l u’). The dynamical Theorem 4.1 (Convergence BOI-DCH: Consider a net-
system (3) is a stable linear system with all eigenvalueslequworked system with topolog. If the first and the second
to —1. Therefore, (3) converges to zero exponentially. As derivatives of the input signal’ at each agent are continuous
result, x in (2) converges tos; vazl u’(t) exponentially, and bounded fot > 0, then there is a small enough > 0
foralli=1,---,N. such that, for alle € (0,€*], the trajectories of the filter

The aforementioned algorithm performs dynamic avera OiI'DCF’l Sta%'”g ifrom any f|n|.te |'n|.t|al 'condltlons, satisfy
consensus with an exponential convergence rate. Howev 7 (t) = % Zima W' ()]l < O(e) in finite time.
this algorithm is a conceptual algorithm; the cost of solvTheorem 4.2 (Convergence 8DI-DCH: Consider a net-
ing (1) at each time-step is the main drawback of this algoworked system with topologyD. If the first, the second,
rithm which virtually makes it un-implementable. Inspiredand the third derivatives of the input signél at each agent
by the multi time-scale structure observed above, we neare continuous and bounded for> 0, then there is a small
make use of singular perturbation theory to weave togethenoughe* > 0 such that, for alk € (0, €*], the trajectories of
steps 5-7 and devise a continuous-time dynamic averatie filter SOI-DCEF, starting from any finite initial conditions,
consensus filter. By doing so, we avoid solving the fasatisfy ||x*(t) — ﬁZf;l u’(t)|| < O(e) in finite time.
gfg\],?rglﬁr?csste&:; iii?}gs;a:fcvgtt?; ?Ageofrggtmd’ 'E}nti The proof of Theorems 4.1 and 4.2 are very similar, there-
y y (‘T%re, we present them together.
to converge.
Proof of Theorems 4.1 and 4.2The proof is based
on showing the filters satisfy the conditions of Theorem A.1
globally. The boundary layer dynamics (fast dynamics) for
both FOI-DCF and SOI-DCFis (fori =1,--- ,N)

IV. DYNAMIC CONTINUOUS-TIME CONSENSUSFILTERS
VIA SINGULARLY PERTURBEDDYNAMICS

. . . . T
new continuous-time dynamic average consensus algorithmg au' _ s~V
The main advantage of these filters is their convergence 9~ =1 ©6)

irrespectively of the initial condition and, thereforeeth Invoking Lemma 2.1, this fast dynamics converges to the

robustness against initialization eITors across the ”mwo_following values for each filter exponentially and globally
Furthermore, the convergence of the filters does not require

any knowledge of the dynamics generating the inputs.

Here, we employ singular perturbation theory to construcgddzi = —(z' + fui(t) + a'(t)) — Zil Li;(z7 4+ v7),

N
. 1 . ,
o . . z'=——>» (fu'+u’), i=1,---,N. (7)
Consider the following distributed filters, listed basedtbe pror)

complexity of the structure: Substituting (7) into (4b) (similarly, in (5b)), we obtaihe

« 1st-Order-Input Dynamic Consensus FiltéFOI-DCF): following reduced system (slow dynamics), for the filters
FOI-DCF and SOI-DCF,
fori=1,---,N .
€z = —(zl 4+ pul 4 0') — N Lij(27 4 ), X' =—Bx' + N > (Bu'+1w'), i=1,---,N. (8)
i N - = (4a) i=1
€V = Zj:l LijZJ, . . .
%l = —Bxi — 2, (4b) Consider the following change of variables:

N
where 3 is a positive scalar. yi=x'— %Z uw, i=1,---,N.
=1



In the new coordinates, (8) is represented as The derivative of this Lyapunov function along the trajecto

ries of (10) is

yl:_6y17 22177N (9)
For 5 > 0, the system (9) is a stable linear system with . 1_r . 1. S
system matrix eigenvalues equal-ig3. Thus, (9) converges V=—101(Ln+ Ly)Pr — (5P — Bar)”,

globally exponentially to zero, which is equivalent 16

; i N - . . . . - . .
exponentially converging te; 37;7, u’(t), i =1, . N. which is negative semi-definite. It is zero in the set=

Both filters, based on the corresponding required condi®r:ar,or € R™ [pr = 1y @ a, Py = 284ar}, where
tions for input signals, satisfy the differentiability anip- <« € R". We can show tha{q; = 0, q; = 0, vr =
schitz conditions of Theorem A.1 on any compact set ofn ® v}, wherey € R", is the smallest invariant set
(xr,zr,vr). Thus, all the conditions of Theorem A.1 arecontained inS. From the LaSalle Invariance Principle it
satisfied globally, and the estimates of (17), (18) and (19)ow follows thatq; — 0 as? — oc. This results in
hold, for all ¢ > 0 and for any bounded initial states.X'(t) — u(t) + £ 3" w' = £ SN wui(t) ast — oo,
Note that the slow dynamics at each agent is globally expdor ¢ = 1,---, N, in the filter SOI-DCF. ]
nentially approachln]\g[] the average >, '(1), therefore, Remark 4.1 (Convergence for static input§pllowing an
[x7(t) = 1n © 5 2,0, w'(#)]| < O(e) in a finite time, and  argument similar to the proof of Corollary 4.1, we can show
as aresulf]x’(t) — & SN u’(t)|| < O(e) in finite time. M that, for static inputs, for any > 0, both proposed filters

The slow and fast dynamical analysis of the filteF®I- converge to the exact input average with no steady-state err

DCF and SOI-DCF is exactly the same. The guarantee

convergence bound is also of the same order. In the follovRemark 4.2 (Role aof): As it is shown in the proof of
ing, we show that the filteSOI-DCF has advantages over Theorems 4.1, and 4.2 is the rate of convergence of the
FOI-DCF, at the price of a slight increase in the complexityslow dynamics. By choosing a largé, we can increase
of the filter, and the extra condition on the input signalsthe rate of convergence. However, to keep the two time-

For example, one can show that f&0OI-DCF, we have
SN X)) = YN ui(t) ast — oo, for any e > 0.
The main advantage of the filt&OI-DCF over FOI-DCF is
stated in the following result.

Corollary 4.1 (SOI-DCFfor inputs offset by a static value):

scale structure of the filters; has to be chosen smaller
relative toe~!. Quantifying the convergence neighborhood
and the effect ofg on the size of this neighborhood is left
as a future work. Furthermore, one should notice thas

a global variable known to all agents in the network. To

guarantee convergence to the right dynamic input average
of %Zfil u'(t), in its O(e) neighborhood, every agent
@qould agree upon a common value fobefore running the

Consider a networked system with topolody as in
Theorem 4.1, subject to similar assumptions on the inp

signals of agents. When the difference in the input signa . L
is a static offset, ie.u'(f) = u(f) + a¢ where o' is consensus filters. The following filter allows the agentsge u

a constant vector, the filteSOI-DCF converges to the different values for3 and still converge to the right dynamic

exact input average with no steady-state error. That jgverage. However, note that to provide this robustness with
Xi(t) = L ZN ui(t), for anye > 0 respect to3, we are requiring extra communication channels.
N 1=1 ' .

Proof: Consider the following change of the variables:

p'=z+pfu+nu, LN fo”_zlf“_aNa_ . o (11a)
q =x' —u, ) ) , AV {Eil' — _(JZ\: +ul) — Zi:j L (27 +v7), (11b)
i -
Then, we can re-write (5), as follows (compact form) ev= ijl Lijz’,
. _ € = —(y*+1u") — L (v + J,
€Pr = —(pr +Bur) — Lyn(pr +vr), (10a) {eyl—z(% va)j Zlﬂ i (Y + 1) (11c)
El'll(t) :,C,"I)T7 ' 1 _- -j:1 .7,j‘y N .

. ot i i pid 1’ 11d
dr = —Bar — pr- (10b) X'=—fx=fa -y (11d)
\;\:Z c;?nﬁfhgw tgat the 3qu@t_3ngm Lpow}\tfs 9f th,'f') S%ftemwhereﬁi’s are all positive scalars. To guarantee convergence
i1 N W_hgreZi:lu’ a = Nt v to the O(e) neighborhood of the dynamic input average,

the requirement on the input signals is the boundedness
and continuity of their first and second derivatives. Notice
that using different3’ results in different convergence rates
at each agent. Then one can expect that the tracking is
not coherent across the network agents. The stability and
convergence analysis of this filter is along the same lines of
the proof of Theorem 4.1 and omitted for brevity. O

—Lavr = (Pr + fur).
Consider the following Lyapunov function, whei@, =
dr — dr, Pr = Pr — Pp, andvr = vy — Uyl

~ € _ € _
ot pht o

V= ) 8



Fig. 1. Network =
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V. NUMERICAL EXAMPLES e

(b) e =0.001 and =1
In order to give the reviewers a demonstration of the differe
aspects of the proposed filters, in the following we provide a <
extensive set of numerical examples. However, in the fini ool
version of the paper, due to the space limitation, we nee~
to reduce the number of examples. Here, we mainly perfor. -
simulations using the filteFOI-DCF. A more comprehensive "
set of examples including simulations conducted using the
filter SOI-DCF can be found in [13]. (¢) € = 0.001 and 5 = 3

Fig. 2. Simulation results for example 1

2 a 6 8 12 14 16 is 20

10
time

In the following simulations, the thick dashed line is the
dynamic input average and the thin colored lines are the
time histories of the locat® states of the filters. In all the
simulations below, all the initial conditions for the prcyea
filters here are selected uniformly randomlyZifi—2, 2]. @ @

A. Example 1 (Performance evaluation of the filte©I-
DCF over a large network)

Consider the randomly generated undirected network (using ° °
Matlab BGL package [14]) shown in Fig. 1 which consists
of N =100 agents. The local input signals are
ui(t) . Sin(bi - Ci)7 i=1.-.N. Fig. 3. Network of example 2
where the input coefficients are generated randomly uni-
formly in the following rangesu; ~ U[—5,5], b; ~ U[1, 2],
¢ ~ U0, 7/2]. .
In this example, we compare the performance of the pro-
Figures 2 shows the time histories of the local internakestat posed filterFOI-DCF with the First-Order Dynamic Average
z" generated by the filteFOI-DCF and the dynamic input consensus (FODAC) algorithm of [10]. Figures 4 shows the
average for the three cases ot 0.01, 3 = 1), (¢ = 0.001,  yesylt of the simulations. To generate the simulations for
f=1)and € = 0.001, 5 = 3). As expected, the smaller the FopAC algorithm of [10], we used the step size= 0.001
e is, the better the tracking, and the larger thethe faster \yhich is higher than the bound for guaranteed convergence
the convergence to th@(e) neighborhood is. (to accelerate the simulations). As Fig. 4 shows, the FO-
DAC algorithm of [10] starting from the required initial
B. Example 2 (Comparison between the fill&/-DCFand conditions ofz*(0) = u‘(—h), i = 1,--- , N, has a higher
the FODAC algorithm of [10]) rate of convergence than the filt&iOI-DCF. However, as
. . demonstrated in Fig. 3(c), for initial conditions other riha
Consider the weakly-connected and balanced directed gra&)r(o) = wi(—h) this filter produces a large steady sate
in Fig. 3 . The input signals are error. In this simulation, for the filteFOI-DCF, we used
L) F o 10 204 E o 10 e =0.01 and 3 = 1. In case of agent failure, the FODAC
ug(t) =9 ?fn(t) i t+120+ L u*(t) =5 sin(t) + Grap + 1, algorithm requires an adjustment of the initial condition i
u?(t) =5 sin(t) + g + 1, order to guarantee tracking. As we see in the following this
ut(t) =5 sin(t) + 10e~" + 4, u’(t) = 5 sin(t). adjustment is necessary in our simulated algorithms.



time

(a) Filter FOI-DCF with e = 0.01 and8 = 1

1 B 3 a 5 6 7 E] °
time

(b) The FODAC algorithm of [10] withe?(0) = u’(—h)

t € [40, 00)

Fig. 5. Network of example 3

(c) The FODAC algorithm of [10] withe?(0) € U[—2, 2]

Fig. 4. Simulation results for example 2.
2~
. 1

C. Example 3 (Performance of the filtéfOI-DCF over a |
network with time-varying topology) 0 .
Consider the time-varying weakly-connected and balance [ N
directed graph in Fig. 5. The input signals are - —

ul(t) = 6 cos(0.2t), u?(t) = atan(0.2t), -3 - - % - b |

ud(t) = 3 sin(0.1t + 1), u(t) = log(t +0.1), e

ud(t) = 0.02¢, ub(t) = 0.5 (t — 25). Fig. 6. Simulation result for example 3.

The simulation result is shown in Fig. 6. The onset of any

changes in the network topology is indicated by verticalyhere u(t) — 5 sin(t). These inputs differ from one and
dotted lines. In Fig. 6, in order to convey clearly thégther by a static value. Figure 7 shows the time history of the
incidences of the agents joining or leaving the network, fogrror hetween the stated’s and the dynamic input average.
the time prior to joining and the time after departure, therhe gashed blue lines belong to the fil@I-DCF and the
fixed initial value or departure value is used, respectivelygiq red lines belong t&OI-DCF. Figure 7(a) is generated
As the simulation shows in Fig. 6, the proposed fillI- singe = 1, and Fig 7(b) is generated using= 0.01.
DCF handles the changes in the topology well. When thag expected the filteSOI-DCF, regardiess of the value of
change is just a switching in the network communication converges to the dynamic input average with no steady-
the filter is almost indifferent to the change. In the casesiate error. For a smadl the performance of the filteFOI-

of agents joining or leaving the network, after a transienpcr improves and almost matches the perfect performance
period, the filter presumes its close tracking of the input the filter SOI-DCE

average. Here, we useti=1 ande = 0.01.

E. Example 5 (Comparison between the performance of the

D. Example 4 (Comparison between the performance of thgoposed filtersFOI-DCFand (11) when agents do not use
proposed filters=OI-DCF and SOI-DCFwhen input signals commons3)

are offset with a static value)
. _ o _ . . Consider the network depicted in Fig. 3 with the input signal
Consider the network depicted in Fig. 3 with the input signaljisted in Example 2. Here, we compare the performance of

listed below: the filtersFOI-DCF and (11), when agents use the following
Wl (t) = u(t) + 1, u2(t) = u(t) — 1, u3(t) = u(t) + 4, s
ut(t) = u(t) + 5, u(t) = u(t) + 10, pt=12 p*=1, g*=08, p* =05, g° =02
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(b) e =0.01 andg =1

Fig. 7. Simulation results for example 4.
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(a) The proposed filter6OI-DCF

B 2 S B Xs) iz ia 16 is 20
time

(b) the proposed filter (11)

Fig. 8. Simulation results for example 5.

I
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time

Fig. 9. Simulation result for example 6.

The simulation result obtained using the proposed filter
FOI-DCFis shown in Fig. 9. Here we used= 0.01. As
shown in the figure, the proposed filtEOI-DCF achieves

a close tracking despite the discontinuity in the input algn
as long as dwell times are sufficiently large.

VI. CONCLUSIONS

We have proposed two continuous-time dynamic average
consensus filters for networks with balanced and weakly-
connected directed graph topology. The proposed filters hav
a two-time scale structure and do not require model infor-
mation on the dynamic inputs. Using singular perturbation
analysis, we have shown that the proposed filters reach an
O(e)-neighborhood of the dynamic input average in finite
time irrespectively of the initial condition. Simulatiorsults
show that the filters are robust to switching network topolo-
gies, as long as the network stays balanced and weakly-
connected, and there is a large enough dwelling time between
each switchings. Future work will be devoted to rigorously

Simulation result, depicted in Fig. 8(a), indicate that theharacterizing the convergence properties of the proposed
filter FOI-DCF does not approach to the right dynamic inpudynamic average consensus algorithms over networks with
average, as it is not robust with respect@oHowever, the switching topology.

filter (11), which is designed to work for different values

of 8 at each agent, converges to the input average. For the
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filter (11), as expected, the convergence rate at each agjent i

defined by its corresponding; the larger thes?; the faster

the convergence is. Here we useé- 0.001.

F. Example 6 (performance of the proposed filtd¥®I-
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For the sake of completeness, here we give a short review  ¢,1ctions ofe:

of Singularly Perturbed dynamical system theory and its , {he origin is an exponentially stable equilibrium point

terminology along with the theorem that we will employ  of the reduced system (15); that is, there is a Lyapunov
to derive our main result on dynamic average consensus function V(t,x) that satisfies the conditions of [15,

algorithms (see [15] for more details). Theorem 4.9] for (15) for(t,x) € [0,00) x D,. In
Consider the following system: other words, we have
x =1f(t,x,2z,¢), x(to) =nle), (12a) Wi (x) < V(t,x) < Wa(x),
ez =g(t,x,z,¢), z(ty) = ((e). (12b) %‘; n Z—Zf(t,x,h(t,x),o) < W),

The use of a small constaat> 0 induces two time scales

in the system, resulting into a fast and a slow dynamics. The
analysis of such systems can be achieved with the aid of
Singular Perturbation Theory. Singular Perturbation Theo
establishes rigorous conditions under which the behawior o
the system follows that of the limiting system whemgoes

to 0. We assume thdt andg are continuously differentiable

whereWy, Wy, andWW3 are continuous positive definite
functions onD,, such that{W;(x) < ¢} is a compact
subset ofD,;

« the origin is an exponentially stable equilibrium of the
boundary layer system, uniformly ift,x). Let R, C
D, be the region of attraction of

in their arguments for(t,x,z,¢) € [0,00) X D, X D, X dy
[0, €], whereD, c R™ and D, c R™ are open connected 27 = 8(0.n(0),y +h(0,7(0)),0),
sets. When we set= 0 in (12), the dimension of the state y(0) = ¢(0) —h(0,n(0)),

equation reduces from + m to n because the differential
equation (12b) degenerates into the algebraic equation
0 = g(t,x,2,0). (13) Then, for each compact s, C {W>(x) < pc,0 < p <1}

o ] there is a positive constaat such that for allty > 0, 7, €
We say that the model (12) is in standard form if (13) ha@m Co — h(to,my) € Q,, and0 < ¢ < ¢, the singularly

k > 1 isolated real roots perturbed system (12) has a unique solutidn, €), z(t, €)

and(), be a compact subset &,.

Zi:hi(t,X), i=1,--- ,k, (14) on [to,OO), and
for each(t,x) € [0, 00) x D,.. This assumption assures that a x(t,e) —x(t) = O(e), (17)
well-definedn—dimensionateduced mode(slow dynamics) z(t,€) —h(t,x(t)) — y(t/€) = O(e) (18)
will correspond to each root of (13). To obtain thie reduced )
model, we substitute (14) into (12a), @t 0, to obtain hold uniformly for¢ € [to, 00), wherex(t) and y(r) are

the solutions of the reduced and boundary layer problems.
x = f(t,x,h(t,x),0), (15)  Moreover, given any;, > to, there ise** < ¢* such that

where we have dropped the subscriptfrom h. The z(t,¢) — h(t, x(t)) = O(e) (19)
boundary-layersystem (fast dynamics) is

dz " holds uniformly fort € [t;, 00) whenevere < e**.

o = g(t,x,z,0), 7= > (16)



