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Storage Size Determination for Grid-Connected

Photovoltaic Systems
Yu Ru, Jan Kleissl, and Sonia Martinez

Abstract—In this paper, we study the problem of determining
the size of battery storage used in grid-connected photovoltaic
(PV) systems. In our setting, electricity is generated from PV
and is used to supply the demand from loads. Excess electricity
generated from the PV can be either sold back to the grid or
stored in a battery, and electricity must be purchased from
the electric grid if the PV generation and battery discharging
cannot meet the demand. Due to the time-of-use electricity pricing
and net metered PV systems, electricity can also be purchased
from the grid when the price is low, and be sold back to the
grid when the price is high. The objective is to minimize the
cost associated with net power purchase from the electric grid
and the battery capacity loss while at the same time satisfying
the load and reducing the peak electricity purchase from the
grid. Essentially, the objective function depends on the chosen
battery size. We want to find a unique critical value (denoted
as Cc

ref) of the battery size such that the total cost remains the
same if the battery size is larger than or equal to Cc

ref, and
the cost is strictly larger if the battery size is smaller than
Cc

ref. We obtain a criterion for evaluating the economic value
of batteries compared to purchasing electricity from the grid,
propose lower and upper bounds on Cc

ref, and introduce an
efficient algorithm for calculating its value; these results are
validated via simulations.

Index Terms—PV, Grid, Battery, Optimization

I. INTRODUCTION

The need to reduce greenhouse gas emissions due to fossil

fuels and the liberalization of the electricity market have led

to large scale development of renewable energy generators

in electric grids [1]. Among renewable energy technologies

such as hydroelectric, photovoltaic (PV), wind, geothermal,

biomass, and tidal systems, grid-connected solar PV continued

to be the fastest growing power generation technology, with

a 70% increase in existing capacity to 13GW in 2008 [2].

However, solar energy generation tends to be variable due to

the diurnal cycle of the solar geometry and clouds. Storage

devices (such as batteries, ultracapacitors, compressed air, and

pumped hydro storage [3]) can be used to i) smooth out the

fluctuation of the PV output fed into electric grids (“capacity

firming”) [2], [4], ii) discharge and augment the PV output

during times of peak energy usage (“peak shaving”) [5], iii)

store energy for nighttime use, for example in zero-energy

buildings and residential homes, or iv) power arbitrage under

time-of-use electricity pricing, i.e., storing surplus PV when

the time-of-use price is low and selling when the time-of-use

price is high.
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Depending on the specific application (whether it is off-

grid or grid-connected), battery storage size is determined

based on the battery specifications such as the battery storage

capacity (and the minimum battery charging/discharging time).

For off-grid applications, batteries have to fulfill the following

requirements: (i) the maximum discharging rate has to be

larger than or equal to the peak load capacity; (ii) the battery

storage capacity has to be large enough to supply the largest

night time energy use and to be able to supply energy during

the longest cloudy period (autonomy). The IEEE standard [6]

provides sizing recommendations for lead-acid batteries in

stand-alone PV systems. In [7], the solar panel size and the

battery size have been selected via simulations to optimize

the operation of a stand-alone PV system, which considers

reliability measures in terms of loss of load hours, the energy

loss and the total cost. In contrast, if the PV system is grid-

connected, autonomy is a secondary goal; instead, batteries

can reduce the fluctuation of PV output or provide economic

benefits such as demand charge reduction, and power arbitrage.

The work in [8] analyzes the relation between available battery

capacity and output smoothing, and estimates the required

battery capacity using simulations. In addition, the battery

sizing problem has been studied for wind power applica-

tions [9]–[11] and hybrid wind/solar power applications [12]–

[14]. In [9], design of a battery energy storage system is

examined for the purpose of attenuating the effects of unsteady

input power from wind farms, and solution to the problem via

a computational procedure results in the determination of the

battery energy storage system’s capacity. Similarly, in [11],

based on the statistics of long-term wind speed data captured

at the farm, a dispatch strategy is proposed which allows

the battery capacity to be determined so as to maximize a

defined service lifetime/unit cost index of the energy storage

system; then a numerical approach is used due to the lack of

an explicit mathematical expression to describe the lifetime

as a function of the battery capacity. In [10], sizing and

control methodologies for a zinc-bromine flow battery based

energy storage system are proposed to minimize the cost of

the energy storage system. However, the sizing of the battery

is significantly impacted by specific control strategies. In [12],

a methodology for calculating the optimum size of a battery

bank and the PV array for a stand-alone hybrid wind/PV

system is developed, and a simulation model is used to

examine different combinations of the number of PV modules

and the number of batteries. In [13], an approach is proposed

to help designers determine the optimal design of a hybrid

wind-solar power system; the proposed analysis employs linear

programming techniques to minimize the average production

cost of electricity while meeting the load requirements in
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a reliable manner. In [14], genetic algorithms are used to

optimally size the hybrid system components, i.e., to select

the optimal wind turbine and PV rated power, battery energy

storage system nominal capacity, and inverter rating. The

primary objective is the minimization of the levelized cost

of energy of the island system.

In this paper, we study the problem of determining the

battery size for grid-connected PV systems for the purpose of

power arbitrage and peak shaving. The targeted applications

are primarily electricity customers with PV arrays “behind the

meter,” such as most residential and commercial buildings with

rooftop PVs. In such applications, the objective is to minimize

the investment on battery storage (or equivalently, the battery

size if the battery technology is chosen) while minimizing the

net power purchase from the grid subject to the load, battery

aging, and peak power reduction (instead of smoothing out

the fluctuation of the PV output fed into electric grids). Our

setting1 is shown in Fig. 1. We assume that the grid-connected

PV system utilizes time-of-use pricing (i.e., electricity prices

change according to a fixed daily schedule) and that the prices

for sales and purchases of electricity at any time are identical.

In other words, the grid-connected PV system is net metered,

a policy which has been widely adopted in most states in

US [15] and some other countries in Europe, Australia, and

North America. Electricity is generated from PV panels, and is

used to supply different types of loads. Battery storage is used

to either store excess electricity generated from PV systems

when the time-of-use price is lower for selling back to the grid

when the time-of-use price is higher (this is explained in detail

in Section V-B), or purchase electricity from the grid when the

time-of-use pricing is lower and sell back to the grid when

the time-of-use pricing is higher (power arbitrage). Without

a battery, if the load was too large to be supplied by PV

generated electricity, electricity would have to be purchased

from the grid to meet the demand. Naturally, given the high

cost of battery storage, the size of the battery storage should be

chosen such that the cost of electricity purchase from the grid

and the loss due to battery aging are minimized. Intuitively, if

the battery is too large, the electricity purchase cost could be

the same as the case with a relatively smaller battery. In this

paper, we show that there is a unique critical value (denoted

as Cc
ref, refer to Problem 1) of the battery capacity such that

the cost of electricity purchase and the loss due to battery

aging remains the same if the battery size is larger than or

equal to Cc
ref, and the cost is strictly larger if the battery size

is smaller than Cc
ref. We obtain a criterion for evaluating the

economic value of batteries compared to purchasing electricity

from the grid, propose lower and upper bounds on Cc
ref given

the PV generation, loads, and the time period for minimizing

the costs, and introduce an efficient algorithm for calculating

the critical battery capacity based on the bounds; these results

are validated via simulations.

The contributions of this work are the following: i) to the

best of our knowledge, this is the first attempt on determining

1Note that solar panels and batteries both operate on DC, while the grid and
loads operate on AC. Therefore, DC-to-AC and AC-to-DC power conversion
is necessary when connecting solar panels and batteries with the grid and
loads.

lower and upper bounds of the battery size for grid-connected,

net metered PV systems based on a theoretical analysis; in

contrast, most previous work are based on trial and error

approaches, e.g., the work in [8]–[12] (one exception is the

theoretical work in [16], in which the goal is to minimize the

long-term average electricity costs in the presence of dynamic

pricing as well as investment in storage in a stochastic setting;

however, no battery aging is taken into account and special

pricing structure is assumed); ii) a criterion for evaluating

the economic value of batteries compared to purchasing elec-

tricity from the grid is derived (refer to Proposition 4 and

Assumption 2), which can be easily calculated and could be

potentially used for choosing appropriate battery technologies

for practical applications; and iii) lower and upper bounds on

the battery size are proposed, and an efficient algorithm is

introduced to calculate its value for the given PV generation

and dynamic loads; these results are then validated using sim-

ulations. Simulation results illustrate the benefits of employing

batteries in grid-connected PV systems via peak shaving and

cost reductions compared with the case without batteries (this

is discussed in Section V-B).

The paper is organized as follows. In the next section, we lay

out our setting, and formulate the storage size determination

problem. Lower and upper bounds on Cc
ref are proposed

in Section III. Algorithms are introduced in Section IV to

calculate the value of the critical battery capacity. In Section V,

we validate the results via simulations. Finally, conclusions

and future directions are given in Section VI.

II. PROBLEM FORMULATION

In this section, we formulate the problem of determining

the storage size for a grid-connected PV system, as shown in

Fig. 1. We first introduce different components in our setting.

A. Photovoltaic Generation

We use the following equation to calculate the electricity

generated from solar panels:

Ppv(t) = GHI(t)× S × η , (1)

where

• GHI (Wm−2) is the global horizontal irradiation at the

location of solar panels,
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D
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Fig. 1. Grid-connected PV system with battery storage and loads.
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• S (m2) is the total area of solar panels, and

• η is the solar conversion efficiency of the PV cells.

The PV generation model is a simplified version of the one

used in [17] and does not account for PV panel temperature

effects.2

B. Electric Grid

Electricity can be purchased from or sold back to the grid.

For simplicity, we assume that the prices for sales and pur-

chases at time t are identical and are denoted as Cg(t)($/Wh).
Time-of-use pricing is used (Cg(t) ≥ 0 depends on t) because

commercial buildings with PV systems that would consider

a battery system usually pay time-of-use electricity rates.

In addition, with increased deployment of smart meters and

electric vehicles, some utility companies are moving towards

residential time-of-use pricing as well; for example, SDG&E

(San Diego Gas & Electric) has the peak, semipeak, offpeak

prices for a day in the summer season [18], as shown in Fig. 3.

We use Pg(t)(W ) to denote the electric power exchanged

with the grid with the interpretation that

• Pg(t) > 0 if electric power is purchased from the grid,

• Pg(t) < 0 if electric power is sold back to the grid.

In this way, positive costs are associated with the electricity

purchase from the grid, and negative costs with the electricity

sold back to the grid. In this paper, peak shaving is enforced

through the constraint that

Pg(t) ≤ D ,

where D is a positive constant.

C. Battery

A battery has the following dynamic:

dEB(t)

dt
= PB(t) , (2)

where EB(t)(Wh) is the amount of electricity stored in the

battery at time t, and PB(t)(W ) is the charging/discharging

rate; more specifically,

• PB(t) > 0 if the battery is charging,

• and PB(t) < 0 if the battery is discharging.

For certain types of batteries, higher order models exist (e.g.,

a third order model is proposed in [19], [20]).

To take into account battery aging, we use C(t)(Wh) to de-

note the usable battery capacity at time t. At the initial time t0,

the usable battery capacity is Cref, i.e., C(t0) = Cref ≥ 0. The

cumulative capacity loss at time t is denoted as ∆C(t)(Wh),
and ∆C(t0) = 0. Therefore,

C(t) = Cref −∆C(t) .

The battery aging satisfies the following dynamic equation

d∆C(t)

dt
=

{

−ZPB(t) if PB(t) < 0

0 otherwise ,
(3)

2Note that our analysis on determining battery capacity only relies on
Ppv(t) instead of detailed models of the PV generation. Therefore, more
complicated PV generation models can also be incorporated into the cost
minimization problem as discussed in Section II.F.

where Z > 0 is a constant depending on battery technologies.

This aging model is derived from the aging model in [5]

under certain reasonable assumptions; the detailed derivation

is provided in the Appendix. Note that there is a capacity loss

only when electricity is discharged from the battery. Therefore,

∆C(t) is a nonnegative and non-decreasing function of t.
We consider the following constraints on the battery:

i) At any time, the battery charge EB(t) should satisfy

0 ≤ EB(t) ≤ C(t) = Cref −∆C(t) ,

ii) The battery charging/discharging rate should satisfy

PBmin ≤ PB(t) ≤ PBmax ,

where PBmin < 0, −PBmin is the maximum battery

discharging rate, and PBmax > 0 is the maximum battery

charging rate. For simplicity, we assume that

PBmax = −PBmin =
C(t)

Tc

=
Cref −∆C(t)

Tc

,

where constant Tc > 0 is the minimum time required to

charge the battery from 0 to C(t) or discharge the battery

from C(t) to 0.

D. Load

Pload(t)(W ) denotes the load at time t. We do not make

explicit assumptions on the load considered in Section III

except that Pload(t) is a (piecewise) continuous function. In

residential home settings, loads could have a fixed schedule

such as lights and TVs, or a relatively flexible schedule

such as refrigerators and air conditioners. For example, air

conditioners can be turned on and off with different schedules

as long as the room temperature is within a comfortable range.

E. Converters for PV and Battery

Note that the PV, battery, grid, and loads are all connected

to an AC bus. Since PV generation is operated on DC, a DC-

to-AC converter is necessary, and its efficiency is assumed to

be a constant ηpv satisfying

0 < ηpv ≤ 1 .

Since the battery is also operated on DC, an AC-to-DC

converter is necessary when charging the battery, and a DC-

to-AC converter is necessary when discharging as shown in

Fig. 1. For simplicity, we assume that both converters have

the same constant conversion efficiency ηB satisfying

0 < ηB ≤ 1 .

We define

PBC(t) =

{

ηBPB(t) if PB(t) < 0
PB(t)
ηB

otherwise ,

In other words, PBC(t) is the power exchanged with the AC

bus when the converters and the battery are treated as an entity.

Similarly, we can derive

PB(t) =

{

PBC(t)
ηB

if PBC(t) < 0

ηBPBC(t) otherwise .

Note that η2B is the round trip efficiency of the battery

converters.
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F. Cost Minimization

With all the components introduced earlier, now we can

formulate the following problem of minimizing the sum of

the net power purchase cost3 and the cost associated with the

battery capacity loss while guaranteeing that the demand from

loads and the peak shaving requirement are satisfied:

min
PB ,Pg

∫ t0+T

t0

Cg(τ)Pg(τ)dτ +K∆C(t0 + T )

s.t. ηpvPpv(t) + Pg(t) = PBC(t) + Pload(t) , (6)

dEB(t)

dt
= PB(t) ,

d∆C(t)

dt
=

{

−ZPB(t) if PB(t) < 0

0 otherwise ,

0 ≤ EB(t) ≤ Cref −∆C(t) ,

EB(t0) = 0 ,∆C(t0) = 0 ,

PBmin ≤ PB(t) ≤ PBmax ,

PBmax = −PBmin =
Cref −∆C(t)

Tc

,

PB(t) =

{

PBC(t)
ηB

if PBC(t) < 0

ηBPBC(t) otherwise ,

Pg(t) ≤ D , (7)

where t0 is the initial time, T is the time period considered

for the cost minimization, K($/Wh) > 0 is the unit cost for

the battery capacity loss. Note that:

i) No cost is associated with PV generation. In other words,

PV generated electricity is assumed free;

ii) K∆C(t0 + T ) is the loss of the battery purchase invest-

ment during the time period from t0 to t0+T due to the

use of the battery to reduce the net power purchase cost;

iii) Eq. (6) is the power balance requirement for any time

t ∈ [t0, t0 + T ];
iv) the constraint Pg(t) ≤ D captures the peak shaving

requirement.

Given a battery of initial capacity Cref, on the one hand, if

the battery is rarely used, then the cost due to the capacity

loss K∆C(t0 + T ) is low while the net power purchase

cost
∫ t0+T

t0
Cg(τ)Pg(τ)dτ is high; on the other hand, if the

battery is used very often, then the net power purchase cost
∫ t0+T

t0
Cg(τ)Pg(τ)dτ is low while the cost due to the capacity

loss K∆C(t0 + T ) is high. Therefore, there is a tradeoff on

the use of the battery, which is characterized by calculating

an optimal control policy on PB(t), Pg(t) to the optimization

problem in Eq. (7).

Remark 1 Besides the constraint Pg(t) ≤ D, peak shaving is

also accomplished indirectly through dynamic pricing. Time-

of-use price margins and schedules are motivated by the

peak load magnitude and timing. Minimizing the net power

purchase cost results in battery discharge and reduction in grid

purchase during peak times. If, however, the peak load for a

3Note that the net power purchase cost include the positive cost to purchase
electricity from the grid, and the negative cost to sell electricity back to the
grid.

customer falls into the off-peak time period, then the constraint

on Pg(t) limits the amount of electricity that can be purchased.

Peak shaving capabilities of the constraint Pg(t) ≤ D and

dynamic pricing will be illustrated in Section V-B. �

G. Storage Size Determination

Based on Eq. (6), we obtain

Pg(t) = Pload(t)− ηpvPpv(t) + PBC(t) .

Let u(t) = PBC(t), then the optimization problem in Eq. (7)

can be rewritten as

min
u

∫ t0+T

t0
Cg(τ)(Pload(τ)− ηpvPpv(τ) + u(τ))dτ +K∆C(t0 + T )

s.t.
dEB(t)

dt
=

{

u(t)
ηB

if u(t) < 0

ηBu(t) otherwise ,

d∆C(t)

dt
=

{

−Z u(t)
ηB

if u(t) < 0

0 otherwise ,

EB(t) ≥ 0 , EB(t0) = 0 ,∆C(t0) = 0 ,

EB(t) + ∆C(t) ≤ Cref ,

ηBu(t)Tc +∆C(t) ≤ Cref if u(t) > 0,

−
u(t)

ηB

Tc +∆C(t) ≤ Cref if u(t) < 0,

Pload(t)− ηpvPpv(t) + u(t) ≤ D . (8)

Now it is clear that only u(t) is an independent variable. We

define the set of feasible controls as controls that guarantee

all the constraints in the optimization problem in Eq. (8).

Let J denote the objective function

minu
∫ t0+T

t0
Cg(τ)(Pload(τ)− ηpvPpv(τ) + u(τ))dτ +K∆C(t0 + T ) .

If we fix the parameters t0, T,K,Z, Tc, and D, J is a function

of Cref, which is denoted as J(Cref). If we increase Cref,

intuitively J will decrease though may not strictly decrease

(this is formally proved in Proposition 2) because the battery

can be utilized to decrease the cost by

i) storing extra electricity generated from PV or purchasing

electricity from the grid when the time-of-use pricing is

low, and

ii) supplying the load or selling back when the time-of-use

pricing is high.

Now we formulate the following storage size determination

problem.

Problem 1 (Storage Size Determination) Given the opti-

mization problem in Eq. (8) with fixed t0, T,K,Z, Tc, and

D, determine a critical value Cc
ref ≥ 0 such that

• ∀Cref < Cc
ref, J(Cref) > J(Cc

ref), and

• ∀Cref ≥ Cc
ref, J(Cref) = J(Cc

ref).

One approach to calculate the critical value Cc
ref is that we

first obtain an explicit expression for the function J(Cref) by

solving the optimization problem in Eq. (8) and then solve

for Cc
ref based on the function J . However, the optimization

problem in Eq. (8) is difficult to solve due to the nonlinear

constraints on u(t) and EB(t), and the fact that it is hard to
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obtain analytical expressions for Pload(t) and Ppv(t) in reality.

Even though it might be possible to find the optimal control

using the minimum principle [21], it is still hard to get an

explicit expression for the cost function J . Instead, in the next

section, we identify conditions under which the storage size

determination problem results in non-trivial solutions (namely,

Cc
ref is positive and finite), and then propose lower and upper

bounds on the critical battery capacity Cc
ref.

III. BOUNDS ON Cc
ref

Now we examine the cost minimization problem in Eq. (8).

Since Pload(t)−ηpvPpv(t)+u(t) ≤ D, or equivalently, u(t) ≤
D+ηpvPpv(t)−Pload(t), is a constraint that has to be satisfied

for any t ∈ [t0, t0 + T ], there are scenarios in which either

there is no feasible control or u(t) = 0 for t ∈ [t0, t0 + T ].
Given Ppv(t), Pload(t), and D, we define

S1 = {t ∈ [t0, t0 + T ] | D + ηpvPpv(t)− Pload(t) < 0} , (9)

S2 = {t ∈ [t0, t0 + T ] | D + ηpvPpv(t)− Pload(t) = 0} , (10)

S3 = {t ∈ [t0, t0 + T ] | D + ηpvPpv(t)− Pload(t) > 0} . (11)

Note that4 S1⊕S2⊕S3 = [t0, t0+T ]. Intuitively, S1 is the set

of time instants at which the battery can only be discharged,

S2 is the set of time instants at which the battery can be

discharged or is not used (i.e., u(t) = 0), and S3 is the set of

time instants at which the battery can be charged, discharged,

or is not used.

Proposition 1 Given the optimization problem in Eq. (8), if

i) t0 ∈ S1, or

ii) S3 is empty, or

iii) t0 /∈ S1 (or equivalently, t0 ∈ S2 ∪ S3), S3 is nonempty,

S1 is nonempty, and ∃t1 ∈ S1, ∀t3 ∈ S3, t1 < t3,

then either there is no feasible control or u(t) = 0 for t ∈
[t0, t0 + T ].

Proof: Now we prove that, under these three cases, either

there is no feasible control or u(t) = 0 for t ∈ [t0, t0 + T ].

i) If t0 ∈ S1, then u(t0) ≤ D+ ηpvPpv(t0)−Pload(t0) < 0.

However, since EB(t0) = 0, the battery cannot be

discharged at time t0. Therefore, there is no feasible

control.

ii) If S3 is empty, it means that u(t0) ≤ D + ηpvPpv(t0) −
Pload(t0) ≤ 0 for any t ∈ [t0, t0 + T ], which implies that

the battery can never be charged. If S1 is nonempty, then

there exists some time instant when the battery has to be

discharged. Since EB(t0) = 0 and the battery can never

be charged, there is no feasible control. If S1 is empty,

then u(t) = 0 for any t ∈ [t0, t0+T ] is the only feasible

control because EB(t0) = 0.

iii) In this case, the battery has to be discharged at time t1,

but the charging can only happen at time instant t3 ∈ S3.

If ∀t3 ∈ S3, ∃t1 ∈ S1 such that t1 < t3, then the battery

is always discharged before possibly being charged. Since

EB(t0) = 0, then there is no feasible control.

4C = A⊕B means C = A ∪B and A ∩B = ∅.

Note that if the only feasible control is u(t) = 0 for t ∈
[t0, t0+T ], then the battery is not used. Therefore, we impose

the following assumption.

Assumption 1 In the optimization problem in Eq. (8), t0 ∈
S2 ∪ S3, S3 is nonempty, and either

• S1 is empty, or

• S1 is nonempty, but ∀t1 ∈ S1, ∃t3 ∈ S3, t3 < t1,

where S1, S2, S3 are defined in Eqs. (9), (10), (11).

Given Assumption 1, there exists at least one feasible

control. Now we examine how J(Cref) changes when Cref

increases.

Proposition 2 Consider the optimization problem in Eq. (8)

with fixed t0, T,K,Z, Tc, and D. If C1
ref < C2

ref, then

J(C1
ref) ≥ J(C2

ref).

Proof: Given C1
ref, suppose control u1(t) achieves the

minimum cost J(C1
ref) and the corresponding states for the

battery charge and capacity loss are E1
B(t) and ∆C1(t). Since

E1
B(t) + ∆C1(t) ≤ C1

ref < C2
ref ,

ηBu
1(t)Tc +∆C1(t) ≤ C1

ref < C2
ref if u

1(t) > 0,

−
u1(t)

ηB

Tc +∆C1(t) ≤ C1
ref < C2

ref if u
1(t) < 0,

Pload(t)− ηpvPpv(t) + u1(t) ≤ D ,

u1(t) is also a feasible control for problem (8) with C2
ref, and

results in the cost J(C1
ref). Since J(C2

ref) is the minimum cost

over the set of all feasible controls which include u1(t), we

must have J(C1
ref) ≥ J(C2

ref).
In other words, J is non-increasing with respect to the

parameter Cref, i.e., J is monotonically decreasing (though

may not be strictly monotonically decreasing). If Cref = 0,

then 0 ≤ ∆C(t) ≤ Cref = 0, which implies that u(t) = 0. In

this case, J has the largest value

Jmax = J(0) =

∫ t0+T

t0

Cg(τ)(Pload(τ)−ηpvPpv(τ))dτ . (12)

Proposition 2 also justifies the storage size determination

problem. Note that the critical value Cc
ref (as defined in

Problem 1) is unique as shown below.

Proposition 3 Given the optimization problem in Eq. (8) with

fixed t0, T,K,Z, Tc, and D, Cc
ref is unique.

Proof: We prove it via contradiction. Suppose Cc
ref is not

unique. In other words, there are two different critical values

Cc1
ref and Cc2

ref . Without loss of generality, suppose Cc1
ref < Cc2

ref .

By definition, J(Cc1
ref) > J(Cc2

ref) because Cc2
ref is a critical

value, while J(Cc1
ref) = J(Cc2

ref) because Cc1
ref is a critical value.

A contradiction. Therefore, we must have Cc1
ref = Cc2

ref .

Intuitively, if the unit cost for the battery capacity loss K is

higher (compared with purchasing electricity from the grid),

then it might be preferable that the battery is not used at all,

which results in Cc
ref = 0, as shown below.

Proposition 4 Consider the optimization problem in Eq. (8)

with fixed t0, T,K,Z, Tc, and D under Assumption 1.



6

i) If

K ≥
(maxt Cg(t)−mint Cg(t))ηB

Z
,

then J(Cref) = Jmax, which implies that Cc
ref = 0;

ii) if

K <
(maxt Cg(t)−mint Cg(t))ηB

Z
,

then

J(Cref) ≥Jmax − (max
t

Cg(t)−min
t

Cg(t)−
KZ

ηB

)×

T × (D +max
t

(ηpvPpv(t)− Pload(t))) ,

where maxt and mint are calculated for t ∈ [t0, t0 + T ].

Proof: The cost function can be rewritten as

J(Cref) =Jmax +

∫ t0+T

t0

Cg(τ)u(τ)dτ +K∆C(t0 + T )

=Jmax +

∫ t0+T

t0

Cg(τ)u(τ)dτ+

K

∫ t0+T

t0

−Z
u(τ)

ηB

|u(τ)<0dτ

=Jmax + J+ + J− ,

where

J+ =

∫ t0+T

t0

Cg(τ)u(τ)|u(τ)>0dτ ,

and

J− =

∫ t0+T

t0

(Cg(τ)−
KZ

ηB

)u(τ)|u(τ)<0dτ .

Note that J+ ≥ 0 because the integrand Cg(τ)u(τ)|u(τ)>0 is

always nonnegative.

i) We first consider K ≥
(maxt Cg(t)−mint Cg(t))ηB

Z
. There

are two possibilities:

• K ≥
(maxt Cg(t))ηB

Z
, or equivalently, maxt Cg(t) ≤

KZ
ηB

.

Thus, for any t ∈ [t0, t0 + T ], Cg(t) −
KZ
ηB

≤ 0, which

implies that J− ≥ 0. Therefore, J(Cref) ≥ Jmax.

•
(maxt Cg(t)−mint Cg(t))ηB

Z
≤ K <

(maxt Cg(t))ηB

Z
.

Let A1 = maxt Cg(t) − KZ
ηB

, then A1 > 0.

Let A2 = mint Cg(t), then A2 ≥ 0. Since
(maxt Cg(t)−mint Cg(t))ηB

Z
≤ K, A2 ≥ A1. Now we

have J+ ≥ A2

∫ t0+T

t0
u(τ)|u(τ)>0dτ , and J− ≥

A1

∫ t0+T

t0
u(τ)|u(τ)<0dτ . Therefore,

J(Cref) ≥Jmax +A2

∫ t0+T

t0

u(τ)|u(τ)>0dτ+

A1

∫ t0+T

t0

u(τ)|u(τ)<0dτ

=Jmax + (A2 −A1)

∫ t0+T

t0

u(τ)|u(τ)>0dτ+

A1

∫ t0+T

t0

u(τ)dτ

≥Jmax +A1

∫ t0+T

t0

u(τ)dτ .

Since EB(t0 + T ) = EB(t0) +
∫ t0+T

t0
PB(τ)dτ ≥ 0 and

EB(t0) = 0, we have

0 ≤

∫ t0+T

t0

PB(τ)dτ

=

∫ t0+T

t0

PB(τ)|PB(τ)>0dτ +

∫ t0+T

t0

PB(τ)|PB(τ)<0dτ

=

∫ t0+T

t0

u(τ)ηB|u(τ)>0dτ +

∫ t0+T

t0

u(τ)

ηB

|u(τ)<0dτ

≤

∫ t0+T

t0

u(τ)|u(τ)>0dτ +

∫ t0+T

t0

u(τ)|u(τ)<0dτ

=

∫ t0+T

t0

u(τ)dτ . (13)

Therefore, we have J(Cref) ≥ Jmax.

In summary, if K ≥
(maxt Cg(t)−mint Cg(t))ηB

Z
, we have

J(Cref) ≥ Jmax, which implies that J(Cref) ≥ J(0). Since

J(Cref) is a non-increasing function of Cref, we also have

J(Cref) ≤ J(0). Thus, we must have J(Cref) = J(0) = Jmax

for Cref ≥ 0, and Cc
ref = 0 by definition.

ii) We now consider K <
(maxt Cg(t)−mint Cg(t))ηB

Z
, which

implies that A1 > A2 ≥ 0. Then

J(Cref) ≥Jmax +A2

∫ t0+T

t0

u(τ)|u(τ)>0dτ+

A1

∫ t0+T

t0

u(τ)|u(τ)<0dτ

=Jmax +A2

∫ t0+T

t0

u(τ)dτ+

(A1 −A2)

∫ t0+T

t0

u(τ)|u(τ)<0dτ .

Since
∫ t0+T

t0
u(τ)dτ ≥ 0 as argued in the proof to i),

J(Cref) ≥ Jmax + (A1 − A2)
∫ t0+T

t0
u(τ)|u(τ)<0dτ . Now

we try to lower bound
∫ t0+T

t0
u(τ)|u(τ)<0dτ . Note that

∫ t0+T

t0
u(τ)dτ ≥ 0 (as shown in Eq. (13)) implies that

∫ t0+T

t0

u(τ)|u(τ)<0dτ ≥ −

∫ t0+T

t0

u(τ)|u(τ)>0dτ .

Given Assumption 1, S3 is nonempty, which implies that

D + maxt(ηpvPpv(t) − Pload(t)) > 0. Since u(t) ≤ D +
ηpvPpv(t) − Pload(t) ≤ D + maxt(ηpvPpv(t) − Pload(t)),
∫ t0+T

t0
u(τ)|u(τ)>0dτ ≤ T×(D+maxt(ηpvPpv(t)−Pload(t))),

which implies that

∫ t0+T

t0
u(τ)|u(τ)<0dτ ≥ −T × (D +maxt(ηpvPpv(t)− Pload(t))) . (14)

In summary, J(Cref) ≥ Jmax − (A1 − A2) × T × (D +
maxt(ηpvPpv(t)− Pload(t))), which proves the result.

Given the result in Proposition 4, we impose the following

additional assumption on the unit cost of the battery capacity

loss to guarantee that Cc
ref is positive.

Assumption 2 In the optimization problem in Eq. (8),

K <
(maxt Cg(t)−mint Cg(t))ηB

Z
.
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In other words, the cost of the battery capacity loss during

operations is less than the potential gain expressed as the

margin between peak and off-peak prices modified by the

conversion efficiency of the battery converters and the battery

aging coefficient.

Remark 2 There are two implications of Assumption 2:

• If the pricing signal is given, then the condition in

Assumption 2 provides a criterion for evaluating the

economic value of batteries compared to purchasing

electricity from the grid. In other words, only if the unit

cost of the battery capacity loss satisfies Assumption 2,

it is desirable to use battery storages. For example, if the

price is constant, then the condition reduces to K < 0,

which cannot be satisfied by any battery. In other words,

the use of batteries cannot reduce the total cost.

• If the battery and its converter are chosen, i.e., K,Z, ηB
are all fixed, then the condition in Assumption 2 imposes

a constraint on the pricing signal so that the battery can

be used to lower the total cost. �

Since J(Cref) is a non-increasing function of Cref and lower

bounded by a finite value given Assumptions 1 and 2, the

storage size determination problem is well defined. Now we

show lower and upper bounds on the critical battery capacity

in the following proposition.

Proposition 5 Consider the optimization problem in Eq. (8)

with fixed t0, T,K,Z, Tc, and D under Assumptions 1 and 2.

Then C lb
ref ≤ Cc

ref ≤ Cub
ref, where

C lb
ref = max(

Tc

ηB

× (max
t

(Pload(t)− ηpvPpv(t))−D), 0) ,

and

Cub
ref = max(ηBTc+

ZT

ηB

, ηBT )×(D+max
t

(ηpvPpv(t)−Pload(t)) .

Proof: We first show the lower bound via contradic-

tion. Without loss of generality, we assume that Tc

ηB
×

(maxt(Pload(t) − ηpvPpv(t)) − D) > 0 (because we require

Cc
ref ≥ 0). Suppose

Cc
ref < C lb

ref =
Tc

ηB

× (max
t

(Pload(t)− ηpvPpv(t))−D) ,

or equivalently,

D < −
Cc

refηB

Tc

+max
t

(Pload(t)− ηpvPpv(t)) .

Therefore, there exists t1 ∈ [t0, t0 + T ] such that D <

−
Cc

refηB

Tc
+Pload(t1)−ηpvPpv(t1). Since u(t1) ≤ D−Pload(t1)+

ηpvPpv(t1) < −
Cc

refηB

Tc
≤ 0, we have

PB(t1) =
u(t1)

ηB

≤
D + ηpvPpv(t1)− Pload(t1)

ηB

< −
Cc

ref

Tc

≤ −
Cc

ref −∆C(t1)

Tc

= PBmin .

The implication is that the control does not satisfy the dis-

charging constraint at t1. Therefore, C lb
ref ≤ Cc

ref.

To show Cc
ref ≤ Cub

ref, it is sufficient to show that if Cref ≥
Cub

ref, the electricity that can be stored never exceeds Cub
ref.

Note that the battery charging is limited by PBmax, i.e.,

PB(t) = ηBu(t) ≤ PBmax. Now we try to lower bound PBmax.

PBmax =
Cref −∆C(t)

Tc

≥
Cref −∆C(t0 + T )

Tc

,

in which the second inequality holds because ∆C(t) is a

non-decreasing function of t. By applying the aging model

in Eq. (3), we have

PBmax ≥ Cref−∆C(t0+T )
Tc

=
Cref+

∫ t0+T

t0
Z

u(τ)
ηB

|u(τ)<0dτ

Tc
.

Using Eq. (14), we have

PBmax ≥
Cref −

ZT
ηB

× (D +maxt(ηpvPpv(t)− Pload(t)))

Tc

.

Since Cref ≥ Cub
ref, we have

PBmax ≥
(max(ηBTc+

ZT
ηB

,ηBT )−ZT
ηB

)×(D+maxt(ηpvPpv(t)−Pload(t)))

Tc

≥ηB(D +max
t

(ηpvPpv(t)− Pload(t))) .

Therefore, u(t) ≤ D + ηpvPpv(t) − Pload(t) ≤ D +
maxt(ηpvPpv(t) − Pload(t)) ≤ PBmax

ηB
, which implies that

PB(t) = ηBu(t) ≤ PBmax. Thus, the only constraint on u
related to the battery charging is u(t) ≤ D+maxt(ηpvPpv(t)−
Pload(t)). In turn, during the time interval [t0, t0 + T ], the

maximum amount of electricity that can be charged is

∫ t0+T

t0

PB(τ)|PB(τ)>0dτ =

∫ t0+T

t0

ηBu(τ)|u(τ)>0dτ

≤ηBT × (D +max
t

(ηpvPpv(t)− Pload(t))) ,

which is less than or equal to Cub
ref. In summary, if Cref ≥ Cub

ref,

the amount of electricity that can be stored never exceeds Cub
ref,

and therefore, Cc
ref ≤ Cub

ref.

Remark 3 As discussed in Proposition 1, if S3 is empty, or

equivalently, (D+maxt(ηpvPpv(t)−Pload(t)) ≤ 0, then Cub
ref ≤

0, which implies that Cc
ref = 0; this is consistent with the result

in Proposition 1 when S1 is empty. �

IV. ALGORITHMS FOR CALCULATING Cc
ref

In this section, we study algorithms for calculating the

critical battery capacity Cc
ref.

Given the storage size determination problem, one approach

to calculate the critical battery capacity is by calculating

the function J(Cref) and then choosing the Cref such that

the conditions in Problem 1 are satisfied. Though Cref is a

continuous variable, we can only pick a finite number of Cref’s

and then approximate the function J(Cref). One way to pick

these values is that we choose Cref from Cub
ref to C lb

ref with the

step size5 −τcap < 0. In other words,

C i
ref = Cub

ref − i× τcap ,

5Note that one way to implement the critical battery capacity in practice is
to connect multiple identical batteries of fixed capacity Cfixed in parallel. In
this case, τcap can be chosen to be Cfixed.
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where6 i = 0, 1, ..., L and L = ⌈
Cub

ref−C lb
ref

τcap
⌉. Suppose the picked

value is C i
ref, and then we solve the optimization problem in

Eq. (8) with C i
ref. Since the battery dynamics and aging model

are nonlinear functions of u(t), we introduce a binary indicator

variable Iu(t), in which Iu(t) = 0 if u(t) ≥ 0 and Iu(t) = 1 if

u(t) < 0. In addition, we use δt as the sampling interval, and

discretize Eqs. (2) and (3) as

EB(k + 1) = EB(k) + PB(k)δt ,

∆C(k + 1) =

{

∆C(k)− ZPB(k)δt if PB(k) < 0

∆C(k) otherwise .

With the indicator variable Iu(t) and the discretization of

continuous dynamics, the optimization problem in Eq. (8)

can be converted to a mixed integer programming problem

with indicator constraints (such constraints are introduced in

CPlex [22]), and can be solved using the CPlex solver [22]

to obtain J(C i
ref). In the storage size determination problem,

we need to check if J(C i
ref) = J(Cc

ref), or equivalently,

J(C i
ref) = J(Cub

ref); this is because J(Cc
ref) = J(Cub

ref) due

to Cc
ref ≤ Cub

ref and the definition of Cc
ref. Due to numerical

issues in checking the equality, we introduce a small constant

τcost > 0 so that we treat J(C i
ref) the same as J(Cub

ref) if

J(C i
ref)−J(Cub

ref) < τcost. Similarly, we treat J(C i
ref) > J(Cub

ref)
if J(C i

ref)−J(Cub
ref) ≥ τcost. The detailed algorithm is given in

Algorithm 1. At Step 4, if J(C i
ref)−J(C0

ref) ≥ τcost, or equiv-

alently, J(C i
ref)− J(Cub

ref) ≥ τcost, we have J(C i
ref) > J(Cub

ref).
Because of the monotonicity property in Proposition 2, we

know J(C j
ref) ≥ J(C i

ref) > J(C i-1
ref ) = J(Cub

ref) for any

j = i + 1, ..., L. Therefore, the for loop can be terminated,

and the approximated critical battery capacity is C i-1
ref .

It can be verified that Algorithm 1 stops after at most L+1
steps, or equivalently, after solving at most

⌈
Cub

ref − C lb
ref

τcap

⌉+ 1

optimization problems in Eq. (8). The accuracy of the critical

battery capacity is controlled by the parameters δt, τcap, τcost.

Fixing δt, τcost, the output is within

[Cc
ref − τcap, C

c
ref + τcap] .

Therefore, by decreasing τcap, the critical battery capacity can

be approximated with an arbitrarily prescribed precision.

Since the function J(Cref) is a non-increasing function of

Cref, we propose Algorithm 2 based on the idea of bisection

algorithms. More specifically, we maintain three variables

C1
ref < C3

ref < C2
ref ,

in which C1
ref (or C2

ref) is initialized as C lb
ref (or Cub

ref). We set

C3
ref to be

C1
ref+C2

ref

2 . Due to Proposition 2, we have

J(C1
ref) ≥ J(C3

ref) ≥ J(C2
ref) .

If J(C3
ref) = J(C2

ref) (or equivalently, J(C3
ref) = J(Cub

ref); this

is examined in Step 7), then we know that C1
ref ≤ Cc

ref ≤ C3
ref;

6The ceiling function ⌈x⌉ is the smallest integer which is larger than or
equal to x.

Algorithm 1 Simple Algorithm for Calculating Cc
ref

Input: The optimization problem in Eq. (8) with fixed
t0, T,K,Z, Tc, D under Assumptions 1 and 2, the calculated
bounds C lb

ref, C
ub
ref, and parameters δt, τcap, τcost

Output: An approximation of Cc
ref

1: Initialize C i
ref = Cub

ref − i × τcap, where i = 0, 1, ..., L and L =

⌈
C

ub
ref−C

lb
ref

τcap
⌉;

2: for i = 0, 1, ..., L do
3: Solve the optimization problem in Eq. (8) with C i

ref, and obtain
J(C i

ref);
4: if i ≥ 1 and J(C i

ref)− J(C0
ref) ≥ τcost then

5: Set Cc
ref = C i-1

ref , and exit the for loop;
6: end if
7: end for
8: Output Cc

ref.

Algorithm 2 Efficient Algorithm for Calculating Cc
ref

Input: The optimization problem in Eq. (8) with fixed
t0, T,K,Z, Tc, D under Assumptions 1 and 2, the calculated
bounds C lb

ref, C
ub
ref, and parameters δt, τcap, τcost

Output: An approximation of Cc
ref

1: Let C1
ref = C lb

ref and C2
ref = Cub

ref;
2: Solve the optimization problem in Eq. (8) with C2

ref, and obtain
J(C2

ref);
3: Let sign = 1;
4: while sign = 1 do

5: Let C3
ref =

C
1
ref+C

2
ref

2
;

6: Solve the optimization problem in Eq. (8) with C3
ref, and obtain

J(C3
ref);

7: if J(C3
ref)− J(C2

ref) < τcost then

8: Set C2
ref = C3

ref, and J(C2
ref) = J(Cub

ref);
9: else

10: Set C1
ref = C3

ref and set J(C1
ref) with J(C3

ref);
11: if C2

ref − C3
ref < τcap then

12: Set sign = 0;
13: end if
14: end if
15: end while
16: Output Cc

ref = C2
ref.

therefore, we update C2
ref with C3

ref but do not update7 the

value J(C2
ref). On the other hand, if J(C3

ref) > J(C2
ref), then

we know that C2
ref ≥ Cc

ref ≥ C3
ref; therefore, we update C1

ref

with C3
ref and set J(C1

ref) with J(C3
ref). In this case, we also

check if C2
ref − C3

ref < τcap: if it is, then output C2
ref since we

know the critical battery capacity is between C3
ref and C2

ref;

otherwise, the while loop is repeated. Since every execution

of the while loop halves the interval [C1
ref, C

2
ref] starting from

[C lb
ref, C

ub
ref], the maximum number of executions of the while

loop is ⌈log2
Cub

ref−C lb
ref

τcap
⌉, and the algorithm requires solving at

most

⌈log2
Cub

ref − C lb
ref

τcap

⌉+ 1

optimization problems in Eq. (8). This is in contrast to

solving ⌈
Cub

ref−C lb
ref

τcap
⌉+1 optimization problems in Eq. (8) using

Algorithm 1.

7Note that if we update J(C2
ref) with J(C3

ref
), then the difference between

J(C2
ref) and J(Cub

ref
) can be amplified when C2

ref is updated again later on.
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Fig. 2. PV output based on GHI measurement at La Jolla, California, where
tick marks indicate noon local standard time for each day.

Remark 4 Note that the critical battery capacity can be

implemented by connecting batteries with fixed capacity in

parallel because we only assume that the minimum battery

charging time is fixed. �

V. SIMULATIONS

In this section, we calculate the critical battery capacity

using Algorithm 2, and verify the results in Section III via

simulations. The parameters used in Section II are chosen

based on typical residential home settings and commercial

buildings.

A. Setting

The GHI data is the measured GHI in July 2010 at La

Jolla, California. In our simulations, we use η = 0.15, and

S = 10m2. Thus Ppv(t) = 1.5 × GHI(t)(W ). We have two

choices for t0:

• t0 is 0000 h local standard time (LST) on Jul 8, 2010,

and the PV output is given in Fig. 2(a) for the following

four days starting from t0 (the interval is 30 minutes; this

corresponds to the scenario in which there are relatively

large variations in the PV output);

• t0 is 0000 h LST on Jul 13, 2010, and the PV output

is given in Fig. 2(b) for the following four days starting

from t0 (this corresponds to the scenario in which there

are relatively small variations in the PV output).

The time-of-use electricity purchase rate Cg(t) is
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Fig. 3. Time-of-use pricing for the summer season at San Diego, CA [18].

• 16.5¢/kWh from 11AM to 6PM (on-peak);

• 7.8¢/kWh from 6AM to 11AM and 6PM to 10PM (semi-

peak);

• 6.1¢/kWh for all other hours (off-peak).

This rate is for the summer season proposed by SDG&E [18],

and is plotted in Fig. 3.

Since the battery dynamics and aging are characterized by

continuous ordinary differential equations, we use δt = 0.5h
as the sampling interval, and discretize Eqs. (2) and (3) as

EB(k + 1) = EB(k) + PB(k)δt ,

∆C(k + 1) =

{

∆C(k)− ZPB(k)δt if PB(k) < 0

∆C(k) otherwise .

In simulations, we assume that lead-acid batteries are used;

therefore, the aging coefficient is Z = 3× 10−4 [5], the unit

cost for capacity loss is K = 0.15$/Wh based on the cost

of 150$/kWh [23], and the minimum charging time is Tc =
12h [24].

For the PV DC-to-AC converter and the battery DC-to-

AC/AC-to-DC converters, we use ηpv = ηB = 0.9. It can be

verified that Assumption 2 holds because the threshold value

for K is8

(maxt Cg(t)−mint Cg(t))ηB

Z
=

(16.5− 6.1)× 10−5 × 0.9

3× 10−4
≈ 0.3120 .

For the load, we consider two typical load profiles: the res-

idential load profile as given in Fig. 4(a), and the commercial

load profile as given in Fig. 4(b). Both profiles resemble the

corresponding load profiles in Fig. 8 of [17].9 Note that in

the residential load profile, one load peak appears in the early

morning, and the other in the late evening; in contrast, in the

commercial load profile, the two load peaks appear during

the daytime and occur close to each other. For multiple day

simulations, the load is periodic based on the load profiles in

Fig. 4.

8Suppose the battery is a Li-ion battery with the same aging coefficient as
a lead-acid battery. Since the unit cost K = 1.333$/Wh based on the cost
of 1333$/kWh [23] (and K = 0.78$/Wh based on the 10-year projected
cost of 780$/kWh [23]), the use of such a battery is not as competitive as
directly purchasing electricity from the grid.

9However, simulations in [17] start at 7AM so Fig. 4 is a shifted version
of the load profile in Fig. 8 of [17].
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(a) Residential load averaged at 536.8(W ).
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(b) Commercial load averaged at 485.6(W ).

Fig. 4. Typical residential and commercial load profiles.

For the parameter D, we use D = 800(W ). Since the

maximum of the loads in Fig. 4 is around 1000(W ), we will

illustrate the peak shaving capability of battery storage. It can

be verified that Assumption 1 holds.

B. Results

We first examine the storage size determination problem

using Algorithm 2 in the following setting (called the basic

setting):

• the cost minimization duration is T = 24(h),
• t0 is 0000 h LST on Jul 13, 2010, and

• the load is the residential load as shown in Fig. 4(a).

The lower and upper bounds in Proposition 5 are calculated

as 2667(Wh) and 39269(Wh). When applying Algorithm 2,

we choose τcap = 10(Wh) and τcost = 10−4. When running

the algorithm, 13 optimization problems in Eq. (8) have

been solved. The maximum cost Jmax is −0.1681 while the

minimum cost is −0.3022, which is larger than the lower

bound −2.5242 as calculated based on Proposition 4. The

critical battery capacity is calculated to be 16714(Wh).
Now we examine the solution to the optimization problem

in Eq. (8) in the basic setting with three different battery

capacities Cc
ref = 16714(Wh), CL

ref = 20714(Wh) (namely,

a battery capacity larger than the critical capacity), and

CS
ref = 12714(Wh) (namely, a battery capacity smaller than

the critical capacity).

For the value Cc
ref, we solve the mixed integer programming

problem using the CPlex solver [22], and the objective function

is J(16714) = −0.3022. PB(t), EB(t) and C(t) are plotted

in Fig. 5(a). The plot of C(t) is consistent with the fact that

there is capacity loss (i.e., the battery ages) only when the

battery is discharged. The capacity loss is around 2.24(Wh),
and

∆C(t0 + T )

Cref

=
2.24

16714
= 1.34× 10−4 ≈ 0 ,

which justifies the assumption we make when linearizing the

nonlinear battery aging model in the Appendix. The dynamic

pricing signal Cg(t), PB(t), Pload(t) and Pg(t) are plotted

in Fig. 5(b). Now we examine the effects of power arbitrage.

From 8AM to 11AM, there is surplus PV generation as shown

in Fig. 5(c). However, the surplus generation is not sold back

to the grid (as Pg(t) > 0 during this period from the third

plot of Fig. 5(b)) because currently the electricity price is

not high enough. Instead it is stored in the battery (which

can be observed from the second plot of Fig. 5(b)), and is

then sold when the price is high after 11AM. From the third

plot in Fig. 5(b), it can be verified that, to minimize the cost,

electricity is purchased from the grid when the time-of-use

pricing is low, and is sold back to the grid when the time-

of-use pricing is high; in addition, the peak demand in the

late evening (that exceeds D = 800(W )) is shaved via battery

discharging, as shown in detail in Fig. 5(d).

For the larger battery capacity CL
ref = 20714(Wh), we solve

the mixed integer programming problem, and the objective

function is J(20714) = −0.3022, which is the same as the

cost with Cc
ref as expected. PB(t), EB(t) and C(t) are plotted

in Fig. 6(a). The dynamic pricing signal Cg(t), PB(t), Pload(t)
and Pg(t) are plotted in Fig. 6(b). It can be observed that in

this case PB(t) and Pg(t) are different from the ones with

the battery capacity Cc
ref even though the costs are the same.

The implication is that optimal control to the problem in

Eq. (8) is not necessarily unique. Similarly, for the smaller

battery capacity CS
ref = 12714(Wh), we solve the mixed

integer programming problem, and the objective function is

J(12714) = −0.2950, which is larger than the cost with Cc
ref

as expected. PB(t), EB(t) and C(t) are plotted in Fig. 7(a).

The dynamic pricing signal Cg(t), PB(t), Pload(t) and Pg(t)
are plotted in Fig. 7(b). Based on the plots of Pg(t) in Fig. 5(b)

and Fig. 7(b), it can be observed that in this case, the amount

of electricity sold back to the grid is smaller than the case

with Cc
ref, which results in a larger cost.

Those observations of the case with the battery capacity

Cc
ref for T = 24(h) also hold for T = 48(h). In this case, we

change T to be 48(h) in the basic setting, and solve the battery

sizing problem. The critical battery capacity is calculated to be

Cc
ref = 16800(Wh). Now we examine the solution to the opti-

mization problem in Eq. (8) with the critical battery capacity

16800(Wh), and obtain J(16800) = −0.5657. PB(t), EB(t),
C(t) are plotted in Fig. 8(a), and the dynamic pricing signal

Cg(t), PB(t), Pload(t) and Pg(t) are plotted in Fig. 8(b). Note

that the battery is gradually charged in the first half of each

day, and then gradually discharged in the second half to be

empty at the end of each day, as shown in the second plot of

Fig. 8(a).

To illustrate the peak shaving capability of the dynamic

pricing signal as discussed in Remark 1, we change the load
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Fig. 5. Solution to a typical setting in which t0 is on Jul 13, 2010, T =
24(h), the load is shown in Fig. 4(a), and Cref = 16714(Wh).

to the commercial load as shown in Fig. 4(b) in the basic

setting, and solve the battery sizing problem. The critical

battery capacity is calculated to be Cc
ref = 13816(Wh), and

J(13816) = −0.1596. The dynamic pricing signal Cg(t),
PB(t), Pload(t) and Pg(t) are plotted in Fig. 9. For the

commercial load, the duration of the peak loads coincides

with that of the high price. To minimize the total cost, during

peak times the battery is discharged, and the surplus electricity

from PV after supplying the peak loads is sold back to the

grid resulting in a negative net power purchase from the grid,
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as shown in the third plot in Fig. 9. Therefore, unlike the

residential case, the high price indirectly forces the shaving of

the peak loads.

Now we consider settings in which the load could be either

residential loads or commercial loads, the starting time could

be on either Jul 8 or Jul 13, 2010, and the cost optimization

duration can be 24(h), 48(h), 96(h). The results are shown in
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Tables I and II. In Table I, t0 is on Jul 8, 2010, while in

Table II, t0 is on Jul 13, 2010. In the pair (24, R), 24 refers

to the cost optimization duration, and R stands for residential

loads; in the pair (24, C), C stands for commercial loads.

We first focus on the effects of load types. From Tables I

and II, the commercial load tends to result in a higher cost

(even though the average of the commercial load is smaller

than that of the residential load) because the peaks of the

commercial load coincide with the high price. Commercial

loads tend to result in larger optimum battery capacity Cc
ref

as shown in Tables I and II, presumably because the peak

load occurs during the peak pricing period and reductions

in surplus PV production have to be balanced by additional

battery capacity. If t0 is on Jul 8, 2010, the PV generation is

relatively lower than the scenario in which t0 is on Jul 13,

2010, and as a result, the battery capacity is smaller and the

cost is higher. This is because it is more profitable to store

PV generated electricity than grid purchased electricity. From

Tables I and II, it can be observed that the cost optimization

duration has relatively larger impact on the battery capacity

for commercial loads, and relatively less impact for residential

loads.

In Tables I and II, the row Jmax corresponds to the cost in

the scenario without batteries, the row J(Cc
ref) corresponds to

the cost in the scenario with batteries of capacity Cc
ref, and the

row Savings10 corresponds to Jmax − J(Cc
ref). For Table I, we

can also calculate the relative percentage of savings using the

formula
Jmax−J(Cc

ref)
Jmax

, and get the row Percentage. One obser-

vation is that the relative savings by using batteries increase as

the cost optimization duration increases. For example, when

T = 96(h) and the load type is residential, 15.60% cost can

be saved when a battery of capacity 9461(Wh) is used; when

T = 96(h) and the load type is commercial, 25.05% cost

can be saved when a battery of capacity 14088(Wh) is used.

This clearly shows the benefits of utilizing batteries in grid-

connected PV systems. In Table II, only the absolute savings

are shown since negative costs are involved.

VI. CONCLUSIONS

In this paper, we studied the problem of determining the size

of battery storage for grid-connected PV systems. We proposed

lower and upper bounds on the storage size, and introduced

an efficient algorithm for calculating the storage size. Batteries

are used for power arbitrage and peak shaving. Note that, when

PV generation costs reach grid parity, abundant PV generation

will cause demand peaks and high electricity price at night,

and low prices will occur during the day. Under this scenario,

batteries could also be used for energy shifting, i.e., saving

energy when PV generation is larger than load during the day

for a future time when load exceeds PV generation at night.

In our analysis, the conversion efficiency of the PV DC-

to-AC converter and the battery DC-to-AC and AC-to-DC

converters is assumed to be a constant. We acknowledge

that this is not the case in the current practice, in which

the efficiency of converters depends on the input power in

a nonlinear fashion [5]. This will be part of our future work.

Another implicit assumption we made is that there is no energy

loss due to battery self-discharging. Current investigation on

battery self-discharging (e.g., the work in [25], [26]) shows

that the self-discharging rate is very small on the order of 0.2%

per day. In addition, such work is usually based on electric

circuit equivalent models and assumes that a battery is not

used for a long time, both of which do not hold in our setting.

We leave this issue as part of our future work. In addition,

we would like to extend the results to distributed renewable

energy storage systems, and generalize our setting by taking

into account stochastic PV generation.

APPENDIX

Derivation of the Simplified Battery Aging Model

Eqs. (11) and (12) in [5] are used to model the battery

capacity loss, and are combined and rewritten below using the

notation in this work:

C(t+δt)−C(t) = −Cref×Z×(
EB(t)

C(t)
−
EB(t+ δt)

C(t+ δt)
) . (15)

10Note that in Table II, part of the costs are negative. Therefore, the word
“Earnings” might be more appropriate than “Savings”.
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TABLE I
SIMULATION RESULTS FOR t0 ON JUL 8, 2010

(24, R) (48, R) (96, R) (24, C) (48, C) (96, C)

Cc
ref

6885 8173 9461 8827 13217 14088

J(Cc
ref
) 0.8480 1.5646 2.0234 0.9890 1.7930 2.4272

Jmax 0.9308 1.7406 2.3975 1.1410 2.1610 3.2384

Savings 0.0828 0.1760 0.3741 0.1520 0.3680 0.8112

Percentage 8.90% 10.11% 15.60% 13.32% 17.03% 25.05%

TABLE II
SIMULATION RESULTS FOR t0 ON JUL 13, 2010

(24, R) (48, R) (96, R) (24, C) (48, C) (96, C)

Cc
ref

16714 16800 16847 13816 17691 17618

J(Cc
ref
) -0.3022 -0.5657 -0.9096 -0.1596 -0.3357 -0.5045

Jmax -0.1681 -0.2938 -0.3644 0.0421 0.1267 0.4766

Savings 0.1341 0.2719 0.5452 0.2017 0.4624 0.9811

If δt is very small, then C(t+δt) ≈ C(t). Therefore,
EB(t)
C(t) −

EB(t+δt)
C(t+δt) ≈ −PB(t)δt

C(t) . If we plug in the approximation, divide

δt on both sides of Eq. (15), and let δt goes to 0, then we

have
dC(t)

dt
= Cref × Z ×

PB(t)

C(t)
. (16)

This holds only if PB(t) < 0 as in [5], i.e., there could be

capacity loss only when discharging the battery.

Since Eq. (16) is a nonlinear equation, it is difficult to solve.

Let ∆C(t) = Cref − C(t), then Eq. (16) can be rewritten as

d∆C(t)

dt
= −Z ×

PB(t)

1− ∆C(t)
Cref

. (17)

If t is much shorter than the life time of the battery, then the

percentage of the battery capacity loss
∆C(t)
Cref

is very close to

0. Therefore, Eq. (17) can be simplified to the following linear

ODE
d∆C(t)

dt
= −Z × PB(t) ,

when PB(t) < 0. If PB(t) ≥ 0, there is no capacity loss, i.e.,

dC(t)

dt
= 0 .
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