Exact Sizing of Battery Capacity
for Photovoltaic Systems

Yu RWA, Jan Kleisdl, Sonia Martine%

3GE Global Research at Shanghai (eméfl. Ru@ge . com).
bMechanical and Aerospace Engineering Department, Uniiseos California, San Diego (e-mail:
jkleisslQucsd.edu, soniamd@ucsd.edu).

Abstract

In this paper, we study battery sizing for grid-connectedtptoltaic (PV) systems. In our
setting, PV generated electricity is used to supply the aehfieom loads: on the one hand, if
there is surplus PV generation, it is stored in a batteryqag &s the battery is not fully charged),
which has a fixed maximum chargifaischarging rate; on the other hand, if the PV generation
and battery discharging cannot meet the demand, elegtigcipurchased from the grid. Our
objective is to choose an appropriate battery size whilémiiing the electricity purchase cost
from the grid. More specifically, we want to find a unique catfivalue (denoted &sg,,,) of the
battery size such that the cost of electricity purchase iresribe same if the battery size is larger
than or equal td&Es,,,, and the cost is strictly larger otherwise. We propose areuppund on
Efax and show that the upper bound is achievable for certairesicen For the case with ideal
PV generation and constant loads, we characterize the eatuet of ES,,, and also show how

max?
the storage size changes as the constant load changesigbgiée are validated via simulations.
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1. Introduction

Installations of solar photovoltaic (PV) systems have bgeswing at a rapid pace in re-
cent years due to the advantages of PV such as modest eneintednmpacts (clean energy),
avoidance of fuel price risks, coincidence with peak eleatidemand, and the ability to deploy
PV at the point of use. In 2010, approximately, 330 megawatts (MWs) of PV were installed
globally, up from approximately, 500 MWs in 2009, consisting primarily of grid-connected
applications [1]. Since PV generation tends to fluctuatetdugoud cover and the daily solar
cycle, energy storage devices, e.g., batteries, ultrattaps, and compressed air, can be used
to smooth out the fluctuation of the PV output fed into electiids (“capacity firming”) [2],
discharge and augment the PV output during times of pealggnesage (“peak shaving”) [3],
or store energy for nighttime use, for example in zero-enbrgldings.

In this paper, we study battery sizing for grid-connectedsistems to store energy for night-
time use. Our setting is shown in Fig. 1. PV generated etgttis used to supply loads: on the
one hand, if there is surplus PV generation, it is stored iatteby for later use or dumped (if the
battery is fully charged); on the other hand, if the PV getienaand battery discharging cannot
Preprint submitted to European Journal of Control September 8, 2013



meet the demand, electricity is purchased from the grid.BEteery has a fixed maximum charg-
ing/discharging rate. Our objective is to choose an appropliatiery size while minimizing the
electricity purchase cost from the grid. We show that thes iinique critical value (denoted as
Er a0 refer to Problem 1) of the battery capacity (under fixed maxn charging and discharging
rates) such that the cost of electricity purchase remamsdime if the battery size is larger than
or equal toE,,,, and the cost is strictly larger otherwise. We first propaseigper bound on
Esax 0iven the PV generation, loads, and the time period for miimg the costs, and show that
the upper bound becomes exact for certain scenarios. Faadeof idealized PV generation
(roughly, it refers to PV output on clear days) and constaatls, we analytically characterize
the exact value o}, Which is consistent with the critical value obtained viasiations.

The storage sizing problem has been studied for bétgrid and grid-connected applica-
tions. For example, the IEEE standard [4] provides sizimgmemendations for lead-acid batter-
ies in stand-alone PV systems. In [5], the solar panel sidalabattery size have been selected
via simulations to optimize the operation of a stand-aloxesipstem. If the PV system is grid-
connected, batteries can reduce the fluctuation of PV oatpptovide economic benefits such
as demand charge reduction, capacity firming, and poweragei. The work in [6] analyzes the
relation between available battery capacity and outputshiiog, and estimates the required bat-
tery capacity using simulations. In addition, the battéring problem has been studied for wind
power applications [7, 8, 9] and hybrid wifstlar power applications [10, 11, 12]. Most previ-
ous work completely relies on trial and error approachestoutate the storage size. Only very
limited work has contributed to the theoretical analysistoffage sizing, such as [13, 14, 15].
In [13], discrete Fourier transforms are used to decomplosedquired balancing power into
different time-varying periodic components, each of which cangded to quantify the physical
maximum energy storage requirement. In [14], the storagjagsproblem is cast as an infinite
horizon stochastic optimization problem to minimize thedeerm average cost of electric bills
in the presence of dynamic pricing as well as investmentdrage. In [15], we cast the storage
sizing problem as a finite horizon deterministic optimiaatproblem to minimize the cost as-
sociated with the net power purchase from the electric gritithe battery capacity loss due to
aging while satisfying the load and reducing peak loads. draand upper bounds on the battery
size are proposed that facilitate thi@ent calculation of its value. The contribution of this
work is the following: exact values of battery size for thesipl case of ideal PV generation and
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Figure 1: Grid-connected PV system with battery storagel@ads.
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constant loads are characterized; in contrast, in [15}; lmwer and upper bounds are obtained.
In addition, the setting in this work is filerent from that of [14] in that a finite horizon deter-
ministic optimization is formulated here. These results lba generalized to more practical PV
generation and dynamic loads (as discussed in Remark 10).

We acknowledge that our analysis does not apply to the typaenario of “net-metered”
systems, where feed-in of energy to the grid is remunerated at theesae as purchase of
energy from the grid. Consequently, the grid itself acts atoeage system for the PV system
(andEgS,,, becomes 0). However, from a grid operator standpoint it didngl most desirable if
PV system could just serve the local load and not export tagtlie This motivates our choice
of no revenue for dumping power to the grid. Our scenario bE® analogues at the level of
a balancing area by avoiding curtailment or intra-hour gnexport. For load balancing, in a
balancing area (typically a utility grid) steady-state dibions are set every hour. This means
that the power imports are constant over the hour. The balgrauthority then has to balance
local generation with demand such that the steady statdwitireserved. This also corresponds
to avoiding “outflow” of energy from the balancing area. Inradgwith very high renewable
penetration, there may be more renewable production tteh llm that case, the energy would
be dumped or “curtailed”. However, with demand responsg ,(f0ads with relatively flexible
schedules) or battery storage, curtailment could be adoide

The paper is organized as follows. In the next section, wedlice our setting, and formulate
the battery sizing problem. An upper bound Bf,, is proposed in Section 3, and the exact
value ofEf,,, is obtained for ideal PV generation and constant loads iti@®e4. In Section 5,
we validate the results via simulations. Finally, conabasi and future directions are given in
Section 6.

2. Problem Formulation

In this section, we formulate the problem of determininggtarage size for grid-connected
PV system, as shown in Fig. 1. Solar panels are used to geraeatricity, which can be used
to supply loads, e.g., lights, air conditioners, microwsaire a residential setting. On the one
hand, if there is surplus electricity, it can be stored in #dvg, or dumped to the grid if the
battery is fully charged. On the other hand, if there is natugih electricity to power the loads,
electricity can be drawn from the electric grid. Before fatining the battery sizing problem,
we first introduce dferent components in our setting.

2.1. Photovoltaic Generation
We use the following equation to calculate the electricépgrated from solar panels:

Pou(t) = GHI(t) x Sx 77, 1)

where GHI (Wn1?) is the global horizontal irradiation at the location ofa@opanelsS () is
the total area of solar panels, ands the solar conversionfieciency of the PV cells. The PV
generation model is a simplified version of the one used i @ does not account for PV
panel temperaturefects.

INote that in [15], we study battery sizing for “net-meteregétems under more relaxed assumptions compared with
this work.
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2.2. Electric Grid

Electricity can be drawn from (or dumped to) the grid. We a&xte costs only with the
electricity purchase from the grid, and assume that theme isenefit by dumping electricity to
the grid. The motivation is that, from a grid operator stasidp it would be most desirable if
PV system could just serve the local load and not export taytlte In a grid with very high
renewable penetration, there may be more renewable pioduttan load. In that case, the
energy would have to be dumped (or curtailed).

We useCyp(t) (¢/kWH to denote the electricity purchase raRgp(t)(W) to denote the elec-
tricity purchased from the grid at timnteandPgyq(t)(W) to denote the surplus electricity dumped
to the grid or curtailed at time For simplicity, we assume th&lyy(t) is time independerdénd
has the valu€g,. In other words, there is noftierence between the electricity purchase rates at
different time instants.

2.3. Battery
A battery has the following dynamic:
dEg(t)
S = Pe(), 2)

whereEg(t)(Wh) is the amount of electricity stored in the battery at timandPg(t)(W) is the
chargingdischarging rate (more specificallpg(t) > O if the battery is charging, anélg(t) < 0
if the battery is discharging). We impose the following doaisits on the battery:

i) At any time, the battery charg€g(t) should satisfyEgmin < Eg(t) < Egmax, WhereEgmin
is the minimum battery charg&gmay is the maximum battery charge, & < Egmin <
Egmax and

i) The battery charginglischarging rate should satis®gmin < Pe(t) < Pgmax, WherePgmin <
0, —Pgmin is the maximum battery discharging rate, @ighax > 0 is the maximum battery
charging rate.

For lead-acid batteries, more complicated models exigt,(a. third order model is proposed
in[17, 18]).

2.4. Load

Poad(t)(W) denotes the load at tinteWe do not make explicit assumptions on the load con-
sidered in Section 3 except thRAb,4(t) is a (piecewise) continuous function. Loads could have a
fixed schedule such as lights and TVs, or a relatively flexsisleedule such as refrigerators and
air conditioners. For example, air conditioners can beadrmmon and & with different schedules
as long as the room temperature is within a comfortable ranggection 4, we consider constant
loads, i.e.Piad(t) is independent of time

2Usually, Egmin is chosen to be larger than 0 to prevent fast battery agingdétailed modeling of the aging process,
refer to [3].



2.5. Minimization of Electricity Purchase Cost

With all the components introduced earlier, now we can fdateuthe following problem
of minimizing the electricity purchase cost from the elecgrid while guaranteeing that the
demand from loads are satisfied:

to+T
min CyoP d
Pg.Pgp,Pgd to 9 gp(T) 4
S.t. Ppy(t) + Pgp(t) = Pga(t) + Pa(t) + Pioad(t) , 3
dEg(t
dBt() = Pg(t) , Eg(to) = Egmin

EBmin < EB(t) < EBmax,
I:)Bmin < PB(t) < I:)Bmax 5

wherety is the initial time, T is the time period considered for the cost minimization. Jis
the power balance requirement for any titre[to, to+T]; in other words, the supply of electricity
(either from PV generation, grid purchase, or battery disgimg) must meet the demand.

2.6. Battery Sizing
Based on Eq. (3), we obtain

ng(t) = Pload(t) - va(t) + PB(t) + Pgd(t) .

Then the optimization problem in Eqg. (4) can be rewritten as

to+T
min Cgp(Pioad(t) = Ppu(7) + Pa(7) + Pga(7))dr
B:Fad Uty
dEg(t
S.t.d—Bt() = Pg(t) , Eg(to) = Egmin »

EBmin < EB(t) < EBmax P
I:)Bmin < PB(t) < I:)Bmax B
Pgd(t) >0.

Now there are two independent variabRg(t) and Pyq(t). To minimize the total electricity
purchase cost, we have the following key observations:

(A) If the battery is charging, i.ePg(t) > 0 andEg(t) < Egmax then the charged electricity
should only come from surplus PV generation;

(B) Ifthe battery is discharging, i.ePg(t) < 0 andEg(t) > Egmin, then the discharged electric-
ity should only be used to supply loads. In other words, thaled electric powePgyq(t)
should only come from surplus PV generation.

In observation (A), the battery can be charged by purchadgiricity from the grid at the cur-
rent time and be used later on when the PV generated elécidénsuficient to meet demands.
However, this incurs a cost at the current time, and the gadficosts by discharging later on is
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the same as the cost of charging (or could be less than thefodsrging if the discharged elec-
tricity gets dumped to the grid) because the electricitycpase rate is time independent. That is
to say, there is no gain in terms of costs by operating thelyatharging in this way. Therefore,
we can restrict the battery charging to using only PV geeeratectric power. In observation
(B), if the battery charge is dumped to the grid, potentidllyould increase the total cost since
extra electricity might need to be purchased from the grichéet the demand. In summary, we
have the following rule to operate the battery and dump et to the grid (i.e., restricting the
set of possible control actions) without increasing thaltobst.

Rule1l The battery gets charged from the PV generation only whem isesurplus PV gener-
ated electric power and the battery can still be charged getgldischarged to supply the load
only when the load cannot be met by PV generated electric pang the battery can still be
discharged. PV generated electric power gets dumped taithemnjy when there is surplus PV
generated electric power other than supplying both the ématthe battery charging.

With this operating rule, we can further eliminate the JaléaPyq4(t) and obtain another
equivalent optimization problem. On the one handPiq(t) — Ppu(t) + Pe(t) < O, i.e., the
electricity generated from PV is more than the electricagsumed by the load and charging the
battery, we need to choo$y(t) > 0 to makePgy(t) = 0 so that the cost is minimized; on the
other hand, ifPjad(t) — Ppy(t) + Ps(t) > O, i.e., the electricity generated from PV and battery
discharging is less than the electricity consumed by thd,lage need to choosyy(t) = O to
minimize the electricity purchase costs, and we Maygt) = Pioad(t) — Pov(t) + Pa(t). Therefore,
Pgp(t) can be written as

Pgp(t) = max(Q Pioad(t) — Ppu(t) + Pe(t)) ,

so that the integrand is minimized at each time.
Let E E
" _
X(t) - EB(t) _ Bmax2 Bmin i
u(t) = Pg(t), and
E _ Egmax — Esmin
max — 2
Note that Emnax = Esmax — Esmin IS the net (usable) battery capacity, which is the maximum
amount of electricity that can be stored in the battery. Ttmenoptimization problem can be
rewritten as

to+T
J= muin Cgpmax(Q Pioad(t) — Ppyv(7) + U(7))dr
to

s.t. % = u(t) , X(to) = —Emax

IX(t)] < Emax »
I:)Bmin < U(t) < I:)Bmax . (5)

Now it is clear that onlyu(t) (or equivalently,Pg(t)) is an independent variable. As argued
previously, we can restriai(t) to satisfying Rule 1 without increasing the minimum cdst
We define the set of feasible controls (denotetlassing as controls that satisfy the constraint
Pemin < U(t) < Pgmax and do not violate Rule 1.
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If we fix the parameter, T, Pgmin, @andPsmax, J is @ function ofEqax, Which is denoted as
J(Emax)- If Emax = 0, thenu(t) = 0, andJ reaches the largest value

to+T
JImax = Cyp max(Q Pioad(7) — va(T))dT . (6)
to
If we increaseEny, intuitively J will decrease (though may not strictly decrease) becauese th
battery can be utilized to store extra electricity genetétem PV to be potentially used later on
when the load exceeds the PV generation. This is justifiedaridllowing proposition.

Proposition 1 Given the optimization problem in Eq. (5), BL,, < E2,, thenJ(EL.) >
I(EZa)-

Proof Refer to Appendix A.

In other words,J is monotonically decreasing with respect to the paramgggk, and is
lower bounded by 0. We are interested in finding the smallatstevof Erax (denoted a€g,,,)
such that) remains the same for a§fax > ES,., and call it the battery sizing problem.

Problem 1 (Battery Sizing) Given the optimization problem in Eq. (5) with fixegl T, Pemin
andPgmay, determine a critical valukS,,, > 0 such that/ Emax < ES, J(Ema) > J(ES,,), and
VEmax > Efnaxv J(Emax) = ‘](Elt':nax)'

Remark 1 In the battery sizing problem, we fix the charging and disgimgy rate of the battery
while varying the battery capacity. This is reasonable & Hattery is charged with a fixed
charger, which uses a constant charging voltage but cargehttne charging current within a
certain limit. In practice, the charging and dischargingsacould scale witk,ax, Which results
in challenging problems to solve and requires further study |

Note that the critical valu€&g,,, is unique as shown in the following proposition, which can
be proved via contradiction.

Proposition 2 Given the optimization problem in Eq. (5) with fixég T, Pemin andPamax, Egax
is unique.

Remark 2 One idea to calculate the critical val&g,,, is that we first obtain an explicit expres-
sion for the function](Enax) by solving the optimization problem in Eg. (5) and then sdier
ES,ax based on the functiod. However, the optimization problem in Eq. (5) idfdtult to solve
due to the state constraix(t)| < Enqaxand the fact that it is hard to obtain analytical expressions
for Pioad(t) andPp(t) in reality. Even though it might be possible to find the ogtirontrol us-

ing the minimum principle [19], it is still hard to get an eiqit expression for the cost function

J. Instead, in the next section, we first focus on bounding thieal valueEy,,, in general, and
then study the problem for specific scenarios in Section 4. |

3. Upper Bound on Ef

In this section, we first identify necessary assumptionssoiee a nonzergg,,,, then propose

an upper bound okg,,,, and finally show that the upper bound is tight for certaimsec®s.

Proposition 3 Given the optimization problem in Eq. (5) with fixed, T, Pemin @and Pgmax.
Erax = 0 if any of the following conditions holds:
7



(i) Vte[to.to+ T], Ppy(t) — Pioad(t) < O,
(i) Yte [to,to+ T], Ppu(t) — Pioad(t) > O,
(i) Yty € Sy, Ytz € Sy, tp < t1, where
Si1 :={t € [to, to + T] | Ppu(t) = Pioad(t) > O}, (7)
Sz :={t € [to, to + T] | Pioad(t) — Ppy(t) > 0} . (8)

Proof Refer to Appendix B.

Remark 3 The intuition of condition (i) in Proposition 3 is that it € [to,to + T], Ppy(t) —
Poad(t) < 0, no extra electricity is generated from PV and can be stioréue battery to strictly
reduce the cost. The intuition of condition (ii) in Propasit3 is that ifVt € [to, to + T], Ppy(t) —
Poad(t) > 0, the electricity generated from PV alone is enough tofyatie load all the time, and
extra electricity can be simply dumped to the grid. Note thak = 0 for this case. As defined
in condition (i), S1 N S, = 0 because it is impossible to have bdth(t) — Pioad(t) > 0 and
Pioad(t) — Ppy(t) > 0 at the same time for any tine |
Based on the result in Proposition 3, we impose the follovasgumption on Problem 1 to
make use of the battery.
Assumption 1 There exists; andt, for ty, t; € [to, to+T], such that; < tp, Ppy(t1)—Pioad(t) > 0
andPpy(t2) — Pioad(t2) < O.
Remark 4 Py (t1) — Pioad(t1) > O implies that at time; there is surplus electric power available
from PV. Pyy(t2) — Pioad(t2) < O implies that at timéy, the electric power from PV is not flicient

for the load. Ift; < ty, the electricity stored in the battery at tirhecan be discharged to supply
the load at time;, to strictly reduce the cost. [ |

Proposition 4 Given the optimization problem in Eq. (5) with fixég T, Pgmin andPgmax Under

Assumption 1, O ES,,, < w, where
t0+T
A= f Min(Pamae Max(@ Pou(®) - Poad )t ©)
0
and
to+T
B= f N (= Pamin, Max(Q Poac(t) — Pou(D))clt . (10)

Proof Refer to Appendix C.

Remark 5 Note thatif¥t € [to, to+T] we havePyy(t)—Pioad(t) < 0, thenA = 0 following Eq. (9);
therefore, the upper bound f&,,, in Proposition 4 becomes 0, which implies ti,, = 0.
If Vt € [to,to + T] we havePp,(t) — Pioad(t) > 0, thenB = 0 following Eq. (10); therefore, the
upper bound foEy,,, in Proposition 4 becomes 0, which implies tit,, = 0. Both results are
consistent with the results in Proposition 3. |

Proposition 5 Given the optimization problem in Eq. (5) with fixég T, Pemin andPgmax under
Assumption 1, if¥t; € Sy, Vto € Sy, t1 < t, thenESq, = ™28 whereS; (or Sy, A, B,
respectively) is defined in Eq. (7) (or (8), (9), (10), regpeety). In addition, if Enax is chosen
to be ™28 'x(to + T) = ~Emax (i.€., N0 battery charge left at tinig-+ T).

Proof Refer to Appendix D.
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(a) Ideal PV generation for a clear day. (b) Constant load.

Figure 2: Ideal PV generation and constant load.

4. |deal PV Generation and Constant L oad

In this section, we study how to obtain the critical valuetfa scenario in which the PV gen-
eration is ideal and the load is constant. Ideal PV generatocurs on clear days; for a typical
south-facing PV array on a clear day, the PV output is zerorbedbout sunrise, rises contin-
uously and monotonically to its maximum around solar nobantdecreases continuously and
monotonically to zero around sunset, as shown in Fig. 2¢apther words, there is essentially
no short time fluctuation (at the scale of seconds to minutes)to atmosphericfkects such as
clouds or precipitation. By constant load, we mé&ng(t) is a constant fot € [to,to + T]. A
typical constant load is plotted in Fig. 2(b). To further plify the problem, we assume thiat
is 0000 h Local Standard Time (LST), afid= to + k x 24(h) wherek is a nonnegative integer,
i.e., T is a duration of multiple days. Fig. 2 plots the ideal PV gatien and the constant load
for T = 24(h). Now we summarize these conditions in the following assionp

Assumption 2 The initial timetg is 0000 h LSTT = kx24(h) wherek is a positive integeRpy(t)
is periodic on a timescale of 24 hours, and satisfies thefatip property fort € [0, 24(h)]: there
exist three time instants O tgynrise < tmax < tsunset< 24(h) such that

o Ppy(t) = 0fort € [0, tsunrisd U [tsunset 24(M)];

e Ppy(t) is continuous and strictly increasing fo€ [tsunrise tmax];

e Py (t) achieves its maximurﬁg“vax attmax;

o Ppy(t) is continuous and strictly decreasing fof [tmay, tsunsel,
andPigaq(t) = Pioag for t € [to, to + T], wherePjqqq is @ constant satisfying @ Pigaqg < pngax_

It can be verified that Assumption 2 implies Assumption 1.
Proposition 6 Given the optimization problem in Eq. (5) with fixég T, Pgmin andPgmax under
Assumption 2 and = 24(), Ef = m, where

173
A = f MiN(Pgmax, Max(Q Ppy(t) — Pioad))dt
t

9



Ppv(W) A
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Figure 3: PV generation and load, whePgmax (or —Pgmin) is the maximum charging (or discharging) rate, and
A1, By, 11,t> are defined in Proposition 6.

and ”
B = f MiN(=Pgmin, Max(Q Pioad — Ppy()))dt,
to

in whicht; < t; and va(t]_) = va(tz) = Pioagd-
Proof Refer to Appendix E.

Remark 6 A; andB; in Proposition 6 are shown in Fig. 3. In words, is the amount of extra
PV generated electricity that can be stored in a battery,Barid the amount of electricity that
is necessary to supply the loadd can be provided by battery discharging. Note thandt,
depend on the value #y5¢. To eliminate this dependency, we can rewAteas

24
A= [ min(Pana. max(@ P - Pasd)dt. (12)
0
and rewriteB,; as 5
4
By = f Min(—Pemin. Max(Q Pioad — Pov())dt (12)
tmax
wheretnax is defined in Assumption 2. [ |

Remark 7 If the PV generation is not ideal, i.e., there are fluctuatidne to clouds or precipi-
tation, theES ., value in Proposition 6 based on ideal PV generation naguselives as an upper
bound onEg,,, for the case with the non-ideal PV generation. Similarlgh# load varies with
time but is bounded by a constata.q, the Ef,. values in Proposition 6 based on the constant

load Pipaq Naturally serves as an upper boundkfp,, for the case with the time varying loall

Now we examine hovEg,,, changes aB|qaq varies from 0 thS“VaX.

Proposition 7 Given the optimization problem in Eq. (5) with fixég T, Pgmin andPgmax under
Assumption 2 and = 24(h), then

a) there exists a unique critical value Bfaq € (O, P[)“Vax) (denoted ad ) such thatEp,,,
achieves its maximum;

10



0 Pe PI& Pload(W)

load

Figure 4:Ef,,, as a function oPjgaq for 0 < Pioag < PR

b) if Ppag increases from 0 t&¢
to its maximum;

" aq Emax INCreases continuously and monotonically from 0

c) if Ppagincreases fron _  to P[)“\,ax, Ef,.x decreases continuously and monotonically from
its maximum to O.

Proof Refer to Appendix F.

Remark 8 A typical plot of Ef;,,, as a function oPjoaq is given in Fig. 4. Note that the slopes
at 0 andPy™ are both 0, which can be derived from the expressmng%%# and HBld. The
result has the implication that there is a (finite) uniqueadygitcapacity that minimizes the grid
electricity purchase cost for af,,q > 0. Fig. 10(a) verifies the plot via simulations. |

Now we focus on the case with multiple days.

Proposition 8 Given the optimization problem in Eq. (5) with fixég] T, Pgmin andPgmax Under
Assumption 2 and = k x 24(h) wherek > 1 is a positive integes,,, = M%) where

173
Ao = f MiN(Pamas MAX(Q Poy(t) = Poad)dt

t
and .
3
B2 = [ Min(-Parn, max( Poag— Pu(0))ct.
t
in whichti € Terossing := {t € [0,k x 24] | Ppy(t) = Pioad}, ta, I, t3 are the smallest three time
instants inT¢rossing@nd satisfyt; <t < ta.

Proof Referto Appendix G.

Remark 9 A, andB; in Proposition 8 are shown in Fig. 5. In words; is the amount of extra
PV generated electricity that can be stored in a battery éntithe interval {i,t3], and B, is
the amount of electricity that is necessary to supply thel kxad can be provided by battery
discharging in the time intervaty[, t3]. Note thatt;,t,, andt; depend on the value #qq. TO
eliminate this dependency, we can rewiteas

24
Ay = f(; min(PBmax, maX(Q va(t) - F)Ioad))dt P (13)
11
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_PBmin

t(h)

0 ty to 24 t3 48

Figure 5: PV generation and load (two days), wheggax (or —Psmin) is the maximum charging (or discharging) rate,
andAy, By, 11, o, t3 are defined in Proposition 8.

and rewriteB, as

tmaxt24
B, = f MiN(=Pamin, Max(Q Pload - Pou(D))dt (14)

tmax

wheretnax is defined in Assumption 2. [ |

It can be verified that the following result on hdgf,,, changes holds based on an analysis
similar to the one in Proposition 7 using Egs. (13) and (143 Bigs. 10(b) and (c) verify the
trend via simulations.

Proposition 9 Given the optimization problem in Eq. (5) with fixég T, Pgmin andPgmax under
Assumption 2 and” = k x 24(h) wherek > 1 is a positive integer, then

a) there exists a unique critical value Bfaq € (0, Ppi) (denoted a$y ) such thatEr,.,
achieves its maximum;

b) if Ppag increases from O t&F,,, Er.« increases continuously and monotonically from 0
to its maximum;

¢) if Piag increases fron; _  to PO, EF,. decreases continuously and monotonically from
its maximum to O.

Remark 10 Note that Assumption 2 can be relaxed. Givier= 24, if Pioaq(t) and Ppy(t) are
piecewise continuous functions, and intersect at two timstantd;, t,, in additionS; (as defined
in Eqg. (7)) is the same as the open intertaltp), then the result in Proposition 6 also holds,
which can be proved similarly based on the argument in Pitpon$. Besides these conditions,
if Pioad(t) andPpy(t) are periodic with period 24 hours, then the result in Prdjuos8 also holds.
However, with these relaxed conditions, the results in Bsdjons 7 and 9 do not hold any more
since the load might not be constant. |

5. Simulations

In this section, we verify the results in Sections 3 and 4 wiautations. The parameters used
in Section 2 are chosen based on a typical residential hottiegse
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Figure 6: PV output for July 13 - 16, 2010, at La Jolla, Califer For reference, a constant load 200s also shown
(solid red line) along wittPgmax = —Pmin = 200W. The green area corresponds to the amount of electricityctrat
be potentially charged to a battery, while the red area spmeds to the amount of electricity that can potentially be

provided by discharging the battery.

The GHI data is the measured GHI between July 13 and July 11, 20La Jolla, California.
In our simulations, we use = 0.15, andS = 10n?. ThusPp(t) = 1.5 x GHI(t)(W). We choose
to as 0000 h LST on Jul 13, 2010, and the hourly PV output is gimdfig. 6 for the following
four days starting fronty. Except the small variation on Jul 15, 2010 and being notthxac
periodic for every 24 hours, the PV generation roughly asAssumption 2, which implies
that Assumption 1 holds. Note thatOP,,(t) < 1500W for t € [to, to + 96].

The electricity purchase ratgy, is chosen to be.8¢/kWh which is the semipeak rate for
the summer season proposed by SDG&E (San Diego Gas & Elf@ér For the battery, we

chooseEgmin = 0.4 X Egmax and then
E — Egmi
ax = Bmax2 Bmin = 03x EBmax ]
The maximum charging rate is chosen toRg,ax = 200W, andPgmin = —Pemax. NOte that the

battery dynamic is characterized by a continuous ordinéfegr@ntial equation. To run simula-
tions, we use one hour as the sampling interval, and diger&i. (2) as

Ep(k + 1) = Eg(k) + Pg(K) .

5.1. Dynamic Loads

We first examine the upper bound in Proposition 4 using dyodasds. The load profile
for one day is given in Fig. 7, which resembles the residekté profile ir? Fig. 8(b) in [16].
Note that one load peak appears in the early morning, andtiee im the evening. For multiple
day simulations, the load is periodic based on the load profiFig. 7. We study how the cost
functionJ of the optimization problem in Eq. (5) changes as a functioBgx by increasing the
battery capacitfEmax from 0 to 1500Whwith the step size 18Vh We solve the optimization

3However, simulations in [16] start at 7AM so Fig. 7 is a shiftedision of the load profile in Fig. 8(b) in [16].
13
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Figure 7: A typical residential load profile.

problem in Eq. (5) via linear programming using the CPlexesd?1]. If T = 24() (or T =
48(), T = 96(h), respectively), the plot of the minimum costs vers&ijg is given in Fig. 8(a)
(or (b), (c), respectively). The plots confirm the result hoosition 1, i.e., the minimum cost is
a decreasing function &max and also show the existence of the unigig,. If T = 24(), ES.x

is 700Wh which can be identified from Fig. 8(a). The upper bound irp@sition 4 is calculated
to be 900Wh Similarly, if T = 48(h), ES,.« is 900Whwhile the upper bound in Proposition 4 is
calculated to be 1800/ if T = 96(h), ES,,, is 900Whwhile the upper bound in Proposition 4
is calculated to be 340@&/h The upper bound holds for these three cases though fileeetice
between the upper bound aBfl,, increases whem increases. This is due to the fact that during
multiple days battery can be repeatedly charged and digetiahowever, this fact is not taken
into account in the upper bound in Proposition 4. Since tlal lprofile roughly satisfies the
conditions imposed in Remark 10, we can calculate the thieatealue forEg,,, based on the
results in Propositions 6 and 8 even for this dynamic load. # 24(h), the theoretical value is
690 Whwhich is obtained from Proposition 6 by evaluating the iné&in A; andB; using the
sum of the integrand for every hour fragito to + T. Similarly, if T = 48() or T = 96(h), then
the theoretical value is 90 hwhich is obtained from Proposition 8. Due to the step siz8V/10
used in the choice dEn,, these theoretical values are quite consistent with resbitained via
simulations.

5.2. Constant Loads

We now study how the cost functiahof the optimization problem in Eg. (5) changes as a
function of Eqax with a constant load, and the load is used frigrto to + T to satisfy Assump-
tion 2. We fix the load to b&,,q = 200W, and increase the battery capadiy.x from O to
1500 Whwith the step size 1@Vh We solve the optimization problem in Eq. (5) via linear
programming using the CPlex sover [21].Tif= 24(h) (or T = 48(), T = 96(h), respectively),
the plot of the minimum costs versis,ax is given in Fig. 9(a) (or (b), (c), respectively). The
plots confirm the result in Proposition 1, i.e., the minimuwpstds a decreasing function Bf,ax,
and also show the existence of the unidiie,.

Now we validate the results in Propositions 6, 7, 8, and 9. Vfy the load from O to
1500W with the step size 10@/, and for eachP,ag We calculate th&y,,, and the minimum cost

14



corresponding to thEg,,... In Fig. 10(a), the left figure shows hdi,,, changes as a function of
the load forT = 24(h), and the right figure shows the corresponding minimum coste plot
in the left figure is consistent with the result in Propositibexcept that the maximum &,
is not unique. This is due to the fact that the load is chosdetdiscrete with step size 100.
The right figure is consistent with the intuition that when tbad is increasing, more electricity
needs to be purchased from the grid (resulting in a highd).cbiete that the blue solid curve
corresponds to the costs wily,,,, while the red dotted curve correspondsitay, i.€., the costs
without battery. The plots foES,,, and the minimum cost fof = 48() andT = 96(h) are
shown in Fig. 10(b) and (c). The plots in the left figures of.Ai§(b) and (c) are consistent with
the result in Proposition 9. Note that &sincreases, the critical loaé’  , decreases as shown
in the left figures of Fig. 10. One observation on the left feguof Fig. 10 is thaEs,,, increases
roughly linearly with respect to the load when the load is lkmiEhe justification is that when
the load is smallEg,,, is determined byB, in Fig. 3 (or B, in Fig. 5 for multiple days) and;
(or By) increases roughly linearly with respect to the load as @sden from Fig. 3 (or Fig. 5).
Now we examine the results in Proposition 6. Foe 24(h), we evaluate the integral iy
andB; using the sum of the integrand for every hour friyto to + T given a fixed load, and then
obtainEy,,,; this value is denoted as the theoretical value. The thieatetalue is plotted as the
red curve (with the circle marker) in the left plot of Fig. &1( The valueEg,,, calculated based
on simulations is plotted as the blue curve (with the squaaeker) in the left plot of Fig. 11(a).
In the right plot of Fig. 11(b), we plot the fierence between the value obtained via simulations
and the theoretical value. Note that the value obtainedimalations is always larger than or
equal to the theoretical value becaligy is chosen to be discrete with step sizeWWh The
differences are always smaller tHeWh which confirms that the theoretical value is very
consistent with the value obtained via simulations. Theesaonclusion holds fof = 48(h),
as shown in Fig. 11(b). FofF = 96(h), the largest dference is around 7&/h as shown in
Fig. 11(c); this is more likely due to the slight variationthre PV generation for éierent days.
Note that the dferences fori—g = g of the load values (which range from 0 to 1500with the
step size 10@V) are within 10Wh

6. Conclusions

In this paper, we studied the problem of determining the eizbattery storage for grid-
connected PV systems. We proposed an upper bound on thgessir®, and showed that the
upper bound is achievable for certain scenarios. For the wdth ideal PV generation and
constant load, we characterized the exact storage sizealandshowed how the storage size
changes as the constant load changes; these results aigemnsith the results obtained via
simulations.

There are several directions for future research. First,dymamic time-of-use pricing of
the electricity purchase from the grid could be taken intwoant. Large businesses usually pay
time-of-use electricity rates, but with increased depleyirof smart meters and electric vehicles
some utility companies are moving towardsfelient prices for residential electricity purchase
at different times of the day (for example, SDG&E has the peak, ssakjpdfpeak prices for
a day in the summer season [20]). New results (and probalbhteehniques) are necessary to

4The step size foEmax is 10Wh so the diference between the value obtained via simulations and tleetiial
value is expected to be within 10 assuming the theoreticakvial correct.
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deal with dynamic pricing. Second, we would like to study Huoatteries with a fixed capacity

can be utilized (e.g., via serial or parallel connectiongjrtplement the critical battery capacity
for practical applications. Last, we would also like to extehe results to wind energy storage
systems, and consider battery parameters such as roprafériging €éiciency, degradation, and

Ccosts.
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Appendix A. Proof to Proposition 1

GivenEL,,, suppose a feasible contual(t) achieves the minimum electricity purchase cost
J(EL ) and the corresponding statés x'(t). Sincelx}(t)| < B}, < E2,, UL(t) is also a feasible
control for problem (5) with the state constrai,,, and satisfying Rule 1, and results in the
costJ(EL.). SinceJ(E2,,) is the minimal cost over the set of all feasible controlsehhinclude
ul(t), we must havel(EL,,) > J(EZ .-

Appendix B. Proof to Proposition 3

Condition (i) holds. SinceVt € [to, tg + T], Ppu(t) — Pioad(t) < 0, we havePipad(t) — Ppy(t) > 0.
Denote the integrand id of Eq. (5) asa, i.e., a(t) = Cypmax(Q Pioad(t) — Ppv(t) + u(t)). If
Pioad(t) — Ppv(t) = 0, then we could choosgt) = 0 to makew to be 0. IfPjoad(t) — Ppy(t) > 0, we
could choosép(t) — Pioad(t) < u(t) < O to decreasae, i.e., by discharging the battery. However,
sincex(tp) = —Emax there is no electricity stored in the battery at the initimle. To be able
to discharge the battery, it must have been charged prdyidedlowing Rule 1, the electricity
stored in the battery should only come from surplus PV gditgraHowever, there is no surplus
PV generation at any time becaugec [to, tg + T], Ppu(t) — Poad(t) < 0. Therefore, the cost is
not reduced by choosing,,(t) — Piad(t) < u(t) < 0. In other wordsy can be chosen to be 0. In
both casesy(t) can be 0 for any € [to, to + T] without increasing the cost, and thus, no battery
is necessary. Thereforgg,,, = 0.

Condition (ii) holds. SinceVt € [to, to + T], Ppyu(t) — Pioad(t) > 0, we havePioaq(t) — Ppy(t) < 0.
Denote the integrand ihase, i.e.,a(t) = Cqp max(Q Pioad(t) — Ppy(t) + u(t)). If Pioad(t) — Ppv(t) <

0, we could choose(t) = 0, and there = max(Q Pioad(t) — Ppy(t) + u(t)) = max(Q Pioad(t) —
Ppv(t)) = 0. Sinceu(t) can be 0 for any € [to, tp + T] without increasing the cost, no battery is
necessary. Thereforgg,,, = 0.

Condition (iii) holds. S; is the set of time instants at which there is extra amount eftet
power that is generated from PV after supplying the load)en®j is the set of time instants at
which the PV generated power is infBaient to supply the load. According to Rule 1, at titpe
the battery could get charged onlyti€ S;, and could get discharged onlytiE S,. If Vt; € Sy,
Yt, € Sy, to < ty implies that even if the extra amount of electricity geneddrom PV is stored
in a battery, there is no way to use the stored electricityupply the load. This is because the
electricity is stored after the time instants at which batischarging can be used to strictly
decrease the cost and initially there is no electricityextan the battery. Therefore, the costs are
the same for the scenario with battery and the scenario utithattery, andy,,, = 0.
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Appendix C. Proof to Proposition 4

It can be shown, via contradiction, that under AssumptioA %,0 andB > 0, which imply

that MA8) 5 o
2 : . - . .

We showEf,,, > 0 via contradiction. Sinc&p,,, > 0, we need exclude the cag§,, =
0. SupposeEf,, = 0. If we chooseEmax > Ef.x = 0, J(Emax) < J(Efa0 because under
Assumption 1 a battery can store the extra PV generatedielgcfirst and then use it later on
to strictly reduce the cost compared with the case withouattgely (i.e., the case withnax = 0).
A contradiction to the definition dEf,,,. '

To ShowES, < A8 it is sufficient to show that iEmax > ™28 then J(Ema) =

J(™AB)). There are two cases depending oA i B or not:

e A < B. Then min@, B) = A. At time t, max(Q Ppy(t) — Pioad(t)) is the extra amount of
electric power that is generated from PV after supplyingdlael, and

MiN(Pamax Max(Q Ppy(t) — Pioad(t)))

is the extra amount of electric power that is generated fréfrafeer supplying the load
and can be stored in a battery subject to the maximum chargirg Then

to+T
A= f MiN(Pemae Max(Q Pov(t) - Poad(t))dt
to

is the maximum total amount of extra electricity that can twezl in a battery while
taking the battery charging rate into account. EvenBfz > A, i.e., Emax = ’g, the

amount of electricity that can be stored in the battery caenoeedA. Therefore, any
control that is feasible withx(t)] < Emax is also feasible withx(t)] < %. Therefore,

I(Emay) = I(4) = J(TNAB)y,

e A> B. Then min@, B) = B. At time t, max(Q Pioad(t) — Ppy(t)) is the amount of electric
power that is necessary to satisfy the load (and could belisdppy either battery power
or grid purchase), and

Min(—Pgmin, Max(Q Pioad(t) — va(t)))

is the amount of electric power that can potentially be disgld from a battery to supply
the load subject to the maximum discharging rate (in othemdgoif Pioad(t) — Ppy(t) >
—Pgmin, €lectricity must be purchased from the grid). Then

to+T
B= [ min-Penn, max(Q Poad?) - Pi(t))et
0
is the maximum total amount of electricity that is necessarpe discharged from the
battery to satisfy the load while taking the battery disgheg rate into account. When
2Emax = B, i.e., Emax > %‘, the amount of electricity that can be charged can exé&ed
becauseA > B; however, the amount of electricity that is strictly ne@gsto be (and,
at the same time, can be) discharged does not exBeelth other words, if the stored
electricity in the battery exceeds this amoBnthe extra electricity cannot help reduce the
cost because it either cannot be discharged or is not nege$barefore, any control that
minimizes the total cost with the battery capacity beBiglso minimizes the total cost
with the battery capacity being=ax. Therefore J(Emay) = J(E) = J(TNAB)),
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Appendix D. Proof to Proposition 5

From Proposition 4, we have$,, < ™8 To proveES,, = ™8 we show that
ESax < MAB) is impossible via contradiction. SuppoBR,, < ™8 If vty € Sy, Vi € Sy,
t1 < tp, then during the time intervald, to + T], the battery is first charged, and then discharged
following Rule 1. In other words, there is no charging aftesctarging. There are two cases

depending oA andB:

e A < B. In this caseE§,, < 5. i.e., 5, < A If the battery capacity is BS,,,, then
the amount of electricitA — 2ES,,, > 0 (which is generated from PV) cannot be stored
in the battery. If we choose the battery capacity toAb¢his extra amount can be stored
and used later on to strictly decrease the cost becaus®. Therefore,](%) < J(ES00-

A contradiction to the definition OES,,,. In this case, ifEmax is chosen to bé&, then the
battery is first charged withA amount of electricity, and then completely discharged isefo

(or at)tp + T becausé < B. Therefore, we havg(ty + T) = —Emax

e A> B. Inthis caseES,, < 2, i.e., ES,, < B. If the battery capacity iSES,,,, at most
2ES .« < B < Aamount of PV generated electricity can be stored in the tyaftderefore,
the amount of electricit3— 2E}, ., > 0 must be purchased from the grid to supply the load.
If we choose the battery capacity to Bethe amount of electricity — 2Ef,,, purchased
from the grid can be provided by the battery because thergattn be charged with
the amount of electricityB (since A > B), and thus the cost can be strictly decreased.
Therefore,J(%) < J(ES,a0- A contradiction to the definition dEg,,,. In this case, iEnax
is chosen to b%, then the battery is first charged wiBhamount of electricity (that is to
say, not all extra electricity generated from PV is storethmbattery sincé > B), and
then completely discharged at tirge+ T. Therefore, we also havdty + T) = —Emnax

Appendix E. Proof to Proposition 6

Due to Assumption 2Py,q(t) intersects withPp,(t) at two time instants foll = 24(h); the
smaller time instant is denoted fs and the larger is denoted gs as shown in Fig. 3. It can
be verified thaPpy(t) > Pioag for t € (t1, t2) andPyy(t) < Pioag for t € [0, t1) U (to, 24] following
Assumption 2. Fot € [0, t;), a battery could only get discharged following Rule 1; heareit
cannot be discharged becau$@) = —Enax. Thereforeu(t) can be 0 while achieving the lowest
cost for the time period [@;). Then the objective function of the optimization problemiqg. (5)
can be rewritten as

24
J=min Cgp max(Q Pioad — I:)pV(T) +Uu(7))dr
0

=Jo+J1,

whereJy = fotl Cyp(Pioad — Ppv(1))dr is a constant which is independent of the coniradnd

24
Ji = minf Cgp max(Q Pioad — va(T) + U(r))dr .
t
In other words, the optimization problem is essentiallyghme as minimizing; for t € [t;, 24];
accordingly, the critical valu&g,,, will be the same since the battery is not used for the time
18



interval [0 t;]. For the optimization problem with the cost functida under Assumption 2,
S1 = (t1,t2) andS; = (t2, 24) according to Egs. (7) and (8). Sint& € Sy, Vt, € Sy, 1] <t < 15,
the conditions in Proposition 5 are satisfied. Thus, we liyg = ™"®8 where

24
A= f min(PBmax, maX(Q va(t) - Pload))dt
ty

to
= f min(PBmaXs maX(Q va(t) - Pload))dt,
t

which is essentiallyd;, and

24
B= Min(—Pgmin, max(Q Pioad — va(t)))dt
ty
24
= MiN(—Pgmin, Max(Q Pioad — va(t)))dt >

tz

which is essentially8;. Thus the result holds.

Appendix F. Proof to Proposition 7

Let f := A; — By, whereA; andB; are defined in Egs. (11) and (12). Note ttias a function
of Pioad- If Pioad = O, then

24
A= f min(PBmax, maX(Q va(t)))dt >0,
0

according to Eq. (11), and

24
B, = f MiN(—Pgmin, Max(Q —Ppy(t)))dt = 0,
1,

max

according to Eq. (12). Thereforé(0) = A1(0) — B1(0) > 0. If Pioag = Pgi*, then

24
A= f MiN(Pgmax Max(Q Ppy(t) — P[)"Vax))dt =0,
0
and
24
B, = f min(—Pgmin, max(Q P[)”Vax— Pov(t)))dt > 0.
tmax

Therefore,f(PL™) = Ai(PR™) — B1(Pp™) < 0. In addition, since is an integral of a continuous
function of Ppaq, T is differentiable with respect 8,54, and the derivative is given as
df  dA B dB,
dP|Oﬂd dF)Ioad dP|0(:ld .

Since forPioaq € (0, PR),

dA]_ 24
= (_l) X I{O < va(t) - PIoad < PBmax}dt
d F)Ioad 0

<0,
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and

d81 24
5 = 1x {0 < Pigad — Ppu(t) < —Pgmin}dt
dPIoad tmax

>0,

we have — < 0, wherel{0 < Ppy(t) — Pioad < Pemax is the indicator function (i.e., if G<
Ppv(t) — Pmad < Pgmax the function has value 1, 0 otherwise). Therefdrés continuous and
strictly decreasing foPioaq € [0, Ppi™]. Since f(0) > 0 and f(P™) < 0, there is one and only
one value oPy,q such thatf is 0. We denote this value & _, and haver; (P o) = Bi(Pj.o-

If Poag € [0,P,), f > 0, i.e., Ay > By. Therefore Efnax = & Sincegf > 0, ESu

increases continuously (sin@g is differentiable with respect tBy,q) and monotonlcally from
0 to the valueEM On the other hand, Pioaq € (P}, Pmax] f <0, i.e.,A; < By. Therefore,

Erax = Al . Since ddHAl < 0, E§,.x decreases continuously (sindgis differentiable with respect
By

t0 Pioag) and monotonically from the valu@(';'ﬁ

maximum atP; _ . This completes the proof.

°a“) to 0. ThereforeEg,,, achieves its

Appendix G. Proof to Proposition 8

Due to Assumption 2Pjaq(t) intersects withPy,(t) at X time instants folT = k x 24();
we denote the set of these time instantd @sssing := {t € [0,k X 24] | Pyy(t) = Pioad}. We sort
the time instants in an ascending order and denote themtagds, ..., ty_1, tai, ..., ta-1, tok, Where
2 <i < k. Following Rule 1, at time, a battery could get charged onlytiE (t3,t2) U (t3,t4) U

-+ (tak-1, tk), and could get discharged onlytit (0,t1) U (to, t3) U (ta,t5) U - - - (tok, k X 24). As
shown in the proof to Proposition 6(t) can be zero fot € (0,t;), and results in the lowest cost
Jo = fotl Cgp(Pioad — Ppv(7))dr, which is a constant. At timg, there is no charge in the battery.
Then the battery is operated repeatedly by charging fitstift;i_1, t;) and then discharging if
t e (ty,t,1) fori = 1,2, ..., kandty,1 = kx 24. Naturally, we could group the charging interval
(tzi-1, ) with the discharging intervdl € (i3, t541) to form a complete battery operating cycle
in the interval {i_1, to11).

Now the objective function of the optimization problem in.E%g) satisfies

kx24
J= muin f Cgpmax(Q Pigad — Ppv(7) + U(7))dr
0

k-1
=Jo+ muin(z Li + L),
i=1
where
sl
tai-1
fori=1,2,..,k-1,and
oK1

Ly = Cgp max(Q Pioad — PpV(T) +Uu(r))dr .

tak-1
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Note that given a certaiBnay, if the battery charge at the end of the first battery opegatin
cycle is larger than 0 (i.ex(ts) > —Emax), thenEmax > ES,, This can be argued as follows. If
the battery charge at the end of the first cycle is larger thé&hi® also implies that the battery
charge at the end of the ith cycle is also larger than 0 dueriogie PV generations and loads),
i.e., there is more PV generation than demand in the timevaitéi;, t3), thenEnax can be strictly
reduced to a smaller capacity so théts) = —Enax without increasing the electricity purchase
cost in the intervaltg,t3). Due to periodicity of the PV generation and the load, thaltn
Emax can be used for the intervahi( 1, tyi41) fori = 2, ...,k — 1 without increasing the electricity
purchase cost. Therefore, ttis,ax must be larger thaks,,,. In other words, ifEg,,, is used,
thenx(tzi,1) fori = 1,2,..,k—1 has to be-E,,,, i.e., no charge left at the end of each operating
cycle. Now we only consideE, such that at the end of each operating cydle 1) = —Emax
fori=1,2,..,k—1 (necessarilyEs,,, is smaller than or equal to any suBRiay). For SUChE max,
the control actions for each operating cycle are complateboupled. Therefore, the total cost

J can be rewritten as )
—1

J= Jo + Ji + Jk ,
i=1
whereJ; = ming L fori = 1,2,...,k.

Now we focus onJ;. For the optimization problem with the cost functidpunder Assump-
tion 2,S; = (t1,12) andS; = (t2,t3) according to Egs. (7) and (8). Sing€ € S;, Vt, € Sp,
t, <t < t, the conditions in Proposition 5 are satisfied. Thus, we fyg(l) = MA8),
whereEg, (1) is theES,,, when we only consider the cost functidp

t3
A= f min(PBmax, maX(Q va(t) - F)Ioad))dt

t1

o
= f MiN(Pamax Max(Q Ppy(t) — Pioad))dt

th

which is essentially,, and

3
B= f mMin(—Pgmin, Max(Q Pioad — PpV(t)))dt

ta

3
- f MIN(~Pamin. Max(Q Poag — Poy(D))dlt .

2

which is essentiallyB,. Thus we haveES (1) = ™"%B)  Based on Proposition 5, we also

know thatx(ts) = —Ef,.(1). Thus, thisEf, (1) satisfies the requirement that at the end of the
operating cycle there is no charge left.

For the cost functiod,, the optimization problem is essentially the same as thielenowith
the cost function); because

5Note that the control action fdre (t2i-1, tzi) and the control action fdre (ty;, tyi+1) fori = 1,2, ...,k are coupled in
the sense that battery can not be discharged if at tinteere is no charge in the battery. In general, the contrabmct
for t € (ty;, tzi+1) and the control action fdre (tyi.1, tzi2) fori = 1, k—1 can also be coupled if at tintg. 1 there is extra
charge left in the battery because the extra charge Wécathe charging action in the interviak (ti11,t2i+2). Here,
there is no such coupling for the latter case when we redrigk so that at the end of each operating cycle there is no
charge left.
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o Pp(t) = Pp(t — 24) fort € [t3, ts] becausePy,(t) is periodic with period 24 hours. Note
thatt — 24 ¢ [tl,tg];

e Pjoaq(t) is a constant; and
e there is no charge left &4.

In other words, there is no filerence between the optimization problem with the cost fanct
J, and the one withd; other than the shifting of timeby 24 hours. Therefore, thes$,(2) will
be the same &aB},.(1). The same reasoning applies to the optimization probléimthe cost
function J; fori = 3,...,k — 1. Therefore, we havep, (i) = Efa(1) fori = 2,..., k- 1.

For the optimization problendy, there is no charge left at time&k2 1. This problem is
essentially the same as the problem studied in the proofdpdition 6 with the cost function
Ji except the shifting of timeby (k — 1) x 24 hours. The solutioES,,,(K) is given as™&Bd

where
ok

A= min(PBmax, maX(Q va(t) - Pload))dt s

tok-1
and
oK1 )
By = f Min(—Pgmin, Max(Q Pioad — Ppy(t)))dt .
)

k
Note thatA, = Ay, andBy < By. If we chooseEmax = ™82 which is larger than or equal to
ESax(K), we haved(Emax) = J(ESax(K)-

Now we claim thatES,,, when considering the cost functiahis exactly If we
ch00SeEmax < ™% then J(Ema) > J(M2B2y by an argument similar to the one in
Proposition 5. On the other hand, if we chodggu > ™28 then J(Emay) = J(T82B2)),
Therefore ES,,, to the optimization problem with the cost functidris ™%B2),

min(Az,B2)
— 2
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200W.
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