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Abstract

In this paper, we study battery sizing for grid-connected photovoltaic (PV) systems. In our
setting, PV generated electricity is used to supply the demand from loads: on the one hand, if
there is surplus PV generation, it is stored in a battery (as long as the battery is not fully charged),
which has a fixed maximum charging/discharging rate; on the other hand, if the PV generation
and battery discharging cannot meet the demand, electricity is purchased from the grid. Our
objective is to choose an appropriate battery size while minimizing the electricity purchase cost
from the grid. More specifically, we want to find a unique critical value (denoted asEc

max) of the
battery size such that the cost of electricity purchase remains the same if the battery size is larger
than or equal toEc

max, and the cost is strictly larger otherwise. We propose an upper bound on
Ec

max, and show that the upper bound is achievable for certain scenarios. For the case with ideal
PV generation and constant loads, we characterize the exactvalue ofEc

max, and also show how
the storage size changes as the constant load changes; theseresults are validated via simulations.

Keywords:
PV, Grid, Battery, Optimization

1. Introduction

Installations of solar photovoltaic (PV) systems have beengrowing at a rapid pace in re-
cent years due to the advantages of PV such as modest environmental impacts (clean energy),
avoidance of fuel price risks, coincidence with peak electrical demand, and the ability to deploy
PV at the point of use. In 2010, approximately 17,500 megawatts (MWs) of PV were installed
globally, up from approximately 7,500 MWs in 2009, consisting primarily of grid-connected
applications [1]. Since PV generation tends to fluctuate dueto cloud cover and the daily solar
cycle, energy storage devices, e.g., batteries, ultracapacitors, and compressed air, can be used
to smooth out the fluctuation of the PV output fed into electric grids (“capacity firming”) [2],
discharge and augment the PV output during times of peak energy usage (“peak shaving”) [3],
or store energy for nighttime use, for example in zero-energy buildings.

In this paper, we study battery sizing for grid-connected PVsystems to store energy for night-
time use. Our setting is shown in Fig. 1. PV generated electricity is used to supply loads: on the
one hand, if there is surplus PV generation, it is stored in a battery for later use or dumped (if the
battery is fully charged); on the other hand, if the PV generation and battery discharging cannot
Preprint submitted to European Journal of Control September 8, 2013



meet the demand, electricity is purchased from the grid. Thebattery has a fixed maximum charg-
ing/discharging rate. Our objective is to choose an appropriatebattery size while minimizing the
electricity purchase cost from the grid. We show that there is a unique critical value (denoted as
Ec

max, refer to Problem 1) of the battery capacity (under fixed maximum charging and discharging
rates) such that the cost of electricity purchase remains the same if the battery size is larger than
or equal toEc

max, and the cost is strictly larger otherwise. We first propose an upper bound on
Ec

max given the PV generation, loads, and the time period for minimizing the costs, and show that
the upper bound becomes exact for certain scenarios. For thecase of idealized PV generation
(roughly, it refers to PV output on clear days) and constant loads, we analytically characterize
the exact value ofEc

max, which is consistent with the critical value obtained via simulations.
The storage sizing problem has been studied for both off-grid and grid-connected applica-

tions. For example, the IEEE standard [4] provides sizing recommendations for lead-acid batter-
ies in stand-alone PV systems. In [5], the solar panel size and the battery size have been selected
via simulations to optimize the operation of a stand-alone PV system. If the PV system is grid-
connected, batteries can reduce the fluctuation of PV outputor provide economic benefits such
as demand charge reduction, capacity firming, and power arbitrage. The work in [6] analyzes the
relation between available battery capacity and output smoothing, and estimates the required bat-
tery capacity using simulations. In addition, the battery sizing problem has been studied for wind
power applications [7, 8, 9] and hybrid wind/solar power applications [10, 11, 12]. Most previ-
ous work completely relies on trial and error approaches to calculate the storage size. Only very
limited work has contributed to the theoretical analysis ofstorage sizing, such as [13, 14, 15].
In [13], discrete Fourier transforms are used to decompose the required balancing power into
different time-varying periodic components, each of which can be used to quantify the physical
maximum energy storage requirement. In [14], the storage sizing problem is cast as an infinite
horizon stochastic optimization problem to minimize the long-term average cost of electric bills
in the presence of dynamic pricing as well as investment in storage. In [15], we cast the storage
sizing problem as a finite horizon deterministic optimization problem to minimize the cost as-
sociated with the net power purchase from the electric grid and the battery capacity loss due to
aging while satisfying the load and reducing peak loads. Lower and upper bounds on the battery
size are proposed that facilitate the efficient calculation of its value. The contribution of this
work is the following: exact values of battery size for the special case of ideal PV generation and
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Figure 1: Grid-connected PV system with battery storage andloads.
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constant loads are characterized; in contrast, in [15], only lower and upper bounds are obtained.
In addition, the setting in this work is different from that of [14] in that a finite horizon deter-
ministic optimization is formulated here. These results can be generalized to more practical PV
generation and dynamic loads (as discussed in Remark 10).

We acknowledge that our analysis does not apply to the typical scenario of “net-metered”
systems1, where feed-in of energy to the grid is remunerated at the same rate as purchase of
energy from the grid. Consequently, the grid itself acts as astorage system for the PV system
(andEc

max becomes 0). However, from a grid operator standpoint it would be most desirable if
PV system could just serve the local load and not export to thegrid. This motivates our choice
of no revenue for dumping power to the grid. Our scenario alsohas analogues at the level of
a balancing area by avoiding curtailment or intra-hour energy export. For load balancing, in a
balancing area (typically a utility grid) steady-state conditions are set every hour. This means
that the power imports are constant over the hour. The balancing authority then has to balance
local generation with demand such that the steady state willbe preserved. This also corresponds
to avoiding “outflow” of energy from the balancing area. In a grid with very high renewable
penetration, there may be more renewable production than load. In that case, the energy would
be dumped or “curtailed”. However, with demand response (e.g., loads with relatively flexible
schedules) or battery storage, curtailment could be avoided.

The paper is organized as follows. In the next section, we introduce our setting, and formulate
the battery sizing problem. An upper bound onEc

max is proposed in Section 3, and the exact
value ofEc

max is obtained for ideal PV generation and constant loads in Section 4. In Section 5,
we validate the results via simulations. Finally, conclusions and future directions are given in
Section 6.

2. Problem Formulation

In this section, we formulate the problem of determining thestorage size for grid-connected
PV system, as shown in Fig. 1. Solar panels are used to generate electricity, which can be used
to supply loads, e.g., lights, air conditioners, microwaves in a residential setting. On the one
hand, if there is surplus electricity, it can be stored in a battery, or dumped to the grid if the
battery is fully charged. On the other hand, if there is not enough electricity to power the loads,
electricity can be drawn from the electric grid. Before formalizing the battery sizing problem,
we first introduce different components in our setting.

2.1. Photovoltaic Generation

We use the following equation to calculate the electricity generated from solar panels:

Ppv(t) = GHI(t) × S × η , (1)

where GHI (Wm−2) is the global horizontal irradiation at the location of solar panels,S (m2) is
the total area of solar panels, andη is the solar conversion efficiency of the PV cells. The PV
generation model is a simplified version of the one used in [16] and does not account for PV
panel temperature effects.

1Note that in [15], we study battery sizing for “net-metered” systems under more relaxed assumptions compared with
this work.
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2.2. Electric Grid

Electricity can be drawn from (or dumped to) the grid. We associate costs only with the
electricity purchase from the grid, and assume that there isno benefit by dumping electricity to
the grid. The motivation is that, from a grid operator standpoint, it would be most desirable if
PV system could just serve the local load and not export to thegrid. In a grid with very high
renewable penetration, there may be more renewable production than load. In that case, the
energy would have to be dumped (or curtailed).

We useCgp(t) (¢/kWh) to denote the electricity purchase rate,Pgp(t)(W) to denote the elec-
tricity purchased from the grid at timet, andPgd(t)(W) to denote the surplus electricity dumped
to the grid or curtailed at timet. For simplicity, we assume thatCgp(t) is time independentand
has the valueCgp. In other words, there is no difference between the electricity purchase rates at
different time instants.

2.3. Battery

A battery has the following dynamic:

dEB(t)
dt

= PB(t) , (2)

whereEB(t)(Wh) is the amount of electricity stored in the battery at timet, andPB(t)(W) is the
charging/discharging rate (more specifically,PB(t) > 0 if the battery is charging, andPB(t) < 0
if the battery is discharging). We impose the following constraints on the battery:

i) At any time, the battery chargeEB(t) should satisfyEBmin ≤ EB(t) ≤ EBmax, whereEBmin

is the minimum battery charge,EBmax is the maximum battery charge, and2 0 < EBmin ≤

EBmax, and

ii) The battery charging/discharging rate should satisfyPBmin ≤ PB(t) ≤ PBmax, wherePBmin <

0,−PBmin is the maximum battery discharging rate, andPBmax > 0 is the maximum battery
charging rate.

For lead-acid batteries, more complicated models exist (e.g., a third order model is proposed
in [17, 18]).

2.4. Load

Pload(t)(W) denotes the load at timet. We do not make explicit assumptions on the load con-
sidered in Section 3 except thatPload(t) is a (piecewise) continuous function. Loads could have a
fixed schedule such as lights and TVs, or a relatively flexibleschedule such as refrigerators and
air conditioners. For example, air conditioners can be turned on and off with different schedules
as long as the room temperature is within a comfortable range. In Section 4, we consider constant
loads, i.e.,Pload(t) is independent of timet.

2Usually,EBmin is chosen to be larger than 0 to prevent fast battery aging. For detailed modeling of the aging process,
refer to [3].

4



2.5. Minimization of Electricity Purchase Cost

With all the components introduced earlier, now we can formulate the following problem
of minimizing the electricity purchase cost from the electric grid while guaranteeing that the
demand from loads are satisfied:

min
PB,Pgp,Pgd

∫ t0+T

t0

CgpPgp(τ)dτ

s.t.Ppv(t) + Pgp(t) = Pgd(t) + PB(t) + Pload(t) , (3)

dEB(t)
dt

= PB(t) ,EB(t0) = EBmin ,

EBmin ≤ EB(t) ≤ EBmax ,

PBmin ≤ PB(t) ≤ PBmax ,

Pgp(t) ≥ 0,Pgd(t) ≥ 0 , (4)

wheret0 is the initial time,T is the time period considered for the cost minimization. Eq.(3) is
the power balance requirement for any timet ∈ [t0, t0+T]; in other words, the supply of electricity
(either from PV generation, grid purchase, or battery discharging) must meet the demand.

2.6. Battery Sizing

Based on Eq. (3), we obtain

Pgp(t) = Pload(t) − Ppv(t) + PB(t) + Pgd(t) .

Then the optimization problem in Eq. (4) can be rewritten as

min
PB,Pgd

∫ t0+T

t0

Cgp(Pload(τ) − Ppv(τ) + PB(τ) + Pgd(τ))dτ

s.t.
dEB(t)

dt
= PB(t) ,EB(t0) = EBmin ,

EBmin ≤ EB(t) ≤ EBmax ,

PBmin ≤ PB(t) ≤ PBmax ,

Pgd(t) ≥ 0 .

Now there are two independent variablesPB(t) and Pgd(t). To minimize the total electricity
purchase cost, we have the following key observations:

(A) If the battery is charging, i.e.,PB(t) > 0 andEB(t) < EBmax, then the charged electricity
should only come from surplus PV generation;

(B) If the battery is discharging, i.e.,PB(t) < 0 andEB(t) > EBmin, then the discharged electric-
ity should only be used to supply loads. In other words, the dumped electric powerPgd(t)
should only come from surplus PV generation.

In observation (A), the battery can be charged by purchasingelectricity from the grid at the cur-
rent time and be used later on when the PV generated electricity is insufficient to meet demands.
However, this incurs a cost at the current time, and the saving of costs by discharging later on is
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the same as the cost of charging (or could be less than the costof charging if the discharged elec-
tricity gets dumped to the grid) because the electricity purchase rate is time independent. That is
to say, there is no gain in terms of costs by operating the battery charging in this way. Therefore,
we can restrict the battery charging to using only PV generated electric power. In observation
(B), if the battery charge is dumped to the grid, potentiallyit could increase the total cost since
extra electricity might need to be purchased from the grid tomeet the demand. In summary, we
have the following rule to operate the battery and dump electricity to the grid (i.e., restricting the
set of possible control actions) without increasing the total cost.

Rule 1 The battery gets charged from the PV generation only when there is surplus PV gener-
ated electric power and the battery can still be charged, andgets discharged to supply the load
only when the load cannot be met by PV generated electric power and the battery can still be
discharged. PV generated electric power gets dumped to the grid only when there is surplus PV
generated electric power other than supplying both the loadand the battery charging.

With this operating rule, we can further eliminate the variable Pgd(t) and obtain another
equivalent optimization problem. On the one hand, ifPload(t) − Ppv(t) + PB(t) < 0, i.e., the
electricity generated from PV is more than the electricity consumed by the load and charging the
battery, we need to choosePgd(t) > 0 to makePgp(t) = 0 so that the cost is minimized; on the
other hand, ifPload(t) − Ppv(t) + PB(t) > 0, i.e., the electricity generated from PV and battery
discharging is less than the electricity consumed by the load, we need to choosePgd(t) = 0 to
minimize the electricity purchase costs, and we havePgp(t) = Pload(t)−Ppv(t)+PB(t). Therefore,
Pgp(t) can be written as

Pgp(t) = max(0,Pload(t) − Ppv(t) + PB(t)) ,

so that the integrand is minimized at each time.
Let

x(t) = EB(t) −
EBmax+ EBmin

2
,

u(t) = PB(t), and

Emax =
EBmax− EBmin

2
.

Note that 2Emax = EBmax − EBmin is the net (usable) battery capacity, which is the maximum
amount of electricity that can be stored in the battery. Thenthe optimization problem can be
rewritten as

J = min
u

∫ t0+T

t0

Cgp max(0,Pload(τ) − Ppv(τ) + u(τ))dτ

s.t.
dx(t)

dt
= u(t) , x(t0) = −Emax ,

|x(t)| ≤ Emax ,

PBmin ≤ u(t) ≤ PBmax . (5)

Now it is clear that onlyu(t) (or equivalently,PB(t)) is an independent variable. As argued
previously, we can restrictu(t) to satisfying Rule 1 without increasing the minimum costJ.
We define the set of feasible controls (denoted asUfeasible) as controls that satisfy the constraint
PBmin ≤ u(t) ≤ PBmax and do not violate Rule 1.
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If we fix the parameterst0,T,PBmin, andPBmax, J is a function ofEmax, which is denoted as
J(Emax). If Emax = 0, thenu(t) = 0, andJ reaches the largest value

Jmax =

∫ t0+T

t0

Cgp max(0,Pload(τ) − Ppv(τ))dτ . (6)

If we increaseEmax, intuitively J will decrease (though may not strictly decrease) because the
battery can be utilized to store extra electricity generated from PV to be potentially used later on
when the load exceeds the PV generation. This is justified in the following proposition.

Proposition 1 Given the optimization problem in Eq. (5), ifE1
max < E2

max, then J(E1
max) ≥

J(E2
max).

Proof Refer to Appendix A.
In other words,J is monotonically decreasing with respect to the parameterEmax, and is

lower bounded by 0. We are interested in finding the smallest value ofEmax (denoted asEc
max)

such thatJ remains the same for anyEmax ≥ Ec
max, and call it the battery sizing problem.

Problem 1 (Battery Sizing) Given the optimization problem in Eq. (5) with fixedt0,T,PBmin

andPBmax, determine a critical valueEc
max ≥ 0 such that∀Emax < Ec

max, J(Emax) > J(Ec
max), and

∀Emax ≥ Ec
max, J(Emax) = J(Ec

max).

Remark 1 In the battery sizing problem, we fix the charging and discharging rate of the battery
while varying the battery capacity. This is reasonable if the battery is charged with a fixed
charger, which uses a constant charging voltage but can change the charging current within a
certain limit. In practice, the charging and discharging rates could scale withEmax, which results
in challenging problems to solve and requires further study. �

Note that the critical valueEc
max is unique as shown in the following proposition, which can

be proved via contradiction.

Proposition 2 Given the optimization problem in Eq. (5) with fixedt0,T,PBmin andPBmax, Ec
max

is unique.

Remark 2 One idea to calculate the critical valueEc
max is that we first obtain an explicit expres-

sion for the functionJ(Emax) by solving the optimization problem in Eq. (5) and then solve for
Ec

max based on the functionJ. However, the optimization problem in Eq. (5) is difficult to solve
due to the state constraint|x(t)| ≤ Emax and the fact that it is hard to obtain analytical expressions
for Pload(t) andPpv(t) in reality. Even though it might be possible to find the optimal control us-
ing the minimum principle [19], it is still hard to get an explicit expression for the cost function
J. Instead, in the next section, we first focus on bounding the critical valueEc

max in general, and
then study the problem for specific scenarios in Section 4. �

3. Upper Bound on Ec
max

In this section, we first identify necessary assumptions to ensure a nonzeroEc
max, then propose

an upper bound onEc
max, and finally show that the upper bound is tight for certain scenarios.

Proposition 3 Given the optimization problem in Eq. (5) with fixedt0,T,PBmin and PBmax,
Ec

max = 0 if any of the following conditions holds:
7



(i) ∀t ∈ [t0, t0 + T], Ppv(t) − Pload(t) ≤ 0,

(ii) ∀t ∈ [t0, t0 + T], Ppv(t) − Pload(t) ≥ 0,

(iii) ∀t1 ∈ S1, ∀t2 ∈ S2, t2 < t1, where

S1 :={t ∈ [t0, t0 + T] | Ppv(t) − Pload(t) > 0} , (7)

S2 :={t ∈ [t0, t0 + T] | Pload(t) − Ppv(t) > 0} . (8)

Proof Refer to Appendix B.

Remark 3 The intuition of condition (i) in Proposition 3 is that if∀t ∈ [t0, t0 + T], Ppv(t) −
Pload(t) ≤ 0, no extra electricity is generated from PV and can be storedin the battery to strictly
reduce the cost. The intuition of condition (ii) in Proposition 3 is that if∀t ∈ [t0, t0 + T], Ppv(t)−
Pload(t) ≥ 0, the electricity generated from PV alone is enough to satisfy the load all the time, and
extra electricity can be simply dumped to the grid. Note thatJmax = 0 for this case. As defined
in condition (iii), S1 ∩ S2 = ∅ because it is impossible to have bothPpv(t) − Pload(t) > 0 and
Pload(t) − Ppv(t) > 0 at the same time for any timet. �

Based on the result in Proposition 3, we impose the followingassumption on Problem 1 to
make use of the battery.

Assumption 1 There existst1 andt2 for t1, t2 ∈ [t0, t0+T], such thatt1 < t2, Ppv(t1)−Pload(t1) > 0
andPpv(t2) − Pload(t2) < 0.

Remark 4 Ppv(t1) − Pload(t1) > 0 implies that at timet1 there is surplus electric power available
from PV.Ppv(t2)−Pload(t2) < 0 implies that at timet2 the electric power from PV is not sufficient
for the load. Ift1 < t2, the electricity stored in the battery at timet1 can be discharged to supply
the load at timet2 to strictly reduce the cost. �

Proposition 4 Given the optimization problem in Eq. (5) with fixedt0,T,PBmin andPBmax under
Assumption 1, 0< Ec

max ≤
min(A,B)

2 , where

A =
∫ t0+T

t0

min(PBmax,max(0,Ppv(t) − Pload(t)))dt , (9)

and

B =
∫ t0+T

t0

min(−PBmin,max(0,Pload(t) − Ppv(t)))dt . (10)

Proof Refer to Appendix C.

Remark 5 Note that if∀t ∈ [t0, t0+T] we havePpv(t)−Pload(t) ≤ 0, thenA = 0 following Eq. (9);
therefore, the upper bound forEc

max in Proposition 4 becomes 0, which implies thatEc
max = 0.

If ∀t ∈ [t0, t0 + T] we havePpv(t) − Pload(t) ≥ 0, thenB = 0 following Eq. (10); therefore, the
upper bound forEc

max in Proposition 4 becomes 0, which implies thatEc
max = 0. Both results are

consistent with the results in Proposition 3. �

Proposition 5 Given the optimization problem in Eq. (5) with fixedt0,T,PBmin andPBmax under
Assumption 1, if∀t1 ∈ S1, ∀t2 ∈ S2, t1 < t2, thenEc

max =
min(A,B)

2 , whereS1 (or S2, A, B,
respectively) is defined in Eq. (7) (or (8), (9), (10), respectively). In addition, if Emax is chosen
to be min(A,B)

2 , x(t0 + T) = −Emax (i.e., no battery charge left at timet0 + T).

Proof Refer to Appendix D.
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0 tsunrise tsunset 24

Ppv(W)

t(h)

(a) Ideal PV generation for a clear day.

0 24

Pload(W)

t(h)

(b) Constant load.

Figure 2: Ideal PV generation and constant load.

4. Ideal PV Generation and Constant Load

In this section, we study how to obtain the critical value forthe scenario in which the PV gen-
eration is ideal and the load is constant. Ideal PV generation occurs on clear days; for a typical
south-facing PV array on a clear day, the PV output is zero before about sunrise, rises contin-
uously and monotonically to its maximum around solar noon, then decreases continuously and
monotonically to zero around sunset, as shown in Fig. 2(a). In other words, there is essentially
no short time fluctuation (at the scale of seconds to minutes)due to atmospheric effects such as
clouds or precipitation. By constant load, we meanPload(t) is a constant fort ∈ [t0, t0 + T]. A
typical constant load is plotted in Fig. 2(b). To further simplify the problem, we assume thatt0
is 0000 h Local Standard Time (LST), andT = t0 + k × 24(h) wherek is a nonnegative integer,
i.e., T is a duration of multiple days. Fig. 2 plots the ideal PV generation and the constant load
for T = 24(h). Now we summarize these conditions in the following assumption.

Assumption 2 The initial timet0 is 0000 h LST,T = k×24(h) wherek is a positive integer,Ppv(t)
is periodic on a timescale of 24 hours, and satisfies the following property fort ∈ [0,24(h)]: there
exist three time instants 0< tsunrise< tmax < tsunset< 24(h) such that

• Ppv(t) = 0 for t ∈ [0, tsunrise] ∪ [tsunset,24(h)];

• Ppv(t) is continuous and strictly increasing fort ∈ [tsunrise, tmax];

• Ppv(t) achieves its maximumPmax
pv at tmax;

• Ppv(t) is continuous and strictly decreasing fort ∈ [tmax, tsunset],

andPload(t) = Pload for t ∈ [t0, t0 + T], wherePload is a constant satisfying 0< Pload < Pmax
pv .

It can be verified that Assumption 2 implies Assumption 1.

Proposition 6 Given the optimization problem in Eq. (5) with fixedt0,T,PBmin andPBmax under
Assumption 2 andT = 24(h), Ec

max =
min(A1,B1)

2 , where

A1 =

∫ t2

t1

min(PBmax,max(0,Ppv(t) − Pload))dt ,
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0 t1 t2 24

Ppv(W)

t(h)

PBmax

−PBmin

A1

B1

Figure 3: PV generation and load, wherePBmax (or −PBmin) is the maximum charging (or discharging) rate, and
A1, B1, t1, t2 are defined in Proposition 6.

and

B1 =

∫ 24

t2

min(−PBmin,max(0,Pload− Ppv(t)))dt ,

in which t1 < t2 andPpv(t1) = Ppv(t2) = Pload.

Proof Refer to Appendix E.

Remark 6 A1 andB1 in Proposition 6 are shown in Fig. 3. In words,A1 is the amount of extra
PV generated electricity that can be stored in a battery, andB1 is the amount of electricity that
is necessary to supply the loadand can be provided by battery discharging. Note thatt1 andt2
depend on the value ofPload. To eliminate this dependency, we can rewriteA1 as

A1 =

∫ 24

0
min(PBmax,max(0,Ppv(t) − Pload))dt , (11)

and rewriteB1 as

B1 =

∫ 24

tmax

min(−PBmin,max(0,Pload− Ppv(t)))dt , (12)

wheretmax is defined in Assumption 2. �

Remark 7 If the PV generation is not ideal, i.e., there are fluctuations due to clouds or precipi-
tation, theEc

max value in Proposition 6 based on ideal PV generation naturally serves as an upper
bound onEc

max for the case with the non-ideal PV generation. Similarly, ifthe load varies with
time but is bounded by a constantPload, theEc

max values in Proposition 6 based on the constant
loadPload naturally serves as an upper bound onEc

max for the case with the time varying load.�

Now we examine howEc
max changes asPload varies from 0 toPmax

pv .

Proposition 7 Given the optimization problem in Eq. (5) with fixedt0,T,PBmin andPBmax under
Assumption 2 andT = 24(h), then

a) there exists a unique critical value ofPload ∈ (0,Pmax
pv ) (denoted asPc

load) such thatEc
max

achieves its maximum;
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0 Pc
load

Pmax
pv Pload(W)

Ec
max(Wh)

B1
2

A1
2

Figure 4:Ec
max as a function ofPload for 0 ≤ Pload ≤ Pmax

pv .

b) if Pload increases from 0 toPc
load, Ec

max increases continuously and monotonically from 0
to its maximum;

c) if Pload increases fromPc
load to Pmax

pv , Ec
max decreases continuously and monotonically from

its maximum to 0.

Proof Refer to Appendix F.

Remark 8 A typical plot of Ec
max as a function ofPload is given in Fig. 4. Note that the slopes

at 0 andPmax
pv are both 0, which can be derived from the expressions ofdA1

dPload
and dB1

dPload
. The

result has the implication that there is a (finite) unique battery capacity that minimizes the grid
electricity purchase cost for anyPload > 0. Fig. 10(a) verifies the plot via simulations. �

Now we focus on the case with multiple days.

Proposition 8 Given the optimization problem in Eq. (5) with fixedt0,T,PBmin andPBmax under
Assumption 2 andT = k× 24(h) wherek > 1 is a positive integer,Ec

max =
min(A2,B2)

2 , where

A2 =

∫ t2

t1

min(PBmax,max(0,Ppv(t) − Pload))dt ,

and

B2 =

∫ t3

t2

min(−PBmin,max(0,Pload− Ppv(t)))dt ,

in which ti ∈ Tcrossing := {t ∈ [0, k × 24] | Ppv(t) = Pload}, t1, t2, t3 are the smallest three time
instants inTcrossingand satisfyt1 < t2 < t3.

Proof Refer to Appendix G.

Remark 9 A2 andB2 in Proposition 8 are shown in Fig. 5. In words,A2 is the amount of extra
PV generated electricity that can be stored in a battery in the time interval [t1, t3], and B2 is
the amount of electricity that is necessary to supply the load and can be provided by battery
discharging in the time interval [t1, t3]. Note thatt1, t2, andt3 depend on the value ofPload. To
eliminate this dependency, we can rewriteA2 as

A2 =

∫ 24

0
min(PBmax,max(0,Ppv(t) − Pload))dt , (13)

11
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Figure 5: PV generation and load (two days), wherePBmax (or −PBmin) is the maximum charging (or discharging) rate,
andA2, B2, t1, t2, t3 are defined in Proposition 8.

and rewriteB2 as

B2 =

∫ tmax+24

tmax

min(−PBmin,max(0,Pload− Ppv(t)))dt , (14)

wheretmax is defined in Assumption 2. �

It can be verified that the following result on howEc
max changes holds based on an analysis

similar to the one in Proposition 7 using Eqs. (13) and (14), and Figs. 10(b) and (c) verify the
trend via simulations.

Proposition 9 Given the optimization problem in Eq. (5) with fixedt0,T,PBmin andPBmax under
Assumption 2 andT = k× 24(h) wherek > 1 is a positive integer, then

a) there exists a unique critical value ofPload ∈ (0,Pmax
pv ) (denoted asPc

load) such thatEc
max

achieves its maximum;

b) if Pload increases from 0 toPc
load, Ec

max increases continuously and monotonically from 0
to its maximum;

c) if Pload increases fromPc
load to Pmax

pv , Ec
max decreases continuously and monotonically from

its maximum to 0.

Remark 10 Note that Assumption 2 can be relaxed. GivenT = 24, if Pload(t) andPpv(t) are
piecewise continuous functions, and intersect at two time instantst1, t2, in additionS1 (as defined
in Eq. (7)) is the same as the open interval (t1, t2), then the result in Proposition 6 also holds,
which can be proved similarly based on the argument in Proposition 6. Besides these conditions,
if Pload(t) andPpv(t) are periodic with period 24 hours, then the result in Proposition 8 also holds.
However, with these relaxed conditions, the results in Propositions 7 and 9 do not hold any more
since the load might not be constant. �

5. Simulations

In this section, we verify the results in Sections 3 and 4 via simulations. The parameters used
in Section 2 are chosen based on a typical residential home setting.

12
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Figure 6: PV output for July 13 - 16, 2010, at La Jolla, California. For reference, a constant load 200W is also shown
(solid red line) along withPBmax = −PBmin = 200W. The green area corresponds to the amount of electricity thatcan
be potentially charged to a battery, while the red area corresponds to the amount of electricity that can potentially be
provided by discharging the battery.

The GHI data is the measured GHI between July 13 and July 16, 2010 at La Jolla, California.
In our simulations, we useη = 0.15, andS = 10m2. ThusPpv(t) = 1.5×GHI(t)(W). We choose
t0 as 0000 h LST on Jul 13, 2010, and the hourly PV output is given in Fig. 6 for the following
four days starting fromt0. Except the small variation on Jul 15, 2010 and being not exactly
periodic for every 24 hours, the PV generation roughly satisfies Assumption 2, which implies
that Assumption 1 holds. Note that 0≤ Ppv(t) < 1500W for t ∈ [t0, t0 + 96].

The electricity purchase rateCgp is chosen to be 7.8¢/kWh, which is the semipeak rate for
the summer season proposed by SDG&E (San Diego Gas & Electric) [20]. For the battery, we
chooseEBmin = 0.4× EBmax, and then

Emax =
EBmax− EBmin

2
= 0.3× EBmax .

The maximum charging rate is chosen to bePBmax = 200W, andPBmin = −PBmax. Note that the
battery dynamic is characterized by a continuous ordinary differential equation. To run simula-
tions, we use one hour as the sampling interval, and discretize Eq. (2) as

EB(k+ 1) = EB(k) + PB(k) .

5.1. Dynamic Loads

We first examine the upper bound in Proposition 4 using dynamic loads. The load profile
for one day is given in Fig. 7, which resembles the residential load profile in3 Fig. 8(b) in [16].
Note that one load peak appears in the early morning, and the other in the evening. For multiple
day simulations, the load is periodic based on the load profile in Fig. 7. We study how the cost
functionJ of the optimization problem in Eq. (5) changes as a function of Emax by increasing the
battery capacityEmax from 0 to 1500Whwith the step size 10Wh. We solve the optimization

3However, simulations in [16] start at 7AM so Fig. 7 is a shiftedversion of the load profile in Fig. 8(b) in [16].
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Figure 7: A typical residential load profile.

problem in Eq. (5) via linear programming using the CPlex sover [21]. If T = 24(h) (or T =
48(h), T = 96(h), respectively), the plot of the minimum costs versusEmax is given in Fig. 8(a)
(or (b), (c), respectively). The plots confirm the result in Proposition 1, i.e., the minimum cost is
a decreasing function ofEmax, and also show the existence of the uniqueEc

max. If T = 24(h), Ec
max

is 700Wh, which can be identified from Fig. 8(a). The upper bound in Proposition 4 is calculated
to be 900Wh. Similarly, if T = 48(h), Ec

max is 900Whwhile the upper bound in Proposition 4 is
calculated to be 1800Wh; if T = 96(h), Ec

max is 900Whwhile the upper bound in Proposition 4
is calculated to be 3402Wh. The upper bound holds for these three cases though the difference
between the upper bound andEc

max increases whenT increases. This is due to the fact that during
multiple days battery can be repeatedly charged and discharged; however, this fact is not taken
into account in the upper bound in Proposition 4. Since the load profile roughly satisfies the
conditions imposed in Remark 10, we can calculate the theoretical value forEc

max based on the
results in Propositions 6 and 8 even for this dynamic load. IfT = 24(h), the theoretical value is
690Whwhich is obtained from Proposition 6 by evaluating the integral in A1 andB1 using the
sum of the integrand for every hour fromt0 to t0 + T. Similarly, if T = 48(h) or T = 96(h), then
the theoretical value is 900Whwhich is obtained from Proposition 8. Due to the step size 10Wh
used in the choice ofEmax, these theoretical values are quite consistent with results obtained via
simulations.

5.2. Constant Loads
We now study how the cost functionJ of the optimization problem in Eq. (5) changes as a

function ofEmax with a constant load, and the load is used fromt0 to t0 + T to satisfy Assump-
tion 2. We fix the load to bePload = 200 W, and increase the battery capacityEmax from 0 to
1500Wh with the step size 10Wh. We solve the optimization problem in Eq. (5) via linear
programming using the CPlex sover [21]. IfT = 24(h) (or T = 48(h), T = 96(h), respectively),
the plot of the minimum costs versusEmax is given in Fig. 9(a) (or (b), (c), respectively). The
plots confirm the result in Proposition 1, i.e., the minimum cost is a decreasing function ofEmax,
and also show the existence of the uniqueEc

max.
Now we validate the results in Propositions 6, 7, 8, and 9. We vary the load from 0 to

1500W with the step size 100W, and for eachPload we calculate theEc
max and the minimum cost

14



corresponding to theEc
max. In Fig. 10(a), the left figure shows howEc

max changes as a function of
the load forT = 24(h), and the right figure shows the corresponding minimum costs. The plot
in the left figure is consistent with the result in Proposition 7 except that the maximum ofEc

max
is not unique. This is due to the fact that the load is chosen tobe discrete with step size 100W.
The right figure is consistent with the intuition that when the load is increasing, more electricity
needs to be purchased from the grid (resulting in a higher cost). Note that the blue solid curve
corresponds to the costs withEc

max, while the red dotted curve corresponds toJmax, i.e., the costs
without battery. The plots forEc

max and the minimum cost forT = 48(h) andT = 96(h) are
shown in Fig. 10(b) and (c). The plots in the left figures of Fig. 10(b) and (c) are consistent with
the result in Proposition 9. Note that asT increases, the critical loadPc

load decreases as shown
in the left figures of Fig. 10. One observation on the left figures of Fig. 10 is thatEc

max increases
roughly linearly with respect to the load when the load is small. The justification is that when
the load is small,Ec

max is determined byB1 in Fig. 3 (orB2 in Fig. 5 for multiple days) andB1

(or B2) increases roughly linearly with respect to the load as can be seen from Fig. 3 (or Fig. 5).
Now we examine the results in Proposition 6. ForT = 24(h), we evaluate the integral inA1

andB1 using the sum of the integrand for every hour fromt0 to t0+T given a fixed load, and then
obtainEc

max; this value is denoted as the theoretical value. The theoretical value is plotted as the
red curve (with the circle marker) in the left plot of Fig. 11(a). The valueEc

max calculated based
on simulations is plotted as the blue curve (with the square marker) in the left plot of Fig. 11(a).
In the right plot of Fig. 11(b), we plot the difference between the value obtained via simulations
and the theoretical value. Note that the value obtained via simulations is always larger than or
equal to the theoretical value becauseEmax is chosen to be discrete with step size 10Wh. The
differences are always smaller than4 9 Wh, which confirms that the theoretical value is very
consistent with the value obtained via simulations. The same conclusion holds forT = 48(h),
as shown in Fig. 11(b). ForT = 96(h), the largest difference is around 70Wh as shown in
Fig. 11(c); this is more likely due to the slight variation inthe PV generation for different days.
Note that the differences for10

16 =
5
8 of the load values (which range from 0 to 1500W with the

step size 100W) are within 10Wh.

6. Conclusions

In this paper, we studied the problem of determining the sizeof battery storage for grid-
connected PV systems. We proposed an upper bound on the storage size, and showed that the
upper bound is achievable for certain scenarios. For the case with ideal PV generation and
constant load, we characterized the exact storage size, andalso showed how the storage size
changes as the constant load changes; these results are consistent with the results obtained via
simulations.

There are several directions for future research. First, the dynamic time-of-use pricing of
the electricity purchase from the grid could be taken into account. Large businesses usually pay
time-of-use electricity rates, but with increased deployment of smart meters and electric vehicles
some utility companies are moving towards different prices for residential electricity purchase
at different times of the day (for example, SDG&E has the peak, semipeak, offpeak prices for
a day in the summer season [20]). New results (and probably new techniques) are necessary to

4The step size forEmax is 10 Wh, so the difference between the value obtained via simulations and the theoretical
value is expected to be within 10 assuming the theoretical value is correct.
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deal with dynamic pricing. Second, we would like to study howbatteries with a fixed capacity
can be utilized (e.g., via serial or parallel connections) to implement the critical battery capacity
for practical applications. Last, we would also like to extend the results to wind energy storage
systems, and consider battery parameters such as round-trip charging efficiency, degradation, and
costs.
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Appendix A. Proof to Proposition 1

GivenE1
max, suppose a feasible controlu1(t) achieves the minimum electricity purchase cost

J(E1
max) and the corresponding statex is x1(t). Since|x1(t)| ≤ E1

max < E2
max, u1(t) is also a feasible

control for problem (5) with the state constraintE2
max and satisfying Rule 1, and results in the

costJ(E1
max). SinceJ(E2

max) is the minimal cost over the set of all feasible controls which include
u1(t), we must haveJ(E1

max) ≥ J(E2
max).

Appendix B. Proof to Proposition 3

Condition (i) holds. Since∀t ∈ [t0, t0 + T], Ppv(t) − Pload(t) ≤ 0, we havePload(t) − Ppv(t) ≥ 0.
Denote the integrand inJ of Eq. (5) asα, i.e., α(t) = Cgp max(0,Pload(t) − Ppv(t) + u(t)). If
Pload(t)−Ppv(t) = 0, then we could chooseu(t) = 0 to makeα to be 0. IfPload(t)−Ppv(t) > 0, we
could choosePpv(t)− Pload(t) ≤ u(t) < 0 to decreaseα, i.e., by discharging the battery. However,
sincex(t0) = −Emax, there is no electricity stored in the battery at the initialtime. To be able
to discharge the battery, it must have been charged previously. Following Rule 1, the electricity
stored in the battery should only come from surplus PV generation. However, there is no surplus
PV generation at any time because∀t ∈ [t0, t0 + T], Ppv(t) − Pload(t) ≤ 0. Therefore, the cost is
not reduced by choosingPpv(t) − Pload(t) ≤ u(t) < 0. In other words,u can be chosen to be 0. In
both cases,u(t) can be 0 for anyt ∈ [t0, t0 + T] without increasing the cost, and thus, no battery
is necessary. Therefore,Ec

max = 0.
Condition (ii) holds. Since∀t ∈ [t0, t0 + T], Ppv(t) − Pload(t) ≥ 0, we havePload(t) − Ppv(t) ≤ 0.
Denote the integrand inJ asα, i.e.,α(t) = Cgp max(0,Pload(t)−Ppv(t)+u(t)). If Pload(t)−Ppv(t) ≤
0, we could chooseu(t) = 0, and thenα = max(0,Pload(t) − Ppv(t) + u(t)) = max(0,Pload(t) −
Ppv(t)) = 0. Sinceu(t) can be 0 for anyt ∈ [t0, t0 + T] without increasing the cost, no battery is
necessary. Therefore,Ec

max = 0.
Condition (iii) holds. S1 is the set of time instants at which there is extra amount of electric
power that is generated from PV after supplying the load, while S2 is the set of time instants at
which the PV generated power is insufficient to supply the load. According to Rule 1, at timet,
the battery could get charged only ift ∈ S1, and could get discharged only ift ∈ S2. If ∀t1 ∈ S1,
∀t2 ∈ S2, t2 < t1 implies that even if the extra amount of electricity generated from PV is stored
in a battery, there is no way to use the stored electricity to supply the load. This is because the
electricity is stored after the time instants at which battery discharging can be used to strictly
decrease the cost and initially there is no electricity stored in the battery. Therefore, the costs are
the same for the scenario with battery and the scenario without battery, andEc

max = 0.

16



Appendix C. Proof to Proposition 4

It can be shown, via contradiction, that under Assumption 1,A > 0 andB > 0, which imply
that min(A,B)

2 > 0.
We showEc

max > 0 via contradiction. SinceEc
max ≥ 0, we need exclude the caseEc

max =

0. SupposeEc
max = 0. If we chooseEmax > Ec

max = 0, J(Emax) < J(Ec
max) because under

Assumption 1 a battery can store the extra PV generated electricity first and then use it later on
to strictly reduce the cost compared with the case without a battery (i.e., the case withEmax = 0).
A contradiction to the definition ofEc

max.
To showEc

max ≤
min(A,B)

2 , it is sufficient to show that ifEmax ≥
min(A,B)

2 , then J(Emax) =
J( min(A,B)

2 ). There are two cases depending on ifA ≤ B or not:

• A ≤ B. Then min(A, B) = A. At time t, max(0,Ppv(t) − Pload(t)) is the extra amount of
electric power that is generated from PV after supplying theload, and

min(PBmax,max(0,Ppv(t) − Pload(t)))

is the extra amount of electric power that is generated from PV after supplying the load
and can be stored in a battery subject to the maximum chargingrate. Then

A =
∫ t0+T

t0

min(PBmax,max(0,Ppv(t) − Pload(t)))dt

is the maximum total amount of extra electricity that can be stored in a battery while
taking the battery charging rate into account. Even if 2Emax ≥ A, i.e., Emax ≥

A
2 , the

amount of electricity that can be stored in the battery cannot exceedA. Therefore, any
control that is feasible with|x(t)| ≤ Emax is also feasible with|x(t)| ≤ A

2 . Therefore,
J(Emax) = J( A

2 ) = J( min(A,B)
2 );

• A > B. Then min(A, B) = B. At time t, max(0,Pload(t) − Ppv(t)) is the amount of electric
power that is necessary to satisfy the load (and could be supplied by either battery power
or grid purchase), and

min(−PBmin,max(0,Pload(t) − Ppv(t)))

is the amount of electric power that can potentially be discharged from a battery to supply
the load subject to the maximum discharging rate (in other words, if Pload(t) − Ppv(t) >
−PBmin, electricity must be purchased from the grid). Then

B =
∫ t0+T

t0

min(−PBmin,max(0,Pload(t) − Ppv(t)))dt

is the maximum total amount of electricity that is necessaryto be discharged from the
battery to satisfy the load while taking the battery discharging rate into account. When
2Emax ≥ B, i.e., Emax ≥

B
2 , the amount of electricity that can be charged can exceedB

becauseA > B; however, the amount of electricity that is strictly necessary to be (and,
at the same time, can be) discharged does not exceedB. In other words, if the stored
electricity in the battery exceeds this amountB, the extra electricity cannot help reduce the
cost because it either cannot be discharged or is not necessary. Therefore, any control that
minimizes the total cost with the battery capacity beingB also minimizes the total cost
with the battery capacity being 2Emax. Therefore,J(Emax) = J( B

2 ) = J( min(A,B)
2 ).
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Appendix D. Proof to Proposition 5

From Proposition 4, we haveEc
max ≤

min(A,B)
2 . To proveEc

max =
min(A,B)

2 , we show that
Ec

max <
min(A,B)

2 is impossible via contradiction. SupposeEc
max <

min(A,B)
2 . If ∀t1 ∈ S1, ∀t2 ∈ S2,

t1 < t2, then during the time interval [t0, t0 + T], the battery is first charged, and then discharged
following Rule 1. In other words, there is no charging after discharging. There are two cases
depending onA andB:

• A ≤ B. In this case,Ec
max <

A
2 , i.e., 2Ec

max < A. If the battery capacity is 2Ec
max, then

the amount of electricityA − 2Ec
max > 0 (which is generated from PV) cannot be stored

in the battery. If we choose the battery capacity to beA, this extra amount can be stored
and used later on to strictly decrease the cost becauseA ≤ B. Therefore,J( A

2 ) < J(Ec
max).

A contradiction to the definition ofEc
max. In this case, ifEmax is chosen to beA2 , then the

battery is first charged withA amount of electricity, and then completely discharged before
(or at)t0 + T becauseA ≤ B. Therefore, we havex(t0 + T) = −Emax.

• A > B. In this case,Ec
max <

B
2 , i.e., 2Ec

max < B. If the battery capacity is 2Ec
max, at most

2Ec
max < B < A amount of PV generated electricity can be stored in the battery. Therefore,

the amount of electricityB−2Ec
max > 0 must be purchased from the grid to supply the load.

If we choose the battery capacity to beB, the amount of electricityB− 2Ec
max purchased

from the grid can be provided by the battery because the battery can be charged with
the amount of electricityB (sinceA > B), and thus the cost can be strictly decreased.
Therefore,J( B

2 ) < J(Ec
max). A contradiction to the definition ofEc

max. In this case, ifEmax

is chosen to beB2 , then the battery is first charged withB amount of electricity (that is to
say, not all extra electricity generated from PV is stored inthe battery sinceA > B), and
then completely discharged at timet0 + T. Therefore, we also havex(t0 + T) = −Emax.

Appendix E. Proof to Proposition 6

Due to Assumption 2,Pload(t) intersects withPpv(t) at two time instants forT = 24(h); the
smaller time instant is denoted ast1, and the larger is denoted ast2, as shown in Fig. 3. It can
be verified thatPpv(t) > Pload for t ∈ (t1, t2) andPpv(t) < Pload for t ∈ [0, t1) ∪ (t2,24] following
Assumption 2. Fort ∈ [0, t1), a battery could only get discharged following Rule 1; however, it
cannot be discharged becausex(0) = −Emax. Therefore,u(t) can be 0 while achieving the lowest
cost for the time period [0, t1). Then the objective function of the optimization problem in Eq. (5)
can be rewritten as

J = min
∫ 24

0
Cgp max(0,Pload− Ppv(τ) + u(τ))dτ

= J0 + J1 ,

whereJ0 =
∫ t1

0
Cgp(Pload− Ppv(τ))dτ is a constant which is independent of the controlu, and

J1 = min
∫ 24

t1

Cgp max(0,Pload− Ppv(τ) + u(τ))dτ .

In other words, the optimization problem is essentially thesame as minimizingJ1 for t ∈ [t1,24];
accordingly, the critical valueEc

max will be the same since the battery is not used for the time
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interval [0, t1]. For the optimization problem with the cost functionJ1 under Assumption 2,
S1 = (t1, t2) andS2 = (t2,24) according to Eqs. (7) and (8). Since∀t′1 ∈ S1, ∀t′2 ∈ S2, t′1 < t2 < t′2,
the conditions in Proposition 5 are satisfied. Thus, we haveEc

max =
min(A,B)

2 , where

A =
∫ 24

t1

min(PBmax,max(0,Ppv(t) − Pload))dt

=

∫ t2

t1

min(PBmax,max(0,Ppv(t) − Pload))dt,

which is essentiallyA1, and

B =
∫ 24

t1

min(−PBmin,max(0,Pload− Ppv(t)))dt

=

∫ 24

t2

min(−PBmin,max(0,Pload− Ppv(t)))dt ,

which is essentiallyB1. Thus the result holds.

Appendix F. Proof to Proposition 7

Let f := A1−B1, whereA1 andB1 are defined in Eqs. (11) and (12). Note thatf is a function
of Pload. If Pload = 0, then

A1 =

∫ 24

0
min(PBmax,max(0,Ppv(t)))dt > 0 ,

according to Eq. (11), and

B1 =

∫ 24

tmax

min(−PBmin,max(0,−Ppv(t)))dt = 0 ,

according to Eq. (12). Therefore,f (0) = A1(0)− B1(0) > 0. If Pload = Pmax
pv , then

A1 =

∫ 24

0
min(PBmax,max(0,Ppv(t) − Pmax

pv ))dt = 0,

and

B1 =

∫ 24

tmax

min(−PBmin,max(0,Pmax
pv − Ppv(t)))dt > 0 .

Therefore,f (Pmax
pv ) = A1(Pmax

pv )−B1(Pmax
pv ) < 0. In addition, sincef is an integral of a continuous

function ofPload, f is differentiable with respect toPload, and the derivative is given as

d f
dPload

=
dA1

dPload
−

dB1

dPload
.

Since forPload ∈ (0,Pmax
pv ),

dA1

dPload
=

∫ 24

0
(−1)× I {0 < Ppv(t) − Pload ≤ PBmax}dt

< 0 ,
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and

dB1

dPload
=

∫ 24

tmax

1× I {0 < Pload− Ppv(t) ≤ −PBmin}dt

> 0 ,

we have d f
dPload

< 0, whereI {0 < Ppv(t) − Pload ≤ PBmax} is the indicator function (i.e., if 0<
Ppv(t) − Pload ≤ PBmax, the function has value 1, 0 otherwise). Therefore,f is continuous and
strictly decreasing forPload ∈ [0,Pmax

pv ]. Since f (0) > 0 and f (Pmax
pv ) < 0, there is one and only

one value ofPload such thatf is 0. We denote this value asPc
load and haveA1(Pc

load) = B1(Pc
load).

If Pload ∈ [0,Pc
load), f > 0, i.e., A1 > B1. Therefore,Ec

max =
B1
2 . Since dB1

dPload
> 0, Ec

max
increases continuously (sinceB1 is differentiable with respect toPload) and monotonically from
0 to the value

B1(Pc
load)

2 . On the other hand, ifPload ∈ (Pc
load,P

max
pv ], f < 0, i.e.,A1 < B1. Therefore,

Ec
max =

A1
2 . Since dA1

dPload
< 0, Ec

max decreases continuously (sinceA1 is differentiable with respect

to Pload) and monotonically from the value
A1(Pc

load)
2 =

B1(Pc
load)

2 to 0. Therefore,Ec
max achieves its

maximum atPc
load. This completes the proof.

Appendix G. Proof to Proposition 8

Due to Assumption 2,Pload(t) intersects withPpv(t) at 2k time instants forT = k × 24(h);
we denote the set of these time instants asTcrossing := {t ∈ [0, k × 24] | Ppv(t) = Pload}. We sort
the time instants in an ascending order and denote them ast1, t2, t3, ..., t2i−1, t2i , ..., t2k−1, t2k, where
2 ≤ i ≤ k. Following Rule 1, at timet, a battery could get charged only ift ∈ (t1, t2) ∪ (t3, t4) ∪
· · · (t2k−1, t2k), and could get discharged only ift ∈ (0, t1) ∪ (t2, t3) ∪ (t4, t5) ∪ · · · (t2k, k × 24). As
shown in the proof to Proposition 6,u(t) can be zero fort ∈ (0, t1), and results in the lowest cost
J0 =

∫ t1
0

Cgp(Pload− Ppv(τ))dτ, which is a constant. At timet1, there is no charge in the battery.
Then the battery is operated repeatedly by charging first ift ∈ (t2i−1, t2i) and then discharging if
t ∈ (t2i , t2i+1) for i = 1,2, ..., k andt2k+1 = k× 24. Naturally, we could group the charging interval
(t2i−1, t2i) with the discharging intervalt ∈ (t2i , t2i+1) to form a complete battery operating cycle
in the interval (t2i−1, t2i+1).

Now the objective function of the optimization problem in Eq. (5) satisfies

J = min
u

∫ k×24

0
Cgp max(0,Pload− Ppv(τ) + u(τ))dτ

= J0 +min
u

(
k−1∑
i=1

Li + Lk) ,

where

Li =

∫ t2i+1

t2i−1

Cgp max(0,Pload− Ppv(τ) + u(τ))dτ ,

for i = 1,2, ..., k− 1, and

Lk =

∫ t2k+1

t2k−1

Cgp max(0,Pload− Ppv(τ) + u(τ))dτ .
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Note that given a certainEmax, if the battery charge at the end of the first battery operating
cycle is larger than 0 (i.e.,x(t3) > −Emax), thenEmax > Ec

max. This can be argued as follows. If
the battery charge at the end of the first cycle is larger than 0(this also implies that the battery
charge at the end of the ith cycle is also larger than 0 due to periodic PV generations and loads),
i.e., there is more PV generation than demand in the time interval (t1, t3), thenEmax can be strictly
reduced to a smaller capacity so thatx(t3) = −Emax without increasing the electricity purchase
cost in the interval (t1, t3). Due to periodicity of the PV generation and the load, the smaller
Emax can be used for the interval (t2i−1, t2i+1) for i = 2, ..., k− 1 without increasing the electricity
purchase cost. Therefore, thisEmax must be larger thanEc

max. In other words, ifEc
max is used,

thenx(t2i+1) for i = 1,2, ..., k− 1 has to be−Ec
max, i.e., no charge left at the end of each operating

cycle. Now we only considerEmax such that at the end of each operating cyclex(t2i+1) = −Emax

for i = 1,2, ..., k− 1 (necessarily,Ec
max is smaller than or equal to any suchEmax). For suchEmax,

the control actions for each operating cycle are completelydecoupled5. Therefore, the total cost
J can be rewritten as

J = J0 +

k−1∑
i=1

Ji + Jk ,

whereJi = minu Li for i = 1,2, ..., k.
Now we focus onJ1. For the optimization problem with the cost functionJ1 under Assump-

tion 2, S1 = (t1, t2) andS2 = (t2, t3) according to Eqs. (7) and (8). Since∀t′1 ∈ S1, ∀t′2 ∈ S2,
t′1 < t2 < t′2, the conditions in Proposition 5 are satisfied. Thus, we haveEc

max(1) = min(A,B)
2 ,

whereEc
max(1) is theEc

max when we only consider the cost functionJ1,

A =
∫ t3

t1

min(PBmax,max(0,Ppv(t) − Pload))dt

=

∫ t2

t1

min(PBmax,max(0,Ppv(t) − Pload))dt ,

which is essentiallyA2, and

B =
∫ t3

t1

min(−PBmin,max(0,Pload− Ppv(t)))dt

=

∫ t3

t2

min(−PBmin,max(0,Pload− Ppv(t)))dt ,

which is essentiallyB2. Thus we haveEc
max(1) = min(A2,B2)

2 . Based on Proposition 5, we also
know thatx(t3) = −Ec

max(1). Thus, thisEc
max(1) satisfies the requirement that at the end of the

operating cycle there is no charge left.
For the cost functionJ2, the optimization problem is essentially the same as the problem with

the cost functionJ1 because

5Note that the control action fort ∈ (t2i−1, t2i ) and the control action fort ∈ (t2i , t2i+1) for i = 1,2, ..., k are coupled in
the sense that battery can not be discharged if at timet2i there is no charge in the battery. In general, the control action
for t ∈ (t2i , t2i+1) and the control action fort ∈ (t2i+1, t2i+2) for i = 1, k−1 can also be coupled if at timet2i+1 there is extra
charge left in the battery because the extra charge will affect the charging action in the intervalt ∈ (t2i+1, t2i+2). Here,
there is no such coupling for the latter case when we restrictEmax so that at the end of each operating cycle there is no
charge left.
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• Ppv(t) = Ppv(t − 24) for t ∈ [t3, t5] becausePpv(t) is periodic with period 24 hours. Note
thatt − 24 ∈ [t1, t3];

• Pload(t) is a constant; and

• there is no charge left att3.

In other words, there is no difference between the optimization problem with the cost function
J2 and the one withJ1 other than the shifting of timet by 24 hours. Therefore, theEc

max(2) will
be the same asEc

max(1). The same reasoning applies to the optimization problemwith the cost
functionJi for i = 3, ..., k− 1. Therefore, we haveEc

max(i) = Ec
max(1) for i = 2, ..., k− 1.

For the optimization problemJk, there is no charge left at time 2k − 1. This problem is
essentially the same as the problem studied in the proof to Proposition 6 with the cost function
J1 except the shifting of timet by (k − 1)× 24 hours. The solutionEc

max(k) is given asmin(Ak,Bk)
2 ,

where

Ak =

∫ t2k

t2k−1

min(PBmax,max(0,Ppv(t) − Pload))dt ,

and

Bk =

∫ t2k+1

t2k

min(−PBmin,max(0,Pload− Ppv(t)))dt .

Note thatAk = A2, andBk < B2. If we chooseEmax =
min(A2,B2)

2 which is larger than or equal to
Ec

max(k), we haveJk(Emax) = Jk(Ec
max(k)).

Now we claim thatEc
max when considering the cost functionJ is exactly min(A2,B2)

2 . If we
chooseEmax <

min(A2,B2)
2 , then J(Emax) > J( min(A2,B2)

2 ) by an argument similar to the one in
Proposition 5. On the other hand, if we chooseEmax ≥

min(A2,B2)
2 , thenJ(Emax) = J( min(A2,B2)

2 ).
Therefore,Ec

max to the optimization problem with the cost functionJ is min(A2,B2)
2 .
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Figure 8: Plots of minimum costs versusEmax obtained via simulations given the load profile in Fig. 7 andPBmax =

200W.
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Figure 9: Plots of minimum costs versusEmax obtained via simulations givenPload = 200W andPBmax = 200W.
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Figure 10:Ec
max (left), and costs (bothJmax and the cost corresponding toEc

max, right) versus the fixed load obtained via
simulations forPBmax= 200W.
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Figure 11: Plots ofEc
max versus the fixed load for the theoretical value (the red curvewith the circle marker) and the

value obtained via simulations (the blue curve with the square marker).

27


