
Quantized Distributed Load Balancing with Capacity Constraints

Evan Gravelle Sonia Martı́nez

Abstract— Current research in the field of distributed consensus
algorithms fails to adequately address physical limitations
of real systems. This paper proposes a new algorithm for
quantized distributed load balancing over a network of agents
subject to upper-limit constraints. More precisely, loads are
integer values, and nodes are constrained to remain under
maximum load capacities at all times. Convergence to a set of
desired states is proven for all connected graphs, any feasible
initial load distribution, and separation and connectivity con-
ditions on nodes with small maximum capacities. Simulations
illustrate our results.

I. INTRODUCTION

Motivation. A significant problem in distribution and ser-
vice networks consists of splitting tasks among a group
of providers or nodes which can offer certain network
commodities to users. Examples include task distribution
among a set of processors or robots, energy provision by a
set of generators, or traffic control by a group of network
managers. The nodes in the network may be subject to
capacity constraints, which can restrict the amount of load
they can handle; e.g. a finite memory bank in a processor
or a maximum generating capacity of a generator. Another
restriction is the indivisibility of jobs that need be completed
by nodes in the network. Motivated by this, we design
and analyze a new distributed algorithm that can achieve
load balancing while satisfying capacity and integer load
constraints. One advantage of this algorithm is that it can be
stopped at any time while guaranteeing the constraints hold
and leading to an approximately balanced configuration.

Literature review. The problem of distributed consensus has
received considerable attention in the past. It has roots in
parallel computation [2] and has been addressed in [3], [9],
[13], and [12]. Load balancing is a constrained version of
the consensus problem, and there exists many gossip-based
algorithms for distributed load balancing over different types
of graphs with various constraints and objectives [5], [6].
More recently there has been a focus on quantized consensus
to address the problems of finite capacity of communication
channels and finite precision in computation. An example of
this work studies distributed gossip algorithms which con-
verge to an integer approximation of the average of the initial
values and satisfies the integer constraint at all times [10].
An efficient method of quantization using symbols instead of
numbers as exchanged data in solving the distributed average

This work was supported by NSF-CMMI 1434819 and AFOSR
11RSL548. The authors are with the Department of Mechanical and
Aerospace Engineering, University of California, San Diego, CA 92093,
USA. {egravell,soniamd}@ucsd.edu

consensus problem is seen in [4]. Dithered forms of quanti-
zation are also used [1]. An algorithm solving the distributed
quantized consensus problem over heterogeneous networks
which also minimizes time given different processor speeds
is found in [7].

The rate of convergence of gossip-based distributed quan-
tized consensus algorithms is studied in [8], [?] while non-
gossip based algorithms are studied in [14], [11]. None of
these works considers constraints on load capacity for each
node, and most focus on gossip-based algorithms which are
easy to analyze but do not converge quickly.

Statement of contributions. In this paper we design a new dis-
tributed algorithm to balance quantized loads among nodes
with maximum load capacities. A node filled to capacity
behaves differently from a node that is below its capacity,
and this distinction is crucial for performance. A major
difference between our algorithm and standard quantized
consensus algorithms is that the nodes which reach their
maximum capacity can make passes that unbalance the
network, complicating the analysis. We prove convergence of
this algorithm assuming certain conditions on the graph and
on the distribution of nodes subject to maximum capacities.
We then simulate the algorithm over a variety of graphs and
initial load configurations to test our results, one example is
provided.

Paper Organization. In Section II, we provide preliminary
notations and ideas used throughout the paper. In Section III,
we describe the problem we wish to solve and formulate it
in a useful way. In Section IV, we describe the solution set
that we wish to achieve. In Section V, we detail our load
balancing algorithm. In Section VI, we prove convergence of
our algorithm to our desired solution set under some basic
assumptions. In Section VII, we simulate our algorithm and
provide results. In Section VIII, we summarize our results
and discuss possible ways to extend our work.

II. PRELIMINARIES

This section presents some basic mathematical notations and
concepts used throughout the paper.

A. Notation

We let R≥0 denote the set of non-negative real numbers,
N denote the set of natural numbers, and N0 = N ∪ {0}.
Similarly, Rn

≥0 (resp. Nn,Nn
0) denotes the product space

of n copies of R≥0 (resp. N,N0). The identity matrix of
dimension n×n is designated by In. The transpose of matrix

B is denoted by B>. The n-dimensional vector of all ones
is represented as 1n = [1, . . . , 1]

>. The cardinality of set A
is denoted by |A|. The floor (resp. ceiling) operator on R is
denoted by b·c (resp. d·e) : R≥0 → N0. Assigning the value
y to a variable x is denoted x← y.

B. Graph-theoretic notions

We summarize here some basic notions from algebraic graph
theory. A graph G = (V,E) is composed of a vertex set
V indexed from {1, . . . , n} and an edge set E ⊂ V × V
consisting of ordered pairs of vertices. A graph is undirected
if ∀ (i, j) ∈ E, (j, i) ∈ E. For undirected graphs, Ni denotes
the set of neighbors of node i in V . The graph G is connected
if for any pair of nodes (i, j) there exists a sequence of edges
(i, i1), (i1, i2), . . . , (ik, j) connecting i with j. A node i is
within d-hops of j if there exists a sequence of d or less
edges connecting i with j.

III. PROBLEM STATEMENT

In this section we define our system and describe its ob-
jective. Consider a network of n agents described by an
undirected graph G = (V,E). The state of the network,
denoted by x = [x1, x2, . . . , xn]

> ∈ Nn
0 , is given by the

load at each node, which is initially x(0). Each node i
has a maximum load capacity ci ∈ N ∪ {∞}, constraining
xi(k) ≤ ci for all times k ∈ N0.

The objective of the network is to spread out loads as evenly
as possible across every node of the network. This translates
into achieving a state that is a solution to the following
minimization problem, Problem (1):

minimize
x∈Rn

W (x) =
∑
i∈V

(xi − x)2,

subject to
∑
i∈V

xi = nx,

xi ≤ ci, ∀ i ∈ V,
xi ∈ N0, ∀ i ∈ V,

(1)

where x = 1
n1>n xi(0). This function W (x) is the variance

of x, which is a distance function between x and x1n. A
state is feasible if it satisfies both capacity and integer load
constraints as well as conserves all initial loads.

IV. CHARACTERIZATION OF BALANCED STATES

We will characterize the set of solutions to Problem (1). If
a state x∗ is in this solution set then we call it a balanced
state. Assuming some initial state x(0), the following lemma
will be useful:

Lemma 4.1: If there exists p ∈ argmini∈V ci with cp ≤ bxc,
then any solution to Problem (1) requires xp = cp.

This is true because if xp < cp ≤ bxc, then W (x+) < W (x)
if x+p = xp + 1 and x+q = xq − 1 for q ∈ argmaxi∈V xi.

Note, complete proofs of all lemmas and claims will appear
in a future publication, due to space constraints.

Apply Lemma 4.1 to x(0), and if such a p exists, pick one
and define Ṽ1 = {p}, V1 = V \ Ṽ1, and x1 =

nx−cp
n−1 . With a

slight abuse of notation, we can redefine x as the vector of
remaining free states (both here and later on).

Lemma 4.1 can again be applied to this new problem with
reduced state. Define a new p ∈ argmini∈V1

ci. If cp ≤ bx1c
then we know the solution contains xp = cp. We repeat
this process for ` iterations, defining Ṽ` = {p∪ Ṽ`−1}, V` =
V \Ṽ`, and x` =

(n−`+1)x`−1−cp
n−` , until we have mini∈V`

ci >

bx`c. This results in Ṽ` = {i ∈ V | ci ≤ bx`c}. After
defining m = |V`| and labeling our node indices from 1 to
m, Problem (1) reduces to

minimize
x∈Rm

W (x) =

m∑
i=1

(xi − x)2,

subject to
m∑
i=1

xi = mx`,

xi ≤ ci, ∀ i ∈ V`,
xi ∈ N0, ∀ i ∈ V`,

(2)

and we know that ci > bx`c, ∀ i ∈ V`. To solve this problem
we will first temporarily relax the last two constraints so we
are left with

minimize
x∈Rm

W (x) =

m∑
i=1

(xi − x)2,

subject to
m∑
i=1

xi = mx`.

We can reduce dimensionality and eliminate the last con-
straint by substituting xm = mx`−

∑m−1
i=1 xi, so we are left

with

minimize
x∈Rm−1

W (x) =

m−1∑
i=1

(xi − x)2 + (mx` −
m−1∑
i=1

xi − x)2.

Setting the gradient to zero and solving the resulting system
gives a unique solution in x = x`1m. Because the Hessian
is positive definite, this critical point is the global minimum.

In order to meet our integer constraint and find a feasible
solution to Problem (2), for each node i ∈ {1, . . . ,m −
1} we will choose xi = bx`c or xi = dx`e. To meet our
conservation of loads constraint, we solve

α+ β = m,

αbx`c+ βdx`e = mx`,
(3)

where α and β are the number of nodes at bx`c and dx`e,
respectively. In the event that x` is an integer, we define
α = m and β = 0. Otherwise, it must hold that α =

m(dx`e − x`), β = m(x` − bx`c). This satisfies our other
relaxed constraint xi ≤ ci, ∀ i ∈ V because we know that
ci ≥ dx`e, ∀ i ∈ V`. Permuting the set of nodes which have
xi = bx`c or xi = dx`e has no effect on our function W (x),
so there can be multiple solutions. Any integer configuration
for which xq > dx`e or xp < bx`c for some q, p ∈ V` is
not a solution to Problem (2). With the same reasoning as
in Lemma 4.1, we can achieve a lower W (x) by increasing
xp and decreasing xq . With this, we have determined our
optimal set of states. We summarize our results with the
following theorem:

Theorem 4.2: A state x which solves Problem (1) and is
therefore in the set of balanced states must satisfy xi =
ci, ∀ i ∈ Ṽ`, xi = bx`c for α = m (dx`e − x`) nodes in V`
and xi = dx`e for the rest, where Ṽ` = {i ∈ V | ci ≤ bx`c},
V` = V \ Ṽ`, x` is previously defined in this section, and
m = n− |Ṽ`|.

V. LOAD BALANCING ALGORITHM

This section describes our proposed load balancing algorithm
that satisfies integer and capacity contraints at all times
as well as conserves all initial loads. We have designed a
synchronous algorithm which can be divided into three main
sections. In the Offering Phase, a node selects among its
neighbors with lightest loads to make an offer to. If this
node is at its capacity, it may select a node with a larger
load than its own, in order to maintain passing connectivity
of the graph. In the Accepting Phase, a node selects among
its neighbors that offered, usually selecting the node with
maximal load but sometimes giving priority to a node at
its capacity. In the Passing Phase, passes are made to nodes
that have accepted offers, and the amount passed is calculated
such that the offering node expects to minimize the difference
between the two nodes’ loads after the pass. Initially define
time k = 0, each node i ∈ {1, . . . , n} runs Offering Phase,
Accepting Phase and Execution Phase, and the algorithm
terminates when k = Kf .

VI. CONVERGENCE ANALYSIS

In this section we prove convergence of our algorithm to the
set of balanced states, under the following assumptions:

Assumption 6.1 (Graph Connectivity): The undirected
graph G = (V,E) is connected.

Assumption 6.2 (Capacity Distribution): For each node i
with finite capacity ci < maxj∈V xj(0)+1, there is no node
h with ch < maxj∈V xj(0) + 1 within 2-hops of i.

Assumption 6.3 (Neighbor Condition): Each node i with
ci < maxj∈V xj(0) + 1 has at least two neighbors.

We use these assumptions to state the following theorem, the
main result of this paper:

Theorem 6.4: Consider a network of nodes modeled by an
undirected graph G = (V,E), subject to the constraints

Algorithm 1: Offering Phase for Node i
Inputs : ∀ j ∈ Ni ∪ i, xj(k) and cj . Kf .

1 xmin
i (k)← min

j∈Ni

xj(k) ;

2 Ji(k)← {j ∈ Ni | xj(k) = xmin
i (k)} ;

3 With probability pi = 1
|Ji(k)| choose h ∈ Ji(k) ;

4 if dxi(k)−xh(k)
2 e > ch − xh(k) then

5 xmin*
i (k)← min

j∈Ni\h
xj(k);

6 J∗i (k)← {j ∈ Ni \ h | xj(k) = xmin*
i (k)};

7 With probability p∗i = 1

|J∗
i (k)|

, choose h∗ ∈ J∗i (k);
8 if xh∗(k) ≤ xi(k)− 2(cj − xj(k)) then
9 h← h∗;

10 end
11 end
12 if xi(k) > xh(k) or (xi(k) = ci and k < Kf) then
13 send a message to h consisting of (i, ci, xi(k));
14 end

Algorithm 2: Accepting Phase for Node i
Inputs : M1 =

{(j1, cj1 , xj1(k)), . . . , (jm, cjm , xjm(k))} is
the set of messages received, m1 , |M1|.

1 if m1 > 0 then
2 xmax

i (k)← maxs∈{1,...,m} xjs(k) ;
3 if ∃ cjs < xi(k), s ∈ {1, . . . ,m} and

xmax
i (k) ≤ xi(k) + 1 then

4 h← js;
5

6 else
7 Qi(k)← {js ∈M1 |xjs(k) = xmax

i (k)}, s ∈
{1, . . . ,m};

8 With probability pi = 1
|Qi(k)| , choose

h ∈ Qi(k);
9 end

10 Send message to h consisting of (i);
11 end

found in Problem (1). Given Assumptions 6.1 (Graph Con-
nectivity), 6.2 (Capacity Distribution), 6.3 (Neighbor Condi-
tion), and applying the dynamics of our quantized distributed
load balancing algorithm, any feasible initial state x(0)
converges to a balanced state in finite expected time.

Proof: We prove convergence of our algorithm to the
set of balanced states by using ideas from Lyapunov stability
theory. Initially define k = 0, z = 0 where z is a subsequence
of k . Define qz = mini∈V {xi(0) | xi(0) ≤ ci − 2} and
define Az = {i ∈ V | xi(0) = qz, xi(0) ≤ ci − 2}. For
every node j s.t. xj(0) = cj , remove one node h ∈ Nj from
Az (if it exists), define a q-coin at every other node in Az ,
define S(k) = {i ∈ V | i has a q-coin at time k}, and define
sk = |S(k)|. A q-coin (or simply coin) at a node represents
that this node has or can create a minimum load value across
the network. We will later define q-coin dynamics for all

Algorithm 3: Passing Phase for Node i
Inputs : M2 = {(j1), . . . , (jp)} is the set of messages

received, where m2 , |M2|. Kf .
1 if m2 > 0 then
2 if xi(k) > xj(k) then
3 δ ← min

(
dxi(k)−xj(k)

2 e, cj − xj(k)
)

;
4

5 else
6 δ ← 1 ;
7 end
8 Pass δ loads to j ;
9 end

10 if k < Kf then
11 increment k.
12

13 else
14 Terminate algorithm.
15 end

times k ≥ 0. Over time, q-coins will be destroyed, and once
there are none we will redefine new q-coins but at a greater
qz value; this will be useful in proving convergence. This set
S(k) will be defined at each time step, and qz and Az are
only redefined when sk = 0.

We define

Ŵ (x) ,W (x̂) =
∑
i∈V

(x̂i − x)2,

where x = 1
n1>x(0) is the average of the initial states and

x̂ is a modification of state x. We define x̂ by the following
rule: if for some i ∈ V, xi = ci and ∀ j ∈ Ni, xj ≥ xi, then
x̂i = xi − 1 and x̂h = xh + 1 for some h ∈ argminj∈Ni

xj .
Otherwise, x̂i = xi. Note that the value of Ŵ is independent
of the choice of h ∈ argminj∈Ni

xj . Intuitively, x̂ is a
feasible state where all capped nodes (nodes in the set Ṽ`)
with only higher loaded neighbors have passed a load to
temporarily unbalance the system; this represents a sort of
worst-case scenario in terms of minimizing W .

We define W̃ (x) = Ŵ (x) +Wc(x), where Wc(x) = (n +
1)(bx`c − qz) + sk. Recall that x` was found in Section IV
and corresponds to the average of the excess load that needs
to be divided among the remaining non-capped nodes. We
know that 0 ≤ qz ≤ bx`c and 0 ≤ sk ≤ n, so Wc(x) is
positive, implying W̃ (x(k)) is positive for all k ≥ 0. With
a slight abuse of notation we denote W̃ (x(k)) = W̃ (k),
with similar conventions for Ŵ and Wc. When a q-coin is
destroyed from time k to k + 1 and if sk, sk+1 ≥ 1 then
Wc(k+1) < Wc(k). If sk+1 reaches zero, then at that time
step we will redefine qz and q-coins until qz = bx`c. While
sk may increase by some amount between zero and n after
redefining coins, (n+1)(bx`c−qz) decreases by at least n+1
so overall Wc(k) decreases. We will later prove that Ŵ (k)
is non-increasing over time, and we will use the composite
W̃ (k) to prove convergence.

Given the existence of coins on the graph, they can be passed
or destroyed. Zero coins on the graph implies that the graph
no longer contains that particular minimum value, so that
once this happens, we can increment z by one, define qz =
qz−1 + 1, and redefine coins in a similar way as done at
step k = 0 but with respect to the new value of qz and
allowing for a node to be at qz − 1. We repeat this process
until qz = bx`c. We will precisely characterize the set of
nearly balanced states later in order to conclude the proof.

First, we will provide an overview on the motion of q-coins.
Most of the time, a coin is passed from a node i to a node
j at time k if xj(k+1) is reduced to either qz or cj −1 due
to it passing one load to node i. This rule does not precisely
hold around capped nodes or given chains of passing, but the
idea is that if a pass does not decrease W̃ (k), then a coin is
being passed, and if a pass does decrease W̃ (k), then a coin
is likely being destroyed. Precise details of the coin motion
have been omitted.

To prove convergence using W̃ (k), we need to prove that
these coins are expected to disappear in finite time if the
state is not nearly balanced, and to do so we prove that a
q-coin has a finite expected meeting time with a node h s.t.
xh(k) ≥ qz +2. A meeting between a coin and a node h s.t.
xh(k) ≥ qz+2 at time k is defined when they are neighbors.
Note, the number of coins can be determined for any state
x(k) without knowledge of previous states, so we use both
W (x) and W (k) interchangeably.

A few useful claims will help us characterize coins and
the function Ŵ (x). In the rest of the claims in this paper,
we assume both Assumption 6.2 (Capacity Distribution) and
Assumption 6.3 (Neighbor Condition) hold.

Claim 6.5: Any node i s.t. xi(k) = qz , ci ≥ qz + 2 has a
q-coin or has a neighbor j s.t. xj(k) = cj , cj ≤ qz , for all
k ≥ 0.

This follows from the definition of coins and their dynamics.

Claim 6.6: Any node i s.t. xi(k) = qz−1, ci ≥ qz+1 must
contain a q-coin for all k ≥ 0.

This also follows from the definition of coins and their
dynamics.

Claim 6.7: One node cannot contain two or more coins at
any time k.

The coin dynamics along with rules for passing never allow
this to occur.

Claim 6.8: The state of every node is upper bounded for all
time by m = maxi∈V xi(0) + 1.

Given that a node can have at most one capped neighbor,
there does not exist a sequence of states such that some node
i achieves xi(k) ≥ maxi∈V xi(0) + 2.

Claim 6.9: Any node i s.t. ci ≥ qz is lower bounded by
qz − 1, forward in time.

Given that a node can have at most one capped neighbor,
there does not exist a sequence of states such that some node

i achieves xi(k) ≤ maxi∈V qz − 2.

The next claim requires a precise definition of the set of
nearly balanced states. By Claim 6.11, these are the states
partly characterized by the minimum value of W̃ . Intuitively,
this set contains states which can be balanced in one time
step and pairs load values at bx`c with capped nodes.

Definition 6.10 (Nearly Balanced States): Consider
Problem (3). Let α be the number of nodes at bx`c
for some balanced state given x(0) and |Ṽ`| = n − |V`|,
where |V`| is the number of nodes whose capacities do not
affect the solution to Problem (1). A nearly balanced state
satisfies either one of the following conditions:

(i) If α < |Ṽ`|, then there are α capped nodes which are
either capped and have exactly one neighbor at bx`c
with the rest at bx`c+ 1 or are below their cap by one
unit and have all neighbors at bx`c+ 1. The remaining
|Ṽ`| − α capped nodes are either at their cap with all
neighbors at bx`c+1 or below their cap by one unit with
one neighbor at bx`c+ 2 and the rest of the neighbors
at bx`c+ 1. All other nodes are at bx`c or dx`e.

(ii) If α ≥ |Ṽ`| then each capped node below its cap by one
unit has a neighbor at bx`c + 1 and each capped node
at its cap has a neighbor at bx`c. All other nodes are at
bx`c or dx`e.

Claim 6.11: Let W̃ ∗ be the minimum value of W̃ over all
feasible x and recall α, bx`c, and Ṽ` from Section IV. We
can say that x(k) is a nearly balanced state if and only if
W̃ (x(k)) = W̃ ∗.

Proof: The proof of this is done by comprehensively
showing that any state s.t. W̃ (k) > W̃ ∗ is not nearly
balanced, and every state with W̃ (k) = W̃ ∗ is nearly
balanced.

Claim 6.12: It holds that Ŵ (k) ≥ Ŵ (t) ≥ W (t), ∀ t ∈
[k, . . . ,Kf − 1].

Proof: We know Ŵ (t) ≥W (t) because any difference
between x̂(t) and x(t) will lead to Ŵ (t) ≥W (t). To prove
Ŵ (k) ≥ Ŵ (t), ∀ t ∈ [k, . . . ,Kf − 1], we show that every
feasible pass of loads that the algorithm can make from any
feasible state does not increase Ŵ (k).

Claim 6.13: Given Assumption 6.1 (Graph Connectivity),
and any feasible initial state x(0), we have convergence to
the set of nearly balanced states in finite expected time.

Proof: Because of Claim 6.12, we can use W̃ (k) =
Ŵ (k) + Wc(k) as a Lyapunov function for this system.
We treat Wc(k) as the main component and use Ŵ (k)
to show balancing for some cases where Wc(k) does not
capture it. The function W̃ is positive, nonincreasing under
the dynamics, and any decrease has a fixed lower bound.
Proving that W̃ (k) will decrease in finite expected time from
any state x(k) that is not nearly balanced is enough to prove
convergence to the set of nearly balanced states.

We will provide an outline for the proof here, the complete
proof will appear in a forthcoming publication. We first
show that when Wc(k) > W ∗c , the expected time of a
decrease in Wc is finite. To ensure this, we prove that there
is sufficient randomness of coin motion over the graphs,
sufficient coverage of the coins, and we know that when a
coin meets a load with large enough load this decrease will
occur. Once Wc(k) = W ∗c , we prove that if Ŵ (k) > Ŵ ∗

this will also decrease in finite expected time, using a similar
argument but without coins. Once both Wc(k) = W ∗c and
Ŵ (k) = Ŵ ∗, then we know W̃ (k) = W̃ ∗ and we are in the
set of nearly balanced states.

Claim 6.14: The set of nearly balanced states is invariant
under the dynamics of our algorithm.

Any feasible load transfer our algorithm performs results
in a state that satisfies the constraints on the set of nearly
balanced states.

Claim 6.15: If x(k) is a nearly balanced state for some k <
Kf , then x(Kf) is balanced.

Proof: We require x(k) to be a nearly balanced state
for some k < Kf . Due to Claim 6.14 we know x(Kf −1) is
also nearly balanced. The last run of our algorithm ensures
that for our last iteration Kf , if xi(Kf − 1) < ci ≤ bx`c,
then xi(Kf) = ci and no node i at its capacity is permitted
to offer to a node j s.t. xj(Kf − 1) ≥ xi. In conclusion, our
final state is: for some valid Ṽ`, ∀ i ∈ Ṽ`, xi(Kf) = ci, and
∀ i ∈ V`, xi(Kf) ∈ {bx`c, dx`e}.
We have proven convergence to the set of balanced states in
finite expected time.

VII. SIMULATIONS

We have simulated this algorithm on a wide range of
graphs, each with various capacity configurations and initial
load conditions. One sufficiently complex graph is seen in
Figure 1. The square vertices represent nodes with finite ca-
pacities and the circular vertices represent nodes with infinite
capacities. We can see that nodes with finite capacities are
located at central points on the graph, and if removed will
disconnect the graph. The initial load configuration is shown
in Figure 2 and the final load configuration is shown in
Figure 3, after Kf iterations of our algorithm. In both of
these figures, finite capacity values are shown as triangles.
We can see in Figure 4 the nonincreasing behavior of W̃ (k)
and convergence towards the optimal value.

VIII. CONCLUSIONS AND FUTURE WORK

We have designed a new quantized distributed load balancing
algorithm that accounts for maximum node capacities. We
proved convergence to a set of balanced states in expected
finite time under some assumptions on the location as well
as a neighbor condition of nodes with small capacities. We

Fig. 1: Example graph

Fig. 2: Initial Load Distribution

tested this algorithm over a variety of graphs and initial
conditions, and provided one such example.

Future work could include relaxing the listed assumptions
for convergence, which can be done under certain initial
conditions. Relaxing the assumptions and restructuring the
proof could lead to more general results, such as classifying
for which initial load configurations and capacity values
do we not require the two-hop constraint on nodes with
capacities. This algorithm can be extended to account for
both minimum and maximum node capacities over a graph.
It is also desirable to find upper and lower bounds on the
convergence rate.

REFERENCES

[1] T. C. Aysal, M. J. Coates, and M. G. Rabbat. Distributed average
consensus with dithered quantization. IEEE Transactions on Signal
Processing, 56(10):4905–4918, 2008.

[2] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Compu-
tation: Numerical Methods. Athena Scientific, 1997.

[3] V. D. Blondel, J. M. Hendrickx, A. Olshevsky, and J. N. Tsitsiklis.
Convergence in multiagent coordination, consensus, and flocking. In
IEEE Int. Conf. on Decision and Control and European Control
Conference, pages 2996–3000, Seville, Spain, December 2005.

Fig. 3: Final Load Distribution

Fig. 4: W (x) over Kf iterations

[4] R. Carli and S. Zampieri. Advances in Control Theory and Applica-
tions. Springer Berlin Heidelberg, 2007.

[5] M. Franceschelli, A. Giua, and C. Seatzu. Load balancing on networks
with gossip-based distributed algorithms. In IEEE Int. Conf. on
Decision and Control, pages 500–505, 2007.

[6] M. Franceschelli, A. Giua, and C. Seatzu. Load balancing over
heterogeneous networks with gossip-based algorithms. In American
Control Conference, pages 1987–1993, 2009.

[7] M. Franceschelli, A. Giua, and C. Seatzu. A gossip-based algorithm
for discrete consensus over heterogeneous networks. IEEE Transac-
tions on Automatic Control, 55(5):1244–1249, 2010.

[8] P. Frasca, R. Carli, F. Fagnani, and S. Zampieri. Average consensus
by gossip algorithms with quantized communication. In IEEE Int.
Conf. on Decision and Control, pages 4831–4836, Cancún, México,
December 2008.

[9] A. Jadbabaie, J. Lin, and A. S. Morse. Coordination of groups
of mobile autonomous agents using nearest neighbor rules. IEEE
Transactions on Automatic Control, 48(6):988–1001, 2003.

[10] A. Kashyap, T. Başar, and R. Srikant. Quantized consensus. Automat-
ica, 43(7):1192–1203, 2007.

[11] J. Lavaei and R. M. Murray. Quantized consensus by means of gossip
algorithm. IEEE Transactions on Automatic Control, 57(1):19–32,
2012.

[12] A. Nedić, A. Olshevsky, and A. Ozdaglar. On distributed averaging
algorithms and quantization effects. IEEE Transactions on Automatic
Control, 54(11):2506–2517, 2009.

[13] R. Olfati-Saber, J. A. Fax, and R. M. Murray. Consensus and
cooperation in networked multi-agent systems. Proceedings of the
IEEE, 95(1):215–233, 2007.

[14] M. Zhu and S. Martı́nez. On the convergence time of asynchronous

distributed quantized averaging algorithms. IEEE Transactions on
Automatic Control, 56(2):386 – 390, 2011.

