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Abstract— This paper deals with the problem of reaching the
average consensus of a set of time-varying reference signals
in a distributed manner. We analyze the approach initially
presented in [1], giving an alternative proof of convergence
which leads to larger, more realistic bounds on the step sizes
that guarantee a steady-state error upper-bounded by a given
constant. The interest of the new results appear when the
algorithm is used in real networks, where there are constraints
in the communication rate between the nodes. We derive the
bounds for the cases of fixed and time-varying communication
topologies, as well as for different orders of the consensus
algorithm. We demonstrate that our bounds always allow
substantially bigger step sizes independently of the number of
nodes or the network topology. Moreover, for a fixed step size
and steady-state error, we show how there is a corresponding
algorithm that can guarantee that the error is no larger than
the desired one, using that step size. Finally, simulation results
corroborates the theoretical findings of the paper.

I. INTRODUCTION

This paper studies the problem of reaching the average of a
set of time-varying reference signals in a distributed manner,
the so called distributed dynamic consensus problem. Solu-
tions to this problem find numerous applications in diverse
fields such as sensor fusion [2], cooperative control [3],
decision making with changing opinions [4] and Kalman
filtering [5].

In the dynamic consensus problem, each node of the
network can measure a different time-varying signal and
the objective of the network is to track the average of all
the signals measured by the nodes. Most of the solutions
in the literature consider continuous time algorithms [2],
[3], [6]–[8]. Frequency domain analysis is used to guarantee
zero steady-state error of ramp inputs in [2]. A PI-dynamic
consensus algorithm is presented in [6] and posteriorly
extended in [7]. The approach presented in [3] considers a
common reference input for all the nodes in the network.
Recently, the authors of [8] have introduced two continuous-
time algorithms to solve the dynamic consensus problem.
The results are proven to work for differentiable signals,
and for fixed topologies, while showing good adaptation
to discontinous changes in simulation. Although all these
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approaches can be discretized using, e.g., Euler method, the
step size they can afford is usually limited.

On the other hand, discrete-time approaches are more
appealing because they usually can handle larger step-size
measurements of the reference signals and, thus, have lower
communication requirements. To the best of the authors
knowledge, the only pure discrete-time approaches are the
ones in [1], [9] (i.e., they do not arise from a discretization).
The convergence analysis of [1] relies on input-to-output
stability, providing bounds on the step size the nodes can
choose to guarantee a desired steady-state error with respect
to the average. The approach in [9] is able to reach dynamic
consensus in minimal time, provided that the conditions on
the step size given in [1] are satisfied. Unfortunately, the
bounds given in the former paper are overly conservative,
which means that, for small steady-state errors, the required
step sizes are almost zero. Since communications between
the nodes usually demand time, for a real implementation
of the algorithm clearly it is a good advantage to be able to
choose large values of the step size.

Our contribution in this paper is a more precise analysis of
convergence of the aforementioned class of algorithms. This
allows us to obtain very much improved bounds on the step
sizes needed to guarantee small steady-state errors, several
orders of magnitude larger than the original ones. This is
of special interest in real networks, where the nodes cannot
communicate very often.

We express the algorithm as a sum of static consen-
sus processes, analyzing the convergence of each of them
by means of the eigenvalues of the weight matrices. We
demonstrate that the first-order algorithm is able to track
the average of the inputs with an arbitrarily small error
using a larger step size than the one initially theorized.
Compared to [1], we also demonstrate that by increasing
the order of the consensus algorithm, larger and larger step
sizes are permitted yet guaranteing a desired steady-state
error. In other words, the step size can be arbitrarily large
while the steady-state error is arbitrarily small, by choosing
a sufficiently large order consensus algorithm. Finally, we
demonstrate the performance of our results with simulations.

The rest of the paper is organized in the following manner:
In Section II we describe the dynamic average consensus
problem and review the approach presented in [1]. Section III
analyzes the first-order consensus algorithm considering a
fixed communication topology. The case of time-varying
communication topologies is discussed in Section IV, where
we also prove that our bounds always allow a larger step size
than the existing ones. In Section V we characterize the step
size for higher order consensus algorithms. Some simulations



are shown in Section VI. Finally, the conclusions of this work
and future perspectives of research are in Section VII.

II. PRELIMINARIES

We consider a sensor network of N nodes labeled by i ∈
V = {1, . . . , N}. Communications between the nodes are
defined according to a time-varying undirected graph G(t) =
{V, E(t)}, where E(t) ⊂ V×V represents the edge set at time
instant t. In this way, nodes i and j can communicate at time
t if and only if (i, j) ∈ E(t). The set of neighbors of node
i ∈ V is the subset of nodes that can directly communicate
with it; i.e., Ni(t) = {j ∈ V | (i, j) ∈ E(t)}.

Each node is able to measure a local, continuous physical
process, ri : R→ R. We denote r(t) = (r1(t), . . . , rN (t))T

the vector of the signals measured by each node. The final
goal of the network is to design a distributed algorithm such
that, using only local information, all the nodes are able to
eventually track the average of the signal inputs ri(t), i ∈
{1, . . . , N}. We denote this average by r̄(t),

r̄(t) =
1

N

∑
i

ri(t).

In order to compute r̄(t) each node maintains an esti-
mation xi : N → R, which is updated at discrete times,
n ∈ N. The sample period used by the nodes to estimate
r̄(t) is denoted by h. Therefore, the relationship between
the continuous time and the discrete time updates is defined
by nh = t. The objective is to find the largest value of h
that guarantees that x(n)→ r̄(nh)1 with a sufficiently small
error as n evolves, where 1 = (1, . . . , 1)T ∈ RN .

To achieve this objective we consider the first order linear
iteration proposed in [1]. The discrete time update followed
by each node is

xi(n+1) = aii(n)xi(n)+
∑
j 6=i

aij(n)xj(n)+∆ri(nh), (1)

where aij(n) are the local weights and

∆ri(nh) = ∆ri(t) = ri(t)− ri(t− h).

The previous update rule can be put in compact form

x(n+ 1) = A(n)x(n) + ∆r(nh), (2)

with x(n) = (x1(n), . . . , xN (n))T , A(n) = [aij(n)] the
weight matrix, and

∆r(t) = (∆r1(t), . . . ,∆rN (t)))T ,

the vector with the differences of all the signals.
The local weights must satisfy the following assumption:
Assumption 2.1: (Non-degenerate balanced weights):

There exists a constant 0 < α < 1 such that, for all i, j ∈ V
and n ∈ N,

aij(n) = 0, if j 6= Ni(n)

aij(n) ∈ {0} ∪ [α, 1], if j ∈ Ni(n)

aii(n) = 1−
∑
j 6=i aij(n) ≥ α,

1TA(n) = 1T , A(n)1 = 1.

This assumption implies that the matrices A(n) are doubly
stochastic. This can be easily satisfied using, e.g., Metropolis
Weights [10] or using distributed balancing techniques such
as [11], [12].

We also make use of the next assumption on the commu-
nication graphs.

Assumption 2.2: (Periodical strong connectivity): There
is some positive integer B ≥ 1 such that, for all instant n ≥
0, the graph (V, E(nh)∪E((n+1)h)∪ . . .∪E((n+B−1)h))
is strongly connected.

Finally, another assumption is imposed over the variation
of the signals:

Assumption 2.3: (Relatively bounded first-order differ-
ences): For any h > 0 there exist a time invariant constant
θ such that

max
i

∆ri(nh)−min
i

∆ri(nh) ≤ hθ, ∀n ≥ 0.

The previous three assumptions are standard in the literature,
e.g., [13]–[15] and for further discussion about their meaning
we refer the reader to [1].

The following result, also extracted from [1], provides a
bound on the step size of iteration (1) to ensure a given
steady-state error:

Theorem 2.1 (Theorem 3.1 [1]): Let δ be a positive con-
stant and

h1 =
δα

1
2N(N+1)B+1

4θ(NB − 2)
. (3)

Under Assumptions 2.1, 2.2 and 2.3 the implementation
of (1) with h ∈ (0, h1] and initial conditions xi(0) =
ri(−h), i ∈ (1, . . . , N), achieves dynamic average consen-
sus with a nonzero steady-state error upper bounded by δ.

Unfortunately, the bound in (3) approaches rapidly to zero
as the size of the network increases due to the N2 power of
α. In this paper, we derive new bounds that allow us to
increase the step size, h, in several orders of magnitude,
executing (1) with the same guarantees of achieving a
small steady-state error. In order to do this, we provide an
alternative analysis to the input-to-output stability of [1],
which is based on a decomposition of the algorithm into a
sequence of static consensus processes and the convergence
properties of each one of them.

III. STEP SIZE FOR FIXED COMMUNICATION TOPOLOGIES

In this section, we derive an improved bound for h when
the communication topology remains fixed and connected at
all times, i.e., A(n) = A, ∀n ∈ N. In this scenario, because
of Assumption 2.1, A has one eigenvalue λ1 = 1 and the
rest eigenvalues satisfy λ1 > λ2 > . . . > λN > −1. Without
loss of generality, we assume that the algebraic connectivity
of the network (the second largest eigenvalue in modulus) is
defined by the value of |λ2|, or in other words |λ2| > |λN |.

Theorem 3.1 (Step size for fixed topologies): Let δ be a
positive constant and

h∗ =
δ(1− λ2)

θ
√
N

(4)

Under Assumptions 2.1 and 2.3 the implementation of (1)
with h ∈ (0, h∗] and initial conditions xi(0) = ri(−h), i ∈



(1, . . . , N), achieves dynamic average consensus with a
nonzero steady-state error upper bounded by δ.

Proof: Let us denote by ∆r̄(nh) the variation in the
average of the signals, i.e.,

∆r̄(nh) =
1

N

∑
i

∆ri(nh). (5)

Therefore,

r̄(nh) = ∆r̄(nh)+∆r̄((n−1)h)+. . .+∆r̄(0)+r̄(−h). (6)

Now, starting with x(0) = r(−h), and iterating the
expression (2) we obtain

x(n+ 1) = An+1r(−h) +

n∑
j=0

An−j∆r(jh). (7)

Let us define the error with respect to the average at
iteration n by ‖x(n+ 1)− r̄(nh)1‖∞. Combining equations
(6) and (7) yields

x(n+ 1)− r̄(nh)1 = An+1r(−h)− r̄(−h)1+

+

n∑
j=0

[An−j∆r(jh)−∆r̄(jh)1].
(8)

Since A is doubly stochastic and compatible with the
connected communication graph, then, for all j in the above
equation,

lim
n→∞

An−j∆r(jh) = ∆r̄(jh), (9)

and the error with respect to the partial averages is upper-
bounded by

‖An−j∆r(jh)−∆r̄(jh)1‖∞ ≤
≤ ‖An−j∆r(jh)−∆r̄(jh)1‖2 ≤
≤ λn−j2 ‖∆r(jh)−∆r̄(jh)1‖2 ≤
≤ λn−j2

√
N‖∆r(jh)−∆r̄(jh)1‖∞ =

= λn−j2

√
N max

i
|∆ri(jh)−∆r̄(jh)|.

(10)

Therefore

‖x(n+ 1)− r̄(nh)1‖∞ ≤ λn+1
2

√
Nκ0+

+
√
N

n∑
j=0

λn−j2 max
i
|∆ri(jh)−∆r̄(jh)|,

(11)

with κ0 = maxi |ri(−h)− r̄(−h)|.
From Assumption 2.3,

max
i
|∆ri(jh)−∆r̄(jh)| ≤ hθ, (12)

which substituted in (11) implies that

‖x(n+ 1)− r̄(nh)1‖∞ ≤

≤ λn+1
2

√
Nκ0 +

√
Nhθ

n∑
j=0

λn−j2 .
(13)

Noting that
∑n
j=0 λ

n−j
2 is a geometric series of factor λ2,

‖x(n+ 1)− r̄(nh)1‖∞ ≤

≤ λn+1
2

√
Nκ0 +

√
Nhθ

1− λn2
1− λ2

.
(14)

Taking the limit when n goes to infinity the first term goes
to zero and consequently if h ∈ (0, h∗], then

lim
n→∞

‖x(n+ 1)− r̄(nh)1‖∞ ≤ δ. (15)

Let us note that our bound reflects the dependence on
the number of nodes and the network connectivity in a very
simple way. Compared to (3), it does not contain powers of
the number of nodes and is divided by the square root of N
instead of N . In this sense, the following remark improves
even more the bound on the step size.

Corollary 3.2: Assume that the conditions in Theorem 3.1
hold and that ‖∆r(nh) − ∆r̄(nh)1‖2 ≤ hθ̄ for all h > 0
and n ≥ 0. Then the choice of

h∗ =
δ(1− λ2)

θ̄
(16)

achieves dynamic average consensus with a nonzero steady-
state error upper bounded by δ.

Proof: Replacing the new bound in equation (10) the
result holds.

Regarding the algebraic connectivity, if the topology is
very dense, then the nodes can communicate with many
neighbors and λ2 is close to 0, allowing larger values of
h∗. On the other hand, if the network is very sparse, then
λ2 approaches to 1, which implies that h∗ will be closer to
zero. A more developed comparison of our bound with the
original in (3) will be done in the next section with time-
varying topologies.

IV. STEP SIZE FOR TIME-VARYING COMMUNICATION
TOPOLOGIES

In this section, we resume the analysis with time-varying
topologies, deriving a bound on the step size for the general
case. After that we demonstrate that our bound is better than
the one in (3) for any number of nodes or connectivity.

As in the previous version, we base our results on the
eigenvalues of the weight matrices. First of all, let us define

Π(n) =

B∏
k=0

A(n+B − k). (17)

By Assumption 2.1 we know that Π(n) is doubly stochastic
for all n. Therefore, Π(n) can be considered as a different
weight matrix associated to the communication graph [16]
G(n) = (V, E(n)∪E(n+1)∪ . . .∪E(n+B)), which because
of Assumption 2.2 we know that it is connected. Therefore,
as happened with A in the previous section, Π(n) has one
eigenvalue λ1 = 1 and the rest eigenvalues satisfy λ1 >
λ2 > . . . > λN > −1.

Taking this into account we denote

λM = sup
n
ρ

(
Π(n)− 1T 1

N

)
< 1, (18)

with ρ(·) representing the spectral radius operator, the
supreme of the second largest eigenvalue of the differ-
ent products of B consecutive weight matrices. Note that



due to Assumption 2.1 the supreme is not 1. In fact,
using the Metropolis Weights it can be shown that λM <
1−2 cos(

(N−1)π
N )

3 , [17].
We can now formulate the result on the step size for the

time-varying case:
Theorem 4.1 (Step size for time-varying topologies): Let

δ be a positive constant and

h∗ =
δ(1− λM )

Bθ
√
N

. (19)

Under Assumptions 2.1, 2.2 and 2.3 the implementation
of (1) with h ∈ (0, h∗] and initial conditions xi(0) =
ri(−h), i ∈ (1, . . . , N), achieves dynamic average consen-
sus with a nonzero steady-state error upper bounded by δ.

Proof: Along the proof we let bxc : N → N be the
operator that returns the closest integer upper-bounded by x,
i.e., the floor operator.

Using the same argument as in equation (10), we know
that after B iterations the Euclidean norm of the error is
reduced by a factor λM . Thus

‖
n−j∏
k=0

A(k)∆r(jh)−∆r̄(jh)1‖2 ≤

≤ λb
n−j
B c

M ‖∆r(jh)−∆r̄(jh)1‖2 ≤

≤ λb
n−j
B c

M

√
N‖∆r(jh)−∆r̄(jh)1‖∞ =

= λ
bn−j
B c

M

√
N max

i
|∆ri(jh)−∆r̄(jh)| ≤

≤ λb
n−j
B c

M

√
Nhθ,

where in the last step we have used Assumption 2.3.
Therefore

‖x(n+ 1)− r̄(nh)1‖∞ ≤

≤ λb
n+1
B c

M

√
Nκ0 +

√
Nhθ

n∑
j=0

λ
bn−j
B c

M ≤

≤ λb
n+1
B c

M

√
Nκ0 +

√
NhθB

b nB c∑
j=0

λjM =

= λ
bn+1
B c

M

√
Nκ0 +

√
NhθB

1− λb
n
B c
M

1− λM
,

(20)

where κ0 = maxi |ri(−h)−r̄(−h)|. Taking the limit when n
goes to infinity the first term goes to zero and consequently
if h ∈ (0, h∗], then

lim
n→∞

‖x(n+ 1)− r̄(nh)1‖∞ ≤ δ. (21)

Note the similarity of the bound for fixed topologies with
the bound for time-varying topologies. It turns out that the
bound in the latter case can be expressed similarly as in
the former case considering rounds of B updates. Now we
demonstrate that, for a fixed δ (19) is always larger than (3).

Lemma 4.2: The parameter α in Assumption 2.1 is upper
bounded by α < 1/2.

Proof: By considering a topology with a single link the
result is immediate.

Lemma 4.3: Let δ be a positive constant and aij defined
according the Metropolis Weights [10]. For any N > 1, B ≥
1, h∗ in equation (19) is bigger than h1 in equation (3).

Proof: The denominator in (19) is smaller than in (3)
for all N > 1 and B ≥ 1.

Regarding the numerators, using Lemma 4.2 we take
the values α = 1/2 and B = 1 to consider the biggest
numerator in (3). If we use the Metropolis Weights, then
λM <

1−2 cos(
(N−1)π
N )

3 , [17] in (19). Considering these two
bounds it can be shown that the derivative of the numerator
in (3) minus the numerator in (19) is negative. Noting that for
N = 2, α4 − (1− λM ) < 0 we conclude that the numerator
in (19) is greater than in (3) and the result is proved for all
N .

Therefore, for any desired steady-state error, δ, the step
size h∗ obtained by us is larger than the one obtained in [1].
Finally, let us remark that since we are considering exactly
the same algorithm as in [1], those situations that were shown
to reach average consensus for zero steady-state error are still
valid:

Corollary 4.4 (Corollary 3.1 [1]): Under Assumptions
2.1 and 2.2 if limn→∞maxi ∆ri(nh)−mini ∆ri(nh) = 0,
the implementation of (1) with any h > 0 and initial state
xi(0) = ri(−h), i ∈ {1, . . . , N} achieves the dynamic
average consensus with a zero steady-state error.

V. STEP SIZE FOR HIGHER ORDER CONSENSUS
ALGORITHMS

In this section, we analyze the step size h, required to
reach the average consensus when using higher-order algo-
rithms. For simplicity we do the analysis considering a fixed
and connected communication topology as in Section III, i.e.,
A(n) = A, ∀n ∈ N.

The general kth order dynamic consensus is defined as

x[1](n+ 1) = Ax[1](n) + ∆[k](nh),

x[`](n+ 1) = Ax[`](n) + x[`−1](n+ 1),
(22)

with

∆[`]ri(nh) = ∆[`]ri(t) = ∆[`−1]ri(t)−∆[`−1]ri(t− h),
(23)

` ∈ {1, . . . , k} the `th order differences of the input signals.
Assumption 5.1: (Relatively bounded kth-order differ-

ences): For any h > 0 there exist a time invariant constant
θk such that

max
i

∆[k]ri(nh)−min
i

∆[k]ri(nh) ≤ hθk, ∀n ≥ 0.

Let us define the iterative variables

bk(n) =

k∑
`=1

b`(n− 1), k, n ∈ N, (24)

with bk(1) = 1 for all k.
We will make use of the following two lemmas to find the

bound on h:
Lemma 5.1: The direct expression of bk(n) is equal to

bk(n) =

∏k−2
`=0 (n+ `)

(k − 1)!
, (25)



for all k, n > 1.
Proof: We show it by induction on k and n. First of

all, let us note that, according to (24), b1(n) = 1 for all n.
We show that (25) holds for any k > 1 and n = 2. Using
(24)

bk(2) = k =
k!

(k − 1)!
=

∏k−2
`=0 (2 + `)

(k − 1)!
. (26)

Assume now that (25) is true for all n up to k−1, and for a
certain n > 1 and any k. To see it also holds for n+ 1 and
any k, observe

bk(n+ 1) =

k∑
`=1

b`(n) = bk(n) + bk−1(n+ 1) =

=

∏k−2
`=0 (n+ `) + (k − 1)

∏k−3
`=0 (n+ 1 + `)

(k − 1)!

=
(n− 1 + k − 1)

∏k−3
`=0 (n+ 1 + `)

(k − 1)!

=

∏k−2
`=0 (n+ 1 + `)

(k − 1)!
.

(27)

The induction is completed from the fact that the property
is true for any k and n = 2.

Lemma 5.2: The average of the inputs signals at iteration
n, r̄(nh), is equal to:

r̄(nh) = r̄(−h) +

k−1∑
`=1

b`+1(n)∆[`]r̄(−h)+

+

n∑
j=0

bk(n− j + 1)∆[k]r̄(jh),

(28)

for all k > 0.
Proof: It is a consequence of using Lemma 5.1

and (23).
Theorem 5.3 (Step size for kth-order fixed topologies):

Let δ be a positive constant and

h∗ =
δ(1− λ2)k(k − 1)!

θk
√
N

. (29)

Under Assumptions 2.1 and 5.1 the implementation of
(22) with h ∈ (0, h∗] and initial conditions, x[k−`]i (0) =

∆[`]ri(−h), ` = 1, . . . , k − 1 and x
[k]
i (0) = ri(−h), i ∈

(1, . . . , N), achieves dynamic average consensus with a
nonzero steady-state error upper bounded by δ.

Proof: Let us define

X(n) = (x[k](n), . . . , x[k−1](n), x[1](n))T . (30)

Developing (22), the discrete-time dynamics of the variable
X(n) is

X(n+ 1)=


A A . . . A
0 A . . . A
...

...
. . .

...
0 0 . . . A

X(n) +


IN
IN
...

IN

∆[k]r(nh).

(31)

This leads to

x[k](n+ 1) =

k∑
`=1

b`(n+ 1)An+1x[`](0)+

+

n∑
j=0

bk(n− j + 1)An−j∆[k]r(jh).

(32)

Subtracting r̄(nh)1 and using Lemma 5.2 yields

x[k](n+ 1)− r̄(nh)1 = An+1r(−h)− r̄(−h)1+

+

k−1∑
`=1

b`+1(n+ 1)
[
An+1∆[`]r(−h)−∆[`]r̄(−h)1

]
+

+

n∑
j=0

bk(n− j + 1)
[
An−j∆[k]r(jh)−∆[k]r̄(jh)1

]
.

(33)

Thus, by Lemma 5.1,

‖x[k](n+ 1)− r̄(nh)1‖∞ ≤

≤ λn+1
2

√
Nκ0 + λn+1

2

√
N

k−1∑
`=1

b`+1(n+ 1)κ`+

+
hθk
√
N

(k − 1)!

n∑
j=0

k−2∏
`=0

(n− j + `)λn−j2 ,

(34)

with κ0 = maxi |ri(−h) − r̄(−h)| and κ` =
maxi |∆[`]ri(−h) − r̄(−h)|. The first two terms of the
right hand side of the inequality approach to zero with n.
Regarding the sum on the third term, note that

∂k−1λn+k−1−j2

∂k−1λ2
=

k−2∏
`=0

(n+ j + `)λn−j2 . (35)

Therefore
n∑
j=0

k−2∏
`=0

(n− j + `)λn−j2 =
∂k−1

1−λn2
1−λ2

∂k−1λ2
, (36)

which, in the limit, when n → ∞, is equal to 1/(1 − λ2)k

and consequently if h ∈ (0, h∗], then

lim
n→∞

‖x(n+ 1)− r̄(nh)1‖∞ ≤ δ. (37)

Remark 5.1 (Infinitely large h): Compared to the result
in [1], let us note that, fixing δ and λ2 in (29),

lim
k→∞

h∗ =∞.

This means that at some point, h∗ is an increasing function
of k, which implies that for any desired error δ, if the
communication constraints do not allow a step size smaller
than some h, we can always find an order such that for that
step size the steady-state error is upper-bounded by δ. This
is done at the expense of a higher computation cost.

Finally, although we do not prove it here, it can be shown
that for time-varying topologies, the step size is bounded by

h∗ =
δ(1− λM )k(k − 1)!

Bθk
√
N

. (38)
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Fig. 2: Dynamic average consensus using two different order algorithms, k = 1 and k = 8. The top figures show the values of the 10 nodes when
estimating the average of their signals with the average of ri(t) represented by the black dashed line. Bottom figure shows the error of all the nodes with
respect to the average. Using the same step size, h = 0.5, the first order algorithm (left) does not achieve the consensus with the desired steady-state error
whereas the algorithm with k = 8 is able to do it.

0 0.2 0.4 0.6 0.8 1 1.2
−0.3

−0.2

−0.1

0

0.1

0.2

Error

Time (s)

|| 
x i −

 r
−
|| ∞

Fig. 1: Steady-state error tracking ramp inputs with a first order consensus
algorithm using step size h = 0.0091.

VI. SIMULATIONS

In this section, we illustrate our results with some simu-
lations. Firstly, we analyze the quality of our bound for the
first order consensus algorithm compared to (3). We consider
a fixed network composed by 10 nodes with algebraic
connectivity λ2 = 0.91. The input signals of the ith node is
defined as ri(t) = it, which implies that Corollary 3.2 can
be applied with θ̄ = ‖(1, . . . , N)T−(N+1)/21‖2 = 9.0830.
Assigning δ = 1 implies that h∗ ≤ 0.0091 in equation (16)
whereas the maximum allowed step size considering (3) is
equal to h1 < 9.6374 · 10−20, i.e., the new bound is around
1017 times larger than the original one. In Fig. 1 we show
the errors of the ten nodes with respect to the average which,
as theorized, are upper bounded by δ = 1. Additionally, note
that this bound is pretty accurate, the maximum error in the
figure is equal to ‖x(n)−r̄(nh)1‖∞ = 0.2132, which implies
that the maximum step size that guarantees δ ≤ 1 is only
δ/‖x(n)− r̄(nh)1‖∞ = 4.6913 times larger than the one in
our results.

The previous toy example served just to show the im-

provement in the step size (considering k ≥ 2 the algorithm
reaches dynamic average consensus with zero steady-state
error). Let us consider now a more interesting example with
the same network topology. In this example the communi-
cations between nodes are constrained to be lower bounded
by half a second, i.e., h ≥ 0.5. The signals measured by the
nodes are

ri(t) = sin(
0.25√
i
t),

and the desired steady-state error is equal to δ = 0.12. Noting
that Assumption 5.1 holds with θk ≤ 2hk−10.25k, we realize
that for k = 1 the maximum allowed step size is equal to
h∗ = 0.0063. On the other hand, by increasing k we obtain
larger and larger step sizes, reaching that for k = 8 the
constraints of the problem are satisfied. In Fig. 2 we depict
value of the nodes and the error for the two cases. Left figures
show the execution of the algorithm with k = 1 and h = 0.5
and right figures show the execution with k = 8 and h = 0.5.
As we can see, in the second scenario there is an initial phase
where the error grows a lot (the transient phase). However,
after some point the nodes are able to track the average of
the signals with error bounded by the desired constant.

VII. CONCLUSIONS

In this paper, we have presented a different study on the
discrete-time dynamic average consensus algorithms initially
proposed in [1]. Using the information about the eigenvalues
of the weight matrices, we have come up with a different
demonstration about the maximum step size that the nodes
can choose. With our results, the step size allowed to the



nodes is always bigger than the one initially found, indepen-
dently of the number of nodes or the network connectivity.
Examples show the difference can be of several orders of
magnitude. We have also shown there is always a kth order
dynamic consensus algorithm leading to an arbitrarily small
steady-state error with an arbitrarily large step size. Our
future work will focus on using acceleration techniques to
improve the convergence rates.

ACKNOWLEDGMENTS

This work was supported by the projects DPI2009-08126
and DPI2012-32100.

REFERENCES

[1] M. Zhu and S. Martı́nez. Discrete-time Dynamic Average Consensus.
Automatica, 46(2):322–329, February 2010.

[2] D. P. Spanos, R. Olfati-Saber, and R. M. Murray. Dynamic consensus
on mobile networks. In IFAC World Congress, 2005.

[3] W. Ren. Multi-vehicle consensus with a time-varying reference state.
Systems and Control Letters, 56(2):474–483, 2007.

[4] E. Montijano, S. Martı́nez, and C. Sagues. Distributed robust data
fusion based on dynamic voting. In IEEE Int. Conference on Robotics
and Automation, pages 5893–5898, May 2011.

[5] R. Olfati-Saber. Distributed Kalman filtering for sensor networks. In
46th IEEE International Conference on Decision and Control, pages
5492 –5498, December 2007.

[6] R. A. Freeman, P. Yang, and K. M. Lynch. Stability and convergence
properties of dynamic average consensus estimators. In IEEE Int.
Conference on Decision and Control, pages 398–403, December 2006.

[7] H. Bai, R. A. Freeman, and K. M. Lynch. Robust dynamic average
consensus of time-varying inputs. In IEEE Int. Conference on Decision
and Control, pages 3104–3109, December 2010.

[8] S. S. Kia, J. Cortés, and S. Martı́nez. Singularly perturbed filters for
dynamic average consensus. In European Control Conference, 2013.
To appear.

[9] Y. Yuan, J. Liu, R. M. Murray, and J. Gonalves. Decentralised
minimal-time dynamic consensus. In American Control Conference,
pages 800 – 805, June 2012.

[10] L. Xiao and S. Boyd. Fast Linear Iterations for Distributed Averaging.
Systems and Control Letters, 53:65–78, September 2004.

[11] B. Gharesifard and J. Cortés. Distributed strategies for generating
weight-balanced and doubly stochastic digraphs. European Journal of
Control, 18(6):539–557, 2012.

[12] A. Priolo, A. Gasparri, E. Montijano, and C. Sagues. A Decentralized
Algorithm for Balancing a Strongly Connected Weighted Digraph. In
American Control Conference, 2013. To appear.

[13] A. Jadbabaie, J. Lin, and A.S. Morse. Coordination of Groups of
Mobile Autonomous Agents using Nearest Neighbor Rules. IEEE
Transactions on Automatic Control, 48(6):988–1001, June 2003.

[14] R. Olfati-Saber and R. M. Murray. Consensus Problems in Networks of
Agents with Switching Topology and Time-Delays. IEEE Transactions
on Automatic Control, 49(9):1520–1533, September 2004.

[15] V. D. Blondel, J. M. Hendrickx, A. Olshevsky, and J. N. Tsitsiklis.
Convergence in Multiagent Coordination, Consensus and Flocking. In
IEEE Int. Conference on Decision and Control, pages 2996–3000,
December 2005.

[16] F. Bullo, J. Cortés, and S. Martı́nez. Distributed Control of Robotic
Networks. Applied Mathematics Series. Princeton University Press,
2009. Electronically available at http://coordinationbook.info.

[17] E. Montijano, J. I. Montijano, and C. Sagues. Chebyshev Polynomials
in Distributed Consensus Applications. IEEE Transactions on Signal
Processing, 61(3):693–706, March 2013.


