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Abstract— This paper proposes a discrete-time distributed A recent formulation of the optimal vaccination for the case
algorithm based on a local replicator dynamics that allows a of continuous time dynamics is given in [8]. In [8] the
group of nodes to achieve virus mitigation over a connected authors propose a convex optimization framework to find
graph when subject to limited resources. The algorithm is . . .
distributed in the sense that it can be implemented by the the optimal allo_cat'on c_’f re_sources_un_der local _Conswa'm
network nodes via local and anonymous interactions. By em- Nonetheless, this solution is nor distributed neither dece
ploying a discrete-time LaSalle invariance principle, we fid a  tralized. Ideas of distributed control have been commonly
bound on the algorithm step size that guarantees asymptotic applied to distributed consensus algorithms [9], [10], ®he
convergence for agents subject to time-varying interactios.  ha central focus is to study whether a group of agents in a
Several simulations illustrate the algorithm performance . . .

network using local and anonymous information can reach a

. INTRODUCTION global agreement. Similar in spirit to consensus algorghm

Virus spread in computer and human networks is a suffo€ local replicator dynamics has been proposed in [11],
ject of public concern, as it threats the security of criticaWhere it is applied to dynamic resource allocation. Thelloca
infrastructure and the well-being of the general popufatio "eplicator dynamics is a model where agents, with local
Highly-connected, dynamic networks makes the immeme,@ommunication capabilities tend to reach the same fitness
tation of strategies to stop epidemics a challenge in saar Using simple interactions.
involving multiple operators. First, a collective decisio Statement of contributionin this paper, we study a virus
must be made about what the best responses are for fhéligation problem based on a general contagion dynamics
rapid vaccination and/or isolation of infected individsial Model. The problem objective is posed by the minimization
possibly under scarce resources, restricted communisatio©f the spectral radius of the contagion-dynamics matrix
and partial network knowledge. Secondly, a distributed angHbject to operational constraints. By employing the Rerro
robust implementation of these best responses over netwofkobenius theorem, we obtain a novel characterizationef th
calls for the use of distributed algorithms that the muttipl critical points of the problem that applies to (not necefsar
operators can employ for this purpose. In this paper, waymmetric) weight-balanced matrices. For other matriaes,
precisely aim to study such issues for particular classes pfovide bounds for the solution in terms of the associated
network graphs. symmetrized problem. After this, we propose a distributed

Literature reviewA main approach to model virus spread-algorithm that implements the desired resource allocdtion
ing and contagion over networks is given by the g|Symmetric matrices. In contrast with previous work, our al-
(susceptible-infected-susceptible) model and its vianat 9orithm can be implemented by the network nodes by means
see [1], [2], [3], [4], which validate such models for virusOf local and anonymous interactions. More precisely, our
propagation over computer graphs. Based on this, two madgorithm is based on a discretization of the local repticat
strategies have been proposed to handle infections in tH¥namics that is further adapted to ensure convergence of
literature. One approach considers the detection andisola the solution to the virus mitigation problem. By means of a
capabilities of the infected nodes by means of topolog§ovel discrete-time analysis, we are able to provide a bound
adaptation or quarantine, while another one considers noflg the algorithm step size that guarantees convergence for
immunization. In this way, [5] and [6] propose a distributecBgents subject to time-varying interactions.
strategy to manipulate the topology of the network by Organization The remainder of this article is organized
disconnecting infected nodes. This solution does not densi as follows. Sectio@! presents the mathematical backgtoun
the cost of disconnecting the network or constraints oticluding some graph theory concepts, as well as some
the network connectivity. In [7], the authors propose Slefinitions that are used throughout the paper. The problem
decentralized algorithm to control the virus propagatign bstatement is presented in Section Ill, where we include a
disconnecting nodes and by applying an antivirus subject gharacterization of the solution for weight-balanced et
resource constraints. The decentralized algorithm of §7] s well as a bound for the general case. Next, in Setfion IV,
based on the use of diagonal matrices in the control input€ introduce some notions on the replicator dynamics as
which are naturally distributed. However, the algorithratth Well as the proposed algorithm. In Sectiom V, we present

determines these diagonal matrices is not distributedf.itse2 Stability analysis of the algorithm and show bounds for
the step size that guarantees asymptotic convergence under

The authors are with Department of Mechanical and Aerosfa®@i-  time-varying graphs. Sectidn VIl presents some simulation
neering, University of California, San Diego, 9500 Gilmam, Da Jolla,

CA, 92093, {ejr003,soniamfi@ucsd.edu. This work was partly supported results, followed by_ a discussion of the advantages of using
by AFOSR award 11RSL548. the proposed algorithm.



[I. PRELIMINARIES Next, for any nonnegative matrix we propose a strategy for
This section presents notation and basic notions frojrus spread minimization that minimizes the Perron eigen-
graph and matrix theory. value of the symmetrized counterpart, and we characterize

the goodness of this approximation.
A. Notation

In what follows, we denote b2, the positive orthant of
R?, for somed € N, Iy the identity matrix of sizeV x N,
diag(aq,...,an) the N x N matrix with entries:; along the 2D (1 _ HN
diagonal, andly € RY the column vector whose elements !

are all equal to one. The spectrum df is denoted by here, (") ¢ R is the probability that node is infected at
spec(A), an eigenvalue ofl is denoted by\;(A) € spec(4),  time k,ic{l,...,N}, anday is defined as

and its spectral radiusby p(A) = max;|\;(A)]. When o !

we use inequalities for vectors, we refer to componentwise = { Bjis for j # i,

inequalities. " 1—4¢;,  forj=u.

A. Problem Statement
The virus dynamics proposed in [4] is given by

(t-aual), @

Jj=1

Here, 8;; € [0,1] is the probability that the virus from
nodei infects nodej, andd; € [0,1] is the probability of
an infected node to be recovered. Using the Weierstrass
product inequality, valid forajl-arg»k) € [0,1], we obtain the
following upper bound

B. Matrix and graph-theoretic notions

A real square matrixd = [a;;], A € RYY, is called
nonnegative if its entries are nonnegative, i.e,;; > 0,
for all 4,57 € {1,...,N}. A directed graph of ordetV
or digraphis a pairG = (V, &), whereV, the vertex set

is a set with N nodes, and€ C V x V, the edge setis z*+D) < ZN a.jix§k)7 Vie{l,...,N},
a set of ordered pair of vertices called edges. We denote J=1
the graph at timek as G = (V,£(k)) with edge set where z® = [+") .. 21T, The previous inequality

g(k) c VxV, k € N, Given a dlgraphg, we define reads in vector notation as
the unweighted adjacency matriaf G by A(G) € RV*¥N

asa;; = 11if (i,j) € £ anda;; = 0 otherwise. Given kD §A(5):c(k), 2
a nonnegative matri3 € RV*", its associatedveighted \heres = (4,,...,dx) € [0,1]Y, and A(6) is defined as
digraph G(B) is the graph withy = {1,..., N} and edge

set defined by the following relationshigi, j) € £(B) if ! 5 251 15_2152 gn;

and only ifb;; > 0. The associated weight of the edgej) A(8) = . . “l=zIyv-D+aG.
is given by the entryb;;. The graphG(B) is said to be : : . :

weight-balancedf Z?’Zl bij = Z?’Zl bj; foralli € V, in Bin Ban ... 1—=4n

particular,G(B) is undirectedif b;; = b;; for all (i,j) € £.  Here, A(9) € RN*N, D = diag(), andG = A(d) — Iy +

A pair of indi_cesi,j eV of an undirected grapd = (V,€) D = A(1y). Let G(Iy + A(1x)) = G(Iy + G) be the
are calledneighborsif (i, j) € £. We letV;(G) denote the graph associated to the virus dynamics matrix. We define
set of neighbors of in the digraphg. A pathin a graphis an the topology matrixof the network as the matrify + G.
ordered sequence of vertices such that any pair of consecutivhen there is no confusion, we will denafé/y + G) by
vertices in the sequence is an edge of the graph. A graphgsand A for the associated unweighted adjacency matrix.
connectedf there exists a path between any two vertices. |n [4], authors prove next proposition,

If a graph is not connected, then it is composed of multiple Proposition 1 ([4]): An epidemic described by[](1) be-
connected componentlat is, multiple connected subgraphscomes extinct if and only ip(A(5)) < 1.

In a connected grapd, the distance from verteikto vertex We consider the following problems to minimize the
J, denoted aslist (7, ), is the length (number of edges) of effects of virus contagion. ThelRUS MITIGATION problem

a shortest-j path inG. is given by

[1l. PROBLEM STATEMENT AND SOLUTION APPROACH 561[1(1)1% p(A(9)),

In this section, we first revise the contact network dy- Su,bject to 3)
namics proposed in [4] and the problem statement proposed Z{V_ 5 =T,
in [7], which we adopt here. We then extend a theorem in [7] p(;((i;)) <1

for symmetric, irreducible matrices to weight-balanced a ) )
irreducible matrices. The main motivation for this extemsi D€Pending on the value of, the above problem is not

is given by the possibility of having an asymmetric placemer{€@sible and we can or.1ly solve the relaxee@us SPREAD
of edge firewalls making the interaction graph directed!NIMIZATION problem:

Our proof relies on the Perron-Frobenius theorem and the min p(A(6))
Lagrange multiplier approach, instead of using a sensitivi seoax” ’
' subject to (4)

formula. Notice that all proofs of this paper will be found in N
a forthcoming publication. Dm0 =T



Note that we only consider a partial vaccination strategy, i C. Solution Bound for Unbalanced Matrices

we only consider as decision varialdlewhile 3 is fixed. We When the topology matrixy + G is not weight-balanced
further assume that for the initial condition of the networkand there are not enough resources to make it so as

there are enough resources in terms of isolation/qualsasintin1 [12], Theoreni® is not applicable. However, therus
capabilities (i.eff), which make possible to balance theSPREAD MINIMIZATION problem can be relaxed to mini-

network interaction according to a finite-time distribute%izing p(A(5)), where A(3) = Iy — D + L(G + GT)
1 - 2 .

algorithm presented in [12]. The next lemma shows that this upper bound to the so-
lution p*(A(6*)), is at the same time upper bounded by
B. Solution Characterization for Balanced Matrices ming||A(S)]|.
. A _ 1 T
In order to provide sufficient conditions for feasibilityrfo m ét?ir:argsnlbl;zt(g@ ;le Bg—gi (Tcr:]:ninzléb;(g](%)s)yin-
the VIRUS MITIGATION andVIRUS SPREAD MINIMIZATION ming | A(8)|| andming p(A(8)) > p* (A(5%)) -
problems, we present a characterization of the solution to = X

relaxed problem for weight-balanced matrices in Thedrem mmf:n:tmh;gs g]naqtg(p?r”iop u(r?d((?grzap ;ﬁg?leassjﬁz\g: of
Previous to this, we recall the next theorem that shows tl}ﬁe VIRUS MI’TIGATION problem is given by solving the
function p(A(0)) is a convex function of and, thus, the following problem:

problems introduced in Secti@qn IIFA are convex. '

Theorem 1 ([13]):Let A be nonnegative, andD = min_p(A(J))

diag (01,...,0y). Then, the Perron eigenvalue df + D, 565[331§ct ©
p(A + D), is a convex function o). ZNJ 5T 9)
In particular, theviRuS MITIGATION problem is feasible =19 = ">

b P p(A(8)) < 1.

when the set of§ satisfyingd € [0,1]%, p(A(5)) < 1
and >V, 6; = T is non empty. On the other hand, theThis is based on the two following lemmas.
VIRUS SPREAD MINIMIZATION is feasible when the set of | emma 2:An epidemic characterized bl (2) will become

§ satisfyingd € [0,1]N and >, 6; = I is non empty. extinct if only if || A(6)| < 1.

Denote byr; = 1 + Z;V:L#i Bji and ¢; = 1+ Lemma 3:The VIRUS MITIGATION problem is feasible if
Zj,v:l#i Bi;, the sum of row and column entries bf +G, ~and only if Proble_m[(l9) is feasible. In that case, an upper
respectively. bound to the solution of thgIRUS MITIGATION problem is

Theorem 2:For a weight-balanced, nonnegative, and irregiven by a solution to Probler](9).
ducible matrix/y + G the solution to thevirRus sPrREap N the next lemma, we describe explicitly the upper bound
MINIMIZATION problem without the restrictiond; € [0,1],  diven by solving problem({9).

i € {1,...,N}, is given by making the sums of each row Lemma 4:Consider a virus dynamics with associated
of A(8) equal to each other, i.exd; +r; = —&; + r; for nonnegative and irreducibl€. Let I' satisfy the sufficient

‘. T
i # j. More precisely, the solution is characterized by ~ condition [T) for the topologyy + ¢£Z—. Then, an upper
bound for the solution of thgIRUS SPREAD MINIMIZATION

ZNzl ry—1T 2 (rj+e;)-T
P (A(5%)) = JT’ (5)  problem forly + G is given byp*(A(6*)) < ———.
Nr N LT Finally, we characterize the distance of these bounds to the
5 = ri = 2= _ (6) solution of theviRUS SPREAD MINIMIZATION problem.

Lemma 5:Consider a virus dynamics with associated
Ononnegative and irreduciblél. Let T' satisfy [I) for the
topology I + G+TGT Let %%, 6*2 and 6*3 be the vector
solutions given in[{(6) for the topology matricds; + G,

Iy + GT and Iy + (G + GT), respectively. Lets* be

N N the solution to theviRUS MITIGATION problem ande; £
max(z - Bk —NZ._ ‘ ﬂji) <T |07 - 5;‘3|,_f0ri € {1,...,N}, be the errors betwegn the

: k.g =17k J=Li7i (7)  solution given by Lemm&l4 and the optimal solutiéh

N N 1 *1 *2 .
<§ iy _ Then,e; < 5|07 =67, ie{l,...,N}.
=~ iG=1,j4i ﬁ]z N(l nliaX Z_j:L_j;éi ﬁjl) ) | | { }

IV. THE CONSTRAINEDEULER REPLICATORALGORITHM

Corollary 1 (Sufficient cond]i}]ions for problem feasibijity
When Iy + G is weight-balanced, nonnegative, an
irreducible, then a feasible solution to theRUS SPREAD
MINIMIZATION problem is given by[(6) if

Furthermore, a feasible solution to tRerRUS MITIGATION
problem is given by[(6) if This section presents the proposSBONSTRAINEDEULER
REPLICATOR algorithm with which we aim to solve the
N N N VIRUS SPREAD MINIMIZATION problem. The algorithm is
Y o Bi<I< Y Bui+N( — max > Bji)-  shown in Sectiof IV based on the replicator dynamics
i,j=1,j7#i i,j=1,j7#i J=1.j#i and a local version of it. The latter are briefly reviewed in

8 Section IV-A.



A. On the Replicator Dynamics sum of Iy + G. Then f;(T'p;) = fi(d;) is the i row sum

Replicator dynamics [14], [15], [16] models the inter—Of A(d). In compact form, the dynamics ih(12) read as:

_actto_n of an homogeneou_s population, Where fractions_ Q1) — p(k) 4 (k) diag(p®) (diag(f ™)) Ap*) — AFH)Y,
individuals play a symmetric game. The replicator dynamics (13)

is represented by a first-order differential equation tlsat i

composed by theeplicator, its fitness and the proportion whereA is the unweighted adjacency matrix Qf e

in the population. The replicator corresponds to one indif (", ..., 17, and FB) = [N p Q) py) ]

vidual in the population. The fitness, usually positive,tie t tice that [12) does not constraint its stateSpas< fOf
utility that the individual obtains during the game. Fiyall certain desired constraints; > 0, for i € {1,. N},
the proportion in the population represents the fraction cfomething required in order to solve the problems of interes
individuals in the population that changes as a result decause of this, we propose a variation bf](12) called
their mutual interactions and fitnesses. A particular ohoicthe CONSTRAINED EULER REPLICATOR algorithm, whose

of replicator dynamics is given by convergence is analyzed in the next section. A short descrip
B tion of the CONSTRAINED EULER REPLICATOR algorithm

pi(t) = pi(t)(fi = /), (10) is given as follows. Each node computes its own state
gFT = p* Tl i {1,... N}. If all trajectories are

wherep,; denotes the proportion of individuals that play one v
strategyi € {1,..., N}, f; is the fitness, and is the average
fitness described by = ZN_l p; f;- The choice off in (I0)
imposes a useful restriction to the dynamlcs as evolutions
will belong to the simplexA, = {p € R | lelpz( )=
1}. This motivates the choice of the repIicator dynamic
to solve theVIRUS MITIGATION and theVIRUS SPREAD
MINIMIZATION problems.

A local version of the original replicator dynamics [n110)
is proposed in [11] to account for local interactions of Algorithm 1. CONSTRAINED EULER REPLICATOR
fractions of the population over a gragh Input: h;, p\*, T

1 Initialize a; = 0;
pi(t):pi(fizjeij_zjeijfj)v (11) 2 for k> 0 do
s | Computep!*™ as in [I2);
61(k+1) _ Fp§k+1);

nside Q = {5<k> e RY, | 1%0® = 1,6%) < h;},
then the algorithm reduces t {12). Otherwise, if nade
violates the constraini; < h;, then it stores the difference
% a; € Rso and putss™*! = p, (lines[B to[T). Note
that | line (11 restorest to p(k“) i.e., the evolution of
%) in line [ is equwalent to the evolution of (12) in
any case. The distributed computation of the step size

whereN; is the set of neighbors aofin the graphg. If the
choice of the fitnes¥; only depends on local information, 4
then the algorithm described ih{11) is distributed. In [11]5 if 6 (k1) h; then

the authors show that this algorithm conserves the most ing- alFt) = gD gy

Z

portant characteristics df (1L0), i.e., i) the simplex isanant, s+ _ g

and ii) the equilibrium point is asymptotically stable &,. eIsel v

B. TheCONSTRAINED EULER REPLICATOR Algorithm 12 e‘nd%(-kﬂ) =0
Consider the network grapf and the probabilities of (k+1) _ 5D LD

transmissions € [0,1]V. In what follows, assume that the ki_ ) Jlf

topology matrix/ + G is nonnegative, symmetric and the'
graph associated to it is connected. As shown in Thegiem
the solution to a relaxed version of th@RUS SPREAD

MINIMIZATION problem is given when the sum of the rows infor the coNSTRAINED EULER REPLICATOR algorithm, and

matrix A(d) are equal. Because at equilibrium of replicatoggorithm in [I3) is discussed in the next section.
dynamics all fitnesses are equal and other constraints are

naturally satisfied, we aim to solvelRUS SPREAD MINI V. STABILITY ANALYSIS
MIZATION problem by employing a discretization df {11) |n this section, we study the properties of the discrete-
and defining the fitness as th€ row sum of matrixA(4).  time algorithm [IB), and provide a sufficient condition on
By discretizing the continuous-time local replicator dy-¢(*) that guarantees its stability. The algorithm can be used to
namics [(11) using Euler first-order differences, we obtain solve a relaxed version of theRUS SPREAD MINIMIZATION
problem, where the constraifif < 1 is omitted. Finally, we
Pz(kﬂ) p(k) + 6(k)p(k) (f(k) de/\/ (k) - fz‘(k))a (12) analyze the effects of theONSTRAINED EULER REPLICA-
TOR algorithm whenh; = 1, foralli € {1,..., N}.
wherek € N, ﬁ(k) Z €N p(k)f *) "ande® > 0. Define We show next that the algorithm ifi_(13) conserves the
p = [0/r,...,on/r]T € 0, 1]& and fz(pz) =r; — I'p; = most important characteristics ¢ {10), i.e., i) the simgke
ri — 04,1 € {1,..., N}, where recall that; is thei" row invariant for small enough step size as shown in Leriina 6,

15 end




i) all individuals get the same fitness at the equilibriunthwi Resource)

the choice of an adequate fitness as shown in Lefma 7, and 6;4):1.1635 ‘ ‘ ‘ -5,

i) the equilibrium point is asymptotically stable i, as 1} S

shown in Theorerf]3. 0.5
Lemma 6 (Invariance ofA, under (I3)): The dynamics

in (@3) leaves A, invariant for a sequence®™ < 0 5 10 15 20 25 30 35 40 45 50
1 k> 0. Eigenvalues of matrix4(4)

(K)y 1

maxiyj(f;k)f T T T

Lemma 7’ (Equilibria of3)): Assume that r i et
satisfies [([7), and consider the dynamiEs] (13) with initigl5 | I R *:2-
conditionp(®) € A,. Then, the equilibrium pointg* of (I3) ///’/ el

such thatp* > 0 coincide with those of the continuous-time Ol P Pt - 5 ‘ ‘ — 4
replicator dynamics. 0 5 10 15 20 25 30 35 0 5 50

As a consequence of Lemifila 7, each connected componeigt 1. Trajectories of the example given [A15) for the ailyon in (I3)

of a disconnected graph arrives at a common equilibriumsingT" = 2, and§(®) = T'[1/256, 1/2, 127/256].

fitness, i.e., the set of nodes of each component agrees on the

same average fitness. These equilibrium fitnesses can differ

from one connected component to another. some finite time sincg®) — p* asymptotically as shown in
Lemma 8 (Equilibrium point characterization und@): ~ TheoreniB, and fok > K (i.e., when trajectories are close

Let G be a (not necessarily connected) graph, let to the equilibrium) we know that6*) =T

satisfy [T), and consider the dynamids](13) with initial

7. S g VI. SIMULATIONS AND DISCUSSION
condition p(® € A,. Then, the equilibrium poinp* > 0

of (IJ) is given by In this section, we illustrate the response of the discrete
local replicator dynamics in[(13) and theONSTRAINED
L X+ s p§0) =D jexTi (14) EULER REPLICATOR algorithm for the symmetric matrix
' |X|T ’ 1—6, 1/4 0
wherei € X, and (X,Ex) C G represents a connected A@G)=| 1/4 1-6 1/16 |, (15)
component 0l. 0 /16 1-43

Theorem 3: (Sufficient conditions for the stability of thesypject tol' = 2. In order to exemplify a switching topology,
algorithm in (I3)): Supposel satisfies [(B), the set of e yse a pseudorandom numiter 1 given by a uniform

neighbors in [(IR) are time-variant SatiSfyir]‘ng 6™ is  gistribution for every edge of the associated adjacencyimat
0

connected for allky € Zso. Then, the equilibrium point Of A(0) during the evolutions®). In Figure[], we show
is asymptotically stable inA, for a sequence:*) < the behavior of [TI3) fore = 1/2, and the initial condi-
R S WA tion 6(° = I'[1/256,1/2,127/256]. The optimal value is
xi i (£ = 1) T max; p} )(k) B _ &% = T[0.3542,0.3854,0.2604]. Notice that, the discrete
'Remark 1:To compute the:'™™) of Theorem(B in a dis- |ocal replicator dynamics if{13) does not satisf§) < 1
tributed way, agents can employ a min consensus algorithfigy . ~ 0 in general. This fact is exemplified in Figulé 1,
By means of this, every node takes the minimum of thgnere 550) — 1 and 554) = 1.1035. This is solved by
messages of neighbors and their own. This algorithm h3§e consTRAINED EULER REPLICATOR algorithm, which
time complexity diam(gG) for fixed graphsg. Therefore, performance is shown in Figuié 2 for the same conditions as
in order to implement a new iteration of the dynamicor Figure[d. Figurél2 shows that tie®NSTRAINED EULER
equation [(IP), each node first implements a min consensygp catoralgorithm converges to the desired equilibrium
algorithm duringdiam(G) rounds to obtain the new*). point of (I3). Also, note thas'*) < 1 for k > 0, which
Remark 2:In order have a time-invariant (and more con<gnows that the algorithm constrains its states as expected.
servative) ¢ %}xe” |r2k)TheoremE|3, E’L’)e can use the facigyre 3 shows the performance of tHEONSTRAINED
that max; ; (f;"" — f;") < 2max;|f;”|< 2max;rs + T gy er REPLICATORAlgOFithm for the same initial condition

providedp® € (0,1)" by Lemma®. Ther can be chosen as in Figurélll’ = 2, and the following unbalanced topology
as€ < gmm T This time-invariant step size can bematrix
determined using a min consensus algorithm before running
the CONSTRAINED EULER REPLICATOR algorithm.

Remark 3:The evolution ofp(*) in the CONSTRAINED A(9) = }/4 L=0y 1/16 . (16)

) ; : . /8 1/16 1—063

EULER REPLICATORalgorithm is equivalent to the evolution
of (13), then the equilibrium point, properties and the #tab In Figure[3 we used(§) as shown in Lemm@l5 to approxi-
ity analysis already done fdr(lL3) hold for th&NSTRAINED  mate the solution given by thlEONSTRAINEDEULER REPLK
EULER REPLICATORalgorithm. However, notice when some cAToR algorithm to the optimal one. In this case, we employ
agk) > 0 in the CONSTRAINED EULER REPLICATOR al- the same notation of the variables as defined in Lerma 5.
gorithm, thenlevzi(k) < T, but this can only happen for For that, we haved*® = [0.70415,0.70415,0.5917],

min{
ma.

1—-6, 1/10 0



Resource)

given an strategy that stabilizes the spread for general net
work topologies when there are enough network resources.
Based on that characterization, we have proposed a novel
distributed algorithm to stop infection spreading undereti
varying topologies. Our approach solves the optimization
problem by allocating limited immunization resources unde
the system constraints. As future work we would like to
study the design of schemes that include the distributed
computation of the Perron eigenvector, and the capacity of
adapting the topology to minimize the epidemic spread.
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Fig. 2. Trajectories of the example given i _{15) for thwoN-
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Fig. 3. Trajectories of the ONSTRAINEDEULER REPLICATORalgorithm
for the approximation to the optimum given by Lempda 5

(8]

p(A(6*3)) = 0.5010, §** = [17/30,187/240,157/240],
52 = [101/120,151/240,127/240], p(A(6*1)) =
p(A(6*?)) = 0.5333. The optimal value isp*(A(5*)) =
0.5002 for 6* = [0.6884,0.7199, 0.5917]. These values show
that we achieve the expected error. In order to find thig?!
optimum p*(A(6*)) when the problem is unbalanced, we
could exploit the convexity of the cost functigiA(d)) as [11]
shown in Theorerill, and use a line search for every subset
of size2 of the vertex set. That is, for every pair of vertices
we could use Lemmf] 4 to start close to the solution, arld?2]
then use Lemmé@]5 for the descent direction for which the
Perron eigenvalue is reduced, i.e., starting'ih or 5*2, we  [13]
evaluates*® and find if we have to reduce/increase each
6; for all i € {1,...,N}. For an small enough step size[14]
when reducing/increasing and conserving the constraint
156 = T, by convexity onp(A(5)) we know that will [15]
converge to the optimal solution. However, the difficulty orfé!
following that approach is given by the computation of the
Perron eigenvalue in a distributed way, which is out of scope
of this paper.

[0

VII. CONCLUSIONS

Here, we have studied a virus mitigation problem for a
general SIS model, characterizing an explicit solutionhi® t
problem for weight-balanced topology matrices. We have
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