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Abstract— This paper proposes a discrete-time distributed
algorithm based on a local replicator dynamics that allows a
group of nodes to achieve virus mitigation over a connected
graph when subject to limited resources. The algorithm is
distributed in the sense that it can be implemented by the
network nodes via local and anonymous interactions. By em-
ploying a discrete-time LaSalle invariance principle, we find a
bound on the algorithm step size that guarantees asymptotic
convergence for agents subject to time-varying interactions.
Several simulations illustrate the algorithm performance.

I. I NTRODUCTION

Virus spread in computer and human networks is a sub-
ject of public concern, as it threats the security of critical
infrastructure and the well-being of the general population.
Highly-connected, dynamic networks makes the implemen-
tation of strategies to stop epidemics a challenge in scenarios
involving multiple operators. First, a collective decision
must be made about what the best responses are for the
rapid vaccination and/or isolation of infected individuals,
possibly under scarce resources, restricted communications,
and partial network knowledge. Secondly, a distributed and
robust implementation of these best responses over networks
calls for the use of distributed algorithms that the multiple
operators can employ for this purpose. In this paper, we
precisely aim to study such issues for particular classes of
network graphs.

Literature review.A main approach to model virus spread-
ing and contagion over networks is given by the SIS
(susceptible-infected-susceptible) model and its variations;
see [1], [2], [3], [4], which validate such models for virus
propagation over computer graphs. Based on this, two main
strategies have been proposed to handle infections in the
literature. One approach considers the detection and isolation
capabilities of the infected nodes by means of topology
adaptation or quarantine, while another one considers node
immunization. In this way, [5] and [6] propose a distributed
strategy to manipulate the topology of the network by
disconnecting infected nodes. This solution does not consider
the cost of disconnecting the network or constraints on
the network connectivity. In [7], the authors propose a
decentralized algorithm to control the virus propagation by
disconnecting nodes and by applying an antivirus subject to
resource constraints. The decentralized algorithm of [7] is
based on the use of diagonal matrices in the control input,
which are naturally distributed. However, the algorithm that
determines these diagonal matrices is not distributed itself.
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A recent formulation of the optimal vaccination for the case
of continuous time dynamics is given in [8]. In [8] the
authors propose a convex optimization framework to find
the optimal allocation of resources under local constraints,
nonetheless, this solution is nor distributed neither decen-
tralized. Ideas of distributed control have been commonly
applied to distributed consensus algorithms [9], [10], where
the central focus is to study whether a group of agents in a
network using local and anonymous information can reach a
global agreement. Similar in spirit to consensus algorithms,
the local replicator dynamics has been proposed in [11],
where it is applied to dynamic resource allocation. The local
replicator dynamics is a model where agents, with local
communication capabilities tend to reach the same fitness
using simple interactions.

Statement of contributions.In this paper, we study a virus
mitigation problem based on a general contagion dynamics
model. The problem objective is posed by the minimization
of the spectral radius of the contagion-dynamics matrix
subject to operational constraints. By employing the Perron-
Frobenius theorem, we obtain a novel characterization of the
critical points of the problem that applies to (not necessarily
symmetric) weight-balanced matrices. For other matrices,we
provide bounds for the solution in terms of the associated
symmetrized problem. After this, we propose a distributed
algorithm that implements the desired resource allocationfor
symmetric matrices. In contrast with previous work, our al-
gorithm can be implemented by the network nodes by means
of local and anonymous interactions. More precisely, our
algorithm is based on a discretization of the local replicator
dynamics that is further adapted to ensure convergence of
the solution to the virus mitigation problem. By means of a
novel discrete-time analysis, we are able to provide a bound
on the algorithm step size that guarantees convergence for
agents subject to time-varying interactions.

Organization. The remainder of this article is organized
as follows. Section II presents the mathematical background
including some graph theory concepts, as well as some
definitions that are used throughout the paper. The problem
statement is presented in Section III, where we include a
characterization of the solution for weight-balanced matrices
as well as a bound for the general case. Next, in Section IV,
we introduce some notions on the replicator dynamics as
well as the proposed algorithm. In Section V, we present
a stability analysis of the algorithm and show bounds for
the step size that guarantees asymptotic convergence under
time-varying graphs. Section VII presents some simulation
results, followed by a discussion of the advantages of using
the proposed algorithm.



II. PRELIMINARIES

This section presents notation and basic notions from
graph and matrix theory.

A. Notation

In what follows, we denote byRd
≥0 the positive orthant of

R
d, for somed ∈ N, IN the identity matrix of sizeN ×N ,

diag(a1, . . . , aN ) theN×N matrix with entriesai along the
diagonal, and1N ∈ R

N the column vector whose elements
are all equal to one. The spectrum ofA is denoted by
spec(A), an eigenvalue ofA is denoted byλi(A) ∈ spec(A),
and its spectral radiusby ρ(A) = maxi|λi(A)|. When
we use inequalities for vectors, we refer to componentwise
inequalities.

B. Matrix and graph-theoretic notions

A real square matrixA = [aij ], A ∈ R
N×N
≥0 , is called

nonnegative, if its entries are nonnegative, i.e,aij ≥ 0,
for all i, j ∈ {1, . . . , N}. A directed graph of orderN
or digraph is a pairG = (V , E), whereV , the vertex set,
is a set withN nodes, andE ⊂ V × V , the edge set, is
a set of ordered pair of vertices called edges. We denote
the graph at timek as G(k) = (V , E(k)) with edge set
E(k) ⊂ V × V , k ∈ N. Given a digraphG, we define
the unweighted adjacency matrixof G by A(G) ∈ R

N×N

as aij = 1 if (i, j) ∈ E , and aij = 0 otherwise. Given
a nonnegative matrixB ∈ R

N×N , its associatedweighted
digraph G(B) is the graph withV = {1, . . . , N} and edge
set defined by the following relationship:(i, j) ∈ E(B) if
and only if bij > 0. The associated weight of the edge(i, j)
is given by the entrybij . The graphG(B) is said to be
weight-balancedif

∑N

j=1 bij =
∑N

j=1 bji for all i ∈ V , in
particular,G(B) is undirectedif bij = bji for all (i, j) ∈ E .
A pair of indicesi, j ∈ V of an undirected graphG = (V , E)
are calledneighborsif (i, j) ∈ E . We letNi(G) denote the
set of neighbors ofi in the digraphG. A path in a graph is an
ordered sequence of vertices such that any pair of consecutive
vertices in the sequence is an edge of the graph. A graph is
connectedif there exists a path between any two vertices.
If a graph is not connected, then it is composed of multiple
connected components, that is, multiple connected subgraphs.
In a connected graphG, the distance from vertexi to vertex
j, denoted asdist(i, j), is the length (number of edges) of
a shortesti-j path inG.

III. PROBLEM STATEMENT AND SOLUTION APPROACH

In this section, we first revise the contact network dy-
namics proposed in [4] and the problem statement proposed
in [7], which we adopt here. We then extend a theorem in [7]
for symmetric, irreducible matrices to weight-balanced, and
irreducible matrices. The main motivation for this extension
is given by the possibility of having an asymmetric placement
of edge firewalls making the interaction graph directed.
Our proof relies on the Perron-Frobenius theorem and the
Lagrange multiplier approach, instead of using a sensitivity
formula. Notice that all proofs of this paper will be found in
a forthcoming publication.

Next, for any nonnegative matrix we propose a strategy for
virus spread minimization that minimizes the Perron eigen-
value of the symmetrized counterpart, and we characterize
the goodness of this approximation.

A. Problem Statement

The virus dynamics proposed in [4] is given by

x
(k+1)
i =

(

1−
∏N

j=1
(1− ajix

(k)
j )

)

, (1)

wherex(k)
i ∈ R is the probability that nodei is infected at

time k, i ∈ {1, . . . , N}, andaji is defined as

aji =

{

βji, for j 6= i,
1− δi, for j = i.

Here, βji ∈ [0, 1] is the probability that the virus from
node i infects nodej, and δi ∈ [0, 1] is the probability of
an infected nodei to be recovered. Using the Weierstrass
product inequality, valid forajix

(k)
j ∈ [0, 1], we obtain the

following upper bound

x(k+1) ≤
∑N

j=1
ajix

(k)
j , ∀i ∈ {1, . . . , N},

where x(k) = [x
(k)
1 , . . . , x

(k)
N ]T . The previous inequality

reads in vector notation as

x(k+1) ≤ A(δ)x(k), (2)

whereδ = (δ1, . . . , δN) ∈ [0, 1]N , andA(δ) is defined as

A(δ) =









1− δ1 β21 . . . βn1

β12 1− δ2 . . . βn2

...
...

. . .
...

β1n β2n . . . 1− δN









= IN −D +G.

Here,A(δ) ∈ R
N×N , D = diag(δ), andG = A(δ)− IN +

D ≡ A(1N ). Let G(IN + A(1N )) = G(IN + G) be the
graph associated to the virus dynamics matrix. We define
the topology matrixof the network as the matrixIN + G.
When there is no confusion, we will denoteG(IN +G) by
G andA for the associated unweighted adjacency matrix.

In [4], authors prove next proposition,
Proposition 1 ([4]): An epidemic described by (1) be-

comes extinct if and only ifρ(A(δ)) < 1.
We consider the following problems to minimize the

effects of virus contagion. TheVIRUS MITIGATION problem
is given by

min
δ∈[0,1]N

ρ(A(δ)),

subject to
∑N

i=1 δi = Γ,
ρ(A(δ)) < 1.

(3)

Depending on the value ofΓ, the above problem is not
feasible and we can only solve the relaxedVIRUS SPREAD

MINIMIZATION problem:

min
δ∈[0,1]N

ρ(A(δ)),

subject to
∑N

i=1 δi = Γ.

(4)



Note that we only consider a partial vaccination strategy, i.e.,
we only consider as decision variableδ, while β is fixed. We
further assume that for the initial condition of the network
there are enough resources in terms of isolation/quarantine
capabilities (i.e.,β), which make possible to balance the
network interaction according to a finite-time distributed
algorithm presented in [12].

B. Solution Characterization for Balanced Matrices

In order to provide sufficient conditions for feasibility for
the VIRUS MITIGATION and VIRUS SPREAD MINIMIZATION

problems, we present a characterization of the solution to a
relaxed problem for weight-balanced matrices in Theorem 2.
Previous to this, we recall the next theorem that shows the
function ρ(A(δ)) is a convex function ofδ and, thus, the
problems introduced in Section III-A are convex.

Theorem 1 ([13]): Let A be nonnegative, andD =
diag (δ1, . . . , δN ). Then, the Perron eigenvalue ofA + D,
ρ(A+D), is a convex function ofD.
In particular, theVIRUS MITIGATION problem is feasible
when the set ofδ satisfying δ ∈ [0, 1]N , ρ(A(δ)) < 1
and

∑N
i=1 δi = Γ is non empty. On the other hand, the

VIRUS SPREAD MINIMIZATION is feasible when the set of
δ satisfyingδ ∈ [0, 1]N and

∑N
i=1 δi = Γ is non empty.

Denote by ri = 1 +
∑N

j=1,j 6=i βji and ci = 1 +
∑N

j=1,j 6=i βij , the sum of row and column entries ofIN +G,
respectively.

Theorem 2:For a weight-balanced, nonnegative, and irre-
ducible matrixIN + G the solution to theVIRUS SPREAD

MINIMIZATION problem without the restrictionsδi ∈ [0, 1],
i ∈ {1, . . . , N}, is given by making the sums of each row
of A(δ) equal to each other, i.e.,−δi + ri = −δj + rj for
i 6= j. More precisely, the solution is characterized by

ρ∗(A(δ∗)) =

∑N
j=1 rj − Γ

N
, (5)

δ∗i =
Nri −

∑N
j=1 rj + Γ

N
. (6)

Corollary 1 (Sufficient conditions for problem feasibility):
When IN + G is weight-balanced, nonnegative, and
irreducible, then a feasible solution to theVIRUS SPREAD

MINIMIZATION problem is given by (6) if

(7)
max

i

(

∑N

k,j =1,j 6=k
βjk −N

∑N

j =1,j 6=i
βji

)

≤ Γ

≤
∑N

i,j=1,j 6=i
βji +N(1−max

i

∑N

j=1,j 6=i
βji).

Furthermore, a feasible solution to theVIRUS MITIGATION

problem is given by (6) if

N
∑

i,j=1,j 6=i

βji < Γ ≤
N
∑

i,j=1,j 6=i

βji +N(1−max
i

N
∑

j=1,j 6=i

βji).

(8)

C. Solution Bound for Unbalanced Matrices

When the topology matrixIN +G is not weight-balanced
and there are not enough resources to make it so as
in [12], Theorem 2 is not applicable. However, theVIRUS

SPREAD MINIMIZATION problem can be relaxed to mini-
mizing ρ(Ā(δ)), where Ā(δ) = IN − D + 1

2 (G + GT ).
The next lemma shows that this upper bound to the so-
lution ρ∗(A(δ∗)), is at the same time upper bounded by
minδ‖A(δ)‖.

Lemma 1:Let Ā(δ) = IN −D+ 1
2 (G+GT ) be the sym-

metrization ofA(δ) = IN −D +G. Thenminδ ρ(Ā(δ)) ≤
minδ‖A(δ)‖ andminδ ρ(Ā(δ)) ≥ ρ∗(A(δ∗)).
Since it holds that‖A(δ)‖≥ ρ(Ā(δ)) ≥ ρ(A(δ)) as shown
in Lemma 1, an upper bound for a feasible solution of
the VIRUS MITIGATION problem is given by solving the
following problem:

min
δ∈[0,1]N

ρ(Ā(δ))

subject to
∑N

i=1 δi = Γ,
ρ(Ā(δ)) < 1.

(9)

This is based on the two following lemmas.
Lemma 2:An epidemic characterized by (2) will become

extinct if only if ‖A(δ)‖< 1.
Lemma 3:The VIRUS MITIGATION problem is feasible if

and only if Problem (9) is feasible. In that case, an upper
bound to the solution of theVIRUS MITIGATION problem is
given by a solution to Problem (9).

In the next lemma, we describe explicitly the upper bound
given by solving problem (9).

Lemma 4:Consider a virus dynamics with associated
nonnegative and irreducibleG. Let Γ satisfy the sufficient
condition (7) for the topologyIN + G+GT

2 . Then, an upper
bound for the solution of theVIRUS SPREAD MINIMIZATION

problem forIN +G is given byρ∗(A(δ∗)) ≤

N∑

j=1

(rj+cj)−Γ

2N .
Finally, we characterize the distance of these bounds to the
solution of theVIRUS SPREAD MINIMIZATION problem.

Lemma 5:Consider a virus dynamics with associated
nonnegative and irreducibleG. Let Γ satisfy (7) for the
topology IN + G+GT

2 . Let δ∗1, δ∗2 and δ∗3 be the vector
solutions given in (6) for the topology matricesIN + G,
IN + GT and IN + 1

2 (G + GT ), respectively. Letδ∗ be
the solution to theVIRUS MITIGATION problem andei ,

|δ∗i − δ∗3i |, for i ∈ {1, . . . , N}, be the errors between the
solution given by Lemma 4 and the optimal solutionδ∗.
Then,ei ≤ 1

2 |δ
∗1
i − δ∗2i |, i ∈ {1, . . . , N}.

IV. T HE CONSTRAINEDEULER REPLICATORALGORITHM

This section presents the proposedCONSTRAINEDEULER

REPLICATOR algorithm with which we aim to solve the
VIRUS SPREAD MINIMIZATION problem. The algorithm is
shown in Section IV-B based on the replicator dynamics
and a local version of it. The latter are briefly reviewed in
Section IV-A.



A. On the Replicator Dynamics

Replicator dynamics [14], [15], [16] models the inter-
action of an homogeneous population, where fractions of
individuals play a symmetric game. The replicator dynamics
is represented by a first-order differential equation that is
composed by thereplicator, its fitness, and the proportion
in the population. The replicator corresponds to one indi-
vidual in the population. The fitness, usually positive, is the
utility that the individual obtains during the game. Finally,
the proportion in the population represents the fraction of
individuals in the population that changes as a result of
their mutual interactions and fitnesses. A particular choice
of replicator dynamics is given by

ṗi(t) = pi(t)(fi − f̄), (10)

wherepi denotes the proportion of individuals that play one
strategyi ∈ {1, . . . , N}, fi is the fitness, and̄f is the average
fitness described bȳf =

∑N

j=1 pjfj . The choice off̄ in (10)
imposes a useful restriction to the dynamics, as evolutions
will belong to the simplex∆p = {p ∈ R

N
>0 |

∑N

i=1 pi(t) =
1}. This motivates the choice of the replicator dynamics
to solve theVIRUS MITIGATION and the VIRUS SPREAD

MINIMIZATION problems.
A local version of the original replicator dynamics in (10)

is proposed in [11] to account for local interactions of
fractions of the population over a graphG:

ṗi(t) = pi

(

fi
∑

j∈Ni

pj −
∑

j∈Ni

pjfj

)

, (11)

whereNi is the set of neighbors ofi in the graphG. If the
choice of the fitnessfi only depends on local information,
then the algorithm described in (11) is distributed. In [11],
the authors show that this algorithm conserves the most im-
portant characteristics of (10), i.e., i) the simplex is invariant,
and ii) the equilibrium point is asymptotically stable in∆p.

B. TheCONSTRAINEDEULER REPLICATOR Algorithm

Consider the network graphG and the probabilities of
transmissionδ ∈ [0, 1]N . In what follows, assume that the
topology matrixIN +G is nonnegative, symmetric and the
graph associated to it is connected. As shown in Theorem 2,
the solution to a relaxed version of theVIRUS SPREAD

MINIMIZATION problem is given when the sum of the rows in
matrix A(δ) are equal. Because at equilibrium of replicator
dynamics all fitnesses are equal and other constraints are
naturally satisfied, we aim to solveVIRUS SPREAD MINI-
MIZATION problem by employing a discretization of (11)
and defining the fitness as theith row sum of matrixA(δ).

By discretizing the continuous-time local replicator dy-
namics (11) using Euler first-order differences, we obtain

p
(k+1)
i = p

(k)
i + ǫ(k)p

(k)
i

(

f
(k)
i

∑

j∈Ni

p
(k)
j − f̄

(k)
i

)

, (12)

wherek ∈ N, f̄ (k)
i =

∑

j∈Ni
p
(k)
j f

(k)
j , andǫ(k) > 0. Define

p = [δ1/Γ, . . . , δN/Γ]T ∈ [0, 1]N and fi(pi) = ri − Γpi =
ri − δi, i ∈ {1, . . . , N}, where recall thatri is the ith row

sum of IN + G. Thenfi(Γpi) ≡ fi(δi) is the ith row sum
of A(δ). In compact form, the dynamics in (12) read as:

p(k+1) = p(k) + ǫ(k) diag(p(k))(diag(f (k))Ap(k) −Af̄ (k)),
(13)

whereA is the unweighted adjacency matrix ofG, f (k) =

[f
(k)
1 , . . . , f

(k)
N ]T , and f̄ (k) = [p

(k)
1 f

(k)
1 , . . . , p

(k)
N f

(k)
N ]T . No-

tice that (12) does not constraint its states aspi ≤ hi

Γ for
certain desired constraintshi > 0, for i ∈ {1, . . . , N},
something required in order to solve the problems of interest.
Because of this, we propose a variation of (12) called
the CONSTRAINED EULER REPLICATOR algorithm, whose
convergence is analyzed in the next section. A short descrip-
tion of the CONSTRAINED EULER REPLICATOR algorithm
is given as follows. Each node computes its own state
δ
(k+1)
i = Γp

(k+1)
i , i ∈ {1, . . . , N}. If all trajectories are

inside Ω = {δ(k) ∈ R
N
>0 | 1

T
Nδ(k) = Γ, δ(k) ≤ hi},

then the algorithm reduces to (12). Otherwise, if nodei
violates the constraintδi ≤ hi, then it stores the difference
in αi ∈ R≥0 and putsδ(k+1)

i = hi (lines 5 to 7). Note
that line 11 restoresαi

Γ to p(k+1), i.e., the evolution of
p(k) in line 11 is equivalent to the evolution of (12) in
any case. The distributed computation of the step size

Algorithm 1: CONSTRAINEDEULER REPLICATOR

Input : hi, p
(0)
i , Γ

1 Initialize αi = 0;
2 for k > 0 do
3 Computep(k+1)

i as in (12);

4 δ
(k+1)
i = Γp

(k+1)
i ;

5 if δ
(k+1)
i > hi then

6 α
(k+1)
i = δ

(k+1)
i − hi;

7 δ
(k+1)
i = hi;

8 else
9 α

(k+1)
i = 0;

10 end

11 p
(k+1)
i =

δ
(k+1)
i

+α
(k+1)
i

Γ ;
12 k = k + 1;
13 end

for the CONSTRAINED EULER REPLICATOR algorithm, and
algorithm in (13) is discussed in the next section.

V. STABILITY ANALYSIS

In this section, we study the properties of the discrete-
time algorithm (13), and provide a sufficient condition on
ǫ(k) that guarantees its stability. The algorithm can be used to
solve a relaxed version of theVIRUS SPREAD MINIMIZATION

problem, where the constraintδi ≤ 1 is omitted. Finally, we
analyze the effects of theCONSTRAINED EULER REPLICA-
TOR algorithm whenhi = 1, for all i ∈ {1, . . . , N}.

We show next that the algorithm in (13) conserves the
most important characteristics of (10), i.e., i) the simplex is
invariant for small enough step size as shown in Lemma 6,



ii) all individuals get the same fitness at the equilibrium with
the choice of an adequate fitness as shown in Lemma 7, and
iii) the equilibrium point is asymptotically stable in∆p as
shown in Theorem 3.

Lemma 6 (Invariance of∆p under (13)): The dynamics
in (13) leaves ∆p invariant for a sequenceǫ(k) <

1

maxi,j(f
(k)
i

−f
(k)
j

)
, k ≥ 0.

Lemma 7 (Equilibria of(13)): Assume that Γ
satisfies (7), and consider the dynamics (13) with initial
conditionp(0) ∈ ∆p. Then, the equilibrium pointsp∗ of (13)
such thatp∗ > 0 coincide with those of the continuous-time
replicator dynamics.

As a consequence of Lemma 7, each connected component
of a disconnected graph arrives at a common equilibrium
fitness, i.e., the set of nodes of each component agrees on the
same average fitness. These equilibrium fitnesses can differ
from one connected component to another.

Lemma 8 (Equilibrium point characterization under(8)):
Let G be a (not necessarily connected) graph, letΓ
satisfy (7), and consider the dynamics (13) with initial
condition p(0) ∈ ∆p. Then, the equilibrium pointp∗ > 0
of (13) is given by

p∗i =
|X |ri + Γ

∑

j∈X p
(0)
j −

∑

j∈X rj

|X |Γ
, (14)

where i ∈ X , and (X , EX ) ⊂ G represents a connected
component ofG.

Theorem 3: (Sufficient conditions for the stability of the
algorithm in (13)): SupposeΓ satisfies (8), the set of
neighbors in (12) are time-variant satisfying

⋃

k≥k0

G(k) is

connected for allk0 ∈ Z≥0. Then, the equilibrium point
is asymptotically stable in∆p for a sequenceǫ(k) <
min{ 1

maxi,j(f
(k)
i

−f
(k)
j

)
, 1

Γmaxi p
(k)
i

}, k ≥ 0.

Remark 1:To compute theǫ(k) of Theorem 3 in a dis-
tributed way, agents can employ a min consensus algorithm.
By means of this, every node takes the minimum of the
messages of neighbors and their own. This algorithm has
time complexity diam(G) for fixed graphsG. Therefore,
in order to implement a new iteration of the dynamic
equation (12), each node first implements a min consensus
algorithm duringdiam(G) rounds to obtain the newǫ(k).

Remark 2: In order have a time-invariant (and more con-
servative) ǫ given in Theorem 3, we can use the fact
that maxi,j(f

(k)
i − f

(k)
j ) ≤ 2maxi|f

(k)
i |≤ 2maxi ri + Γ

providedp(k) ∈ (0, 1)N by Lemma 6. Thenǫ can be chosen
as ǫ < 1

2maxi ri+Γ . This time-invariant step size can be
determined using a min consensus algorithm before running
the CONSTRAINEDEULER REPLICATOR algorithm.

Remark 3:The evolution ofp(k) in the CONSTRAINED

EULER REPLICATORalgorithm is equivalent to the evolution
of (13), then the equilibrium point, properties and the stabil-
ity analysis already done for (13) hold for theCONSTRAINED

EULER REPLICATORalgorithm. However, notice when some
α
(k)
i > 0 in the CONSTRAINED EULER REPLICATOR al-

gorithm, then1T
Nδ(k) ≤ Γ, but this can only happen for

δ
2
(4)=1.1035
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Fig. 1. Trajectories of the example given in (15) for the algorithm in (13)
usingΓ = 2, andδ(0) = Γ[1/256, 1/2, 127/256].

some finite time sincep(k) → p∗ asymptotically as shown in
Theorem 3, and fork > K (i.e., when trajectories are close
to the equilibrium) we know that1T

Nδ(k) = Γ.

VI. SIMULATIONS AND DISCUSSION

In this section, we illustrate the response of the discrete
local replicator dynamics in (13) and theCONSTRAINED

EULER REPLICATOR algorithm for the symmetric matrix

A(δ) =





1− δ1 1/4 0
1/4 1− δ2 1/16
0 1/16 1− δ3



 , (15)

subject toΓ = 2. In order to exemplify a switching topology,
we use a pseudorandom number0 − 1 given by a uniform
distribution for every edge of the associated adjacency matrix
of A(δ) during the evolutionδ(k). In Figure 1, we show
the behavior of (13) forǫ = 1/2, and the initial condi-
tion δ(0) = Γ[1/256, 1/2, 127/256]. The optimal value is
δ∗ = Γ[0.3542, 0.3854, 0.2604]. Notice that, the discrete
local replicator dynamics in (13) does not satisfyδ(k) ≤ 1
for k > 0 in general. This fact is exemplified in Figure 1,
where δ

(0)
2 = 1 and δ

(4)
2 = 1.1035. This is solved by

the CONSTRAINED EULER REPLICATOR algorithm, which
performance is shown in Figure 2 for the same conditions as
for Figure 1. Figure 2 shows that theCONSTRAINEDEULER

REPLICATOR algorithm converges to the desired equilibrium
point of (13). Also, note thatδ(k)2 ≤ 1 for k ≥ 0, which
shows that the algorithm constrains its states as expected.
Figure 3 shows the performance of theCONSTRAINED

EULER REPLICATORalgorithm for the same initial condition
as in Figure 1,Γ = 2, and the following unbalanced topology
matrix

A(δ) =





1− δ1 1/10 0
1/4 1− δ2 1/16
1/8 1/16 1− δ3



 . (16)

In Figure 3 we useĀ(δ) as shown in Lemma 5 to approxi-
mate the solution given by theCONSTRAINEDEULER REPLI-
CATOR algorithm to the optimal one. In this case, we employ
the same notation of the variables as defined in Lemma 5.
For that, we haveδ∗3 = [0.70415, 0.70415, 0.5917],



δ
2
(13)=1
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Fig. 2. Trajectories of the example given in (15) for theCON-
STRAINED EULER REPLICATOR algorithm usingΓ = 2, and δ(0) =
Γ[1/256, 1/2, 127/256].
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Fig. 3. Trajectories of theCONSTRAINEDEULER REPLICATORalgorithm
for the approximation to the optimum given by Lemma 5

ρ(A(δ∗3)) = 0.5010, δ∗1 = [17/30, 187/240, 157/240],
δ∗2 = [101/120, 151/240, 127/240], ρ(A(δ∗1)) =
ρ(A(δ∗2)) = 0.5333. The optimal value isρ∗(A(δ∗)) =
0.5002 for δ∗ = [0.6884, 0.7199, 0.5917]. These values show
that we achieve the expected error. In order to find the
optimum ρ∗(A(δ∗)) when the problem is unbalanced, we
could exploit the convexity of the cost functionρ(A(δ)) as
shown in Theorem 1, and use a line search for every subset
of size2 of the vertex set. That is, for every pair of vertices
we could use Lemma 4 to start close to the solution, and
then use Lemma 5 for the descent direction for which the
Perron eigenvalue is reduced, i.e., starting inδ∗1 or δ∗2, we
evaluateδ∗3 and find if we have to reduce/increase each
δi for all i ∈ {1, . . . , N}. For an small enough step size
when reducing/increasingδ and conserving the constraint
1
T
Nδ = Γ, by convexity onρ(A(δ)) we know that will

converge to the optimal solution. However, the difficulty on
following that approach is given by the computation of the
Perron eigenvalue in a distributed way, which is out of scope
of this paper.

VII. C ONCLUSIONS

Here, we have studied a virus mitigation problem for a
general SIS model, characterizing an explicit solution to the
problem for weight-balanced topology matrices. We have

given an strategy that stabilizes the spread for general net-
work topologies when there are enough network resources.
Based on that characterization, we have proposed a novel
distributed algorithm to stop infection spreading under time
varying topologies. Our approach solves the optimization
problem by allocating limited immunization resources under
the system constraints. As future work we would like to
study the design of schemes that include the distributed
computation of the Perron eigenvector, and the capacity of
adapting the topology to minimize the epidemic spread.
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