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On resilient networked control systems against

replay attacks

Minghui Zhu and Sonia Martı́nez

Abstract

This paper studies a resilient control problem for discrete-time, linear time-invariant systems subject

to state and input constraints. State measurements and control commands are transmitted over a commu-

nication network and could be corrupted by adversaries. In particular, we consider the replay attackers

who maliciously repeat the messages sent from the operator to the actuator. We propose a variation of

the receding-horizon control law to play against the replayattackers, and analyze the resulting system

stability and performance degradation under the attacks.

I. I NTRODUCTION

The recent advances of information technologies have boosted the emergence of networked

control systems where information networks are tightly coupled to physical processes and human

intervention. Such sophisticated systems create a wealth of new opportunities at the expense of

increased complexity and system vulnerability. In particular, malicious attacks in the cyber world

are a current practice and a major concern for the deploymentof networked control systems.

Thus, the ability to analyze their consequences becomes of prime importance in order to enhance

the resilience of these new-generation control systems.

This paper considers a single-loop remotely-controlled system, in which the plant, together

with a sensor and an actuator, and the system operator are spatially distributed and connected

via a communication network. In particular, state measurements are communicated from the

sensor to the system operator through the network; then, thegenerated control commands are
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transmitted to the actuator through the same network. This model is an abstraction of a variety of

existing networked control systems, including supervisory control and data acquisition (SCADA)

networks in critical infrastructures (e.g., power systemsand water management systems) and

remotely piloted unmanned aerial vehicles (UAVs). The objective of the paper is to design and

analyze resilient controllers against the replay and denial-of-service attacks.

Literature review. Recently, it has been receiving increasing attention to address jointly the

problem of control design and system security. The first set of papers are concerned with attack

detection. For example, the papers of [27], [30] determine conditions under which consensus

multi-agent systems can detect misbehaving agents. A particular class of cyber attacks, namely

false data injection, against state estimation has been attracting considerable attention recently;

an incomplete reference list includes [28], [31], [32]. Thepaper [21] studies the detection of

the replay attacks, which maliciously repeat transmitted data. The second setof papers focus

on the analysis of the consequences caused by subclasses of cyber attacks and system resilience

against such attacks. The papers [2], [33], [34] are devotedto studyingdeception attacks, where

attackers intentionally modify measurements and control commands.Denial-of-service (DoS)

attacks destroy the data availability in control systems and are tackled in recent papers [1], [3],

[4], [11]. More specifically, the papers [1], [11] formulatefinite-horizon LQG control problems

as dynamic zero-sum games between the controller and the jammer. In [3], the authors investigate

the security independency in infinite-horizon LQG against DoS attacks, and fully characterize

the equilibrium of the induced game. In [5], [6], the authorsexploit pursuit-evasion games

to compute optimal evasion strategies for mobile agents when facing jamming attacks. In our

paper [35], a distributed receding-horizon control law is proposed to ensure that vehicles reach

the desired formation despite the DoS and replay attacks.

The problems of control and estimation over unreliable communication channels have re-

ceived considerable attention over the last decade [14]. Key issues include band-limited chan-

nels [17], [24], quantization [8], [23], packet dropout [12], [15], [29], delay [7] and sampling [25].

Receding-horizon networked control is studied in [9], [13],[26] for package dropouts and in [16],

[18] for transmission delays. However, none of these paperscharacterizes the performance

degradation of receding-horizon control induced by the communication unreliability.

Contributions. We propose a variation of the receding-horizon control to play against the replay

attackers. A set of sufficient conditions are provided to ensure asymptotical and exponential
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stability. More importantly, we derive a simple and explicit relation between the infinite-horizon

cost and the computing and attacking horizons. The preliminary results are published in [34]

where receding-horizon control is used to play against a class of deception attacks. The technical

relations between this paper and [34] will be explained at the very beginning of Section III.

II. ATTACK-RESILIENT RECEDING-HORIZON CONTROL

A. Description of the controlled system

Consider the following discrete-time, linear time-invariant dynamic system:

x(k + 1) = Ax(k) + Bu(k), (1)

wherex(k) ∈ Rn is the system state, andu(k) ∈ Rm is the system input at timek ≥ 0. The

matricesA ∈ Rn×n andB ∈ Rn×m represent the state and the input matrix, respectively. States

and inputs of system (1) are constrained to be in some sets; i.e.,x(k) ∈ X andu(k) ∈ U , for all

k ≥ 0, where0 ∈ X ⊆ Rn and0 ∈ U ⊆ Rm. The quantities‖x(k)‖2P and‖u(k)‖2Q are running

state and input costs, respectively, for someP andQ positive-definite and symmetric matrices.

We assume the following holds for the system:

Assumption 2.1: (Stabilizability) The pair(A,B) is stabilizable. •

This assumption ensures the existence ofK such that the spectrumσ(Ā) is strictly inside the

unit circle whereĀ , A + BK. In the remainder of the paper,u = Kx will be referred to as

the auxiliary controller. We then impose the following condition on the constraint sets.

Assumption 2.2: (Constraint sets)The setsX andU are convex andKx ∈ U for x ∈ X.•

B. The closed-loop system with the replay attacker

System (1) together with the sensor and the actuator are spatially separated from the operator.

These entities are connected through communication channels. In the network, there is a replay

attacker who maliciously repeats the messages delivered from the operator to the actuator. In

particular, the adversary is associated with a memory whosestate is denoted byMa(k). If a replay

attack is launched at timek, the adversary executes the following:(i) erases the data sent from the

operator;(ii) sends previous data stored in her memory,Ma(k), to the actuator;(iii) maintains

the state of the memory; i.e.,Ma(k + 1) = Ma(k). In this case, we useϑ(k) = 1 to indicate

the occurrence of a replay attack. If the attacker keeps idleat timek, then data is intercepted,
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sayΥ, sent from the operator to plant, and stored it in memory; i.e., Ma(k + 1) = Υ. In this

case,ϑ(k) = 0 and u is successfully received by the actuator. Without loss of any generality,

we assume thatϑ(−1) = ϑ(0) = 0.

We now define the variables(k) with initial states(0) = s(−1) = 0 to indicate the consecutive

number of the replay attacks. Ifϑ(k) = 1, thens(k) = s(k − 1) + 1; otherwise,s(k) = 0. So,

the quantitys(k) represents the number of consecutive attacks up to timek.

A replay attack requires spending certain amount of energy.We assume that the energy of the

adversary is limited, and adversaryi is only able to launch at mostS ≥ 1 consecutive attacks.

This assumption is formalized as follows:

Assumption 2.3: (Maximum number of consecutive attacks)There is an integerS ≥ 1

such thatmaxk≥0 s(k) ≤ S. •

Replay attacks have been successfully used by the virus attack of Stuxnet [10], [20]. This

class of attacks can be easily detected by attaching a time stamp to each control command. This

is formally stated as follows:

Assumption 2.4: (Attack detection)Each transmitted message is attached a time stamp. The

plant and actuator can recognize the occurrence of replay attacks by checking the time stamps.

C. Attack-resilient receding-horizon control law

Here we propose a variation of the receding-horizon controlin; e.g. [19], [18], to play against

the replay attacks. Ourattack-resilient receding-horizon control law, (for short, AR-RHC)

is stated in Algorithm 1. In particular, the terminal state cost is chosen to coincide with the

running state cost. This is instrumental for the analysis ofstability and performance degradation

in Theorem 2.1.

D. Stability and performance analysis

In this section, we present the results characterizing the stability and infinite-horizon cost

induced by AR-RHC. See Table I, for the main notations employed,and Section III for the

complete proof.

Notice that the following property holds:

λmin(P )

φN
=

λmin(P )

λmax(P +KTQK)

λmin(P̄ )

λmax(P̄ )

(1− λ)

(1− λN+1)
< 1.
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Algorithm 1 The attack-resilient receding-horizon control law
Initialization: The following steps are first performed by the operator:

1: ChooseK so thatσ(Ā) is strictly inside the unit circle.

2: ChooseQ̄ = Q̄T > 0 and obtainP̄ by solving the following Lyapunov equation:

ĀT P̄ Ā− P̄ = −Q̄. (2)

3: Choose a constantc > 0 such thatX0 , {x ∈ Rn | ‖x‖2
P̄
≤ c} ⊆ X.

Iteration: At eachk ≥ 0, the operator, actuator and sensor execute the following steps:

1: The operator solves the followingN -horizon quadratic program, namelyN -QP, parameter-

ized byx(k) ∈ X:

min
u(k)∈Rm×N

N−1
∑

τ=0

(

‖x(k + τ |k)‖2P + ‖u(k + τ |k)‖2Q
)

+ ‖x(k +N |k)‖2P ,

s.t. x(k + τ + 1|k) = Ax(k + τ |k) +Bu(k + τ |k),

x(k|k) = x(k), x(k + τ + 1|k) ∈ X0, u(k + τ |k) ∈ U, 0 ≤ τ ≤ N − 1,

obtains the solutionu(k) , [u(k|k), · · · , u(k +N − 1|k)], and sends it to the actuator.

2: If s(k) = 0, the actuator setsMp(k + 1) = u(k), implementsu(k|k), and the sensor sends

x(k+1) to the operator. Ifs(k) ≥ 1, the actuator implementsu(k|k− s(k)) in Mp(k), sets

Mp(k + 1) =Mp(k), and the sensor sendsx(k + 1) to the operator.

3: Repeat fork = k + 1.

whereλ and φN are defined in Table I. On the other hand, forαN in Table I, αN ց 0 as

N ր +∞, and φN is strictly increasing inN and upper bounded byφ∞. Then, given any

integerS ≥ 1, there is a smallest integerN∗(S) ≥ S such that for allN ≥ N∗(S), it holds that:

γN,S , (1−
λmin(P )

φ∞

)max{(1 + αN−S−1), (1 + αN−1)
N−1
∏

ℓ=N−S

(1 + αℓ)} < 1.

Analogously, given any integerS ≥ 1, there is a smallest integer̂N∗(S) ≥ S such that for all
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TABLE I

MAIN NOTATIONS USED IN THE FOLLOWING SECTIONS

λmax(R) (resp.λmin(R)) the maximum (resp. minimum) eigenvalue of matrixR

λ , 1−
λmax(Q̄)

λmin(P̄ )

positive constant,λ ∈ (0, 1), see [22],

defined withQ̄, P̄ introduced in AR-RHC

φN ,
λmax(P̄ )λmax(P +KTQK)

λmin(P̄ )

(1− λN+1)

1− λ

positive constant defined for allN > 0,

with Q̄, P̄ , andK introduced in AR-RHC

φ∞ ,
λmax(P̄ )λmax(P +KTQK)

λmin(P̄ )(1− λ)

positive constant defined with̄Q, P̄ , andK

introduced in AR-RHC

αN ,
λmax(K

TQK + ĀTPĀ)

λmin(P )
×

N−1∏

κ=0

(1−
λmin(P )

φκ+1
)

positive constant defined for allN > 0,

with Ā andK introduced in AR-RHC, andλ introduced here

ρN , (1 + αN−1)(1−
λmin(P )

φN

) a discount factor

W (x) , ‖x‖2P̄ matrix P̄ is the solution to Lyapunov equation (2)

VN the optimal value function ofN -QP

N ≥ N̂∗(S), it holds that

γ̂N,S , (1−
λmin(P )

φ∞

)2(1 + αN−1)(1 + αN−2)

×
(

max
s∈{1,··· ,S}

s
∏

ℓ=2

(1−
λmin(P )

φ∞

)(1 + αN−ℓ−1)
)

N−1
∏

ℓ=N−S

(1 + αℓ) < 1.

One can easily verifyN̂∗(S) ≤ N∗(S). The following theorem characterizes the stability and

infinite-horizon cost of system (1) under AR-RHC whereVℓ(x) represents the value of theℓ-QP

parameterized byx ∈ X.

Theorem 2.1: (Stability and infinite-horizon cost) Let Assumptions 2.4, 2.1, 2.2 and 2.3

hold.

1) (Exponential stability) SupposeN ≥ max{N∗(S) + 1, S + 1}. Then system (1) under

AR-RHC is exponentially stable when starting fromX0 with a rate ofγN,S in the sense

that VN−s(k−1)(x(k)) ≤ γkN,SVN(x(0)). In addition, the infinite-horizon cost of system (1)

under AR-RHC is bounded above by 1
1−γN,S

VN(x(0)).

2) (Asymptotic stability) If N ≥ max{N̂∗(S) + 1, S + 1}, then system (1) under AR-RHC

is asymptotically stable when starting fromX0.

Remark 2.1: AR-RHC with Theorem 2.1 can be readily extended to several scenarios, in-

cluding DoS attacks, measurement attacks and the combinations of such attacks. If the adversary
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launches a DoS attack on control commands, the actuator receives nothing and then performs

Step 3 in AR-RHC. The adversary may produce the replay attacks onthe measurements sent

from the sensor to the operator. If this happens, then the operator does not send anything to the

actuator and the actuator performs Step 3 in AR-RHC. •

III. A NALYSIS

The proofs of Theorem 2.1 are collected in this section. In particular, the proofs for the

intermediate lemmas are based on the corresponding resultsin our previous paper [34] on

deception attacks. The proofs for the main theorem are new and not included in [34]. In the proof

of Theorem 2.1, we chooseVN−s(k−1)(x(k)) as a Lyapunov function candidate. To analyze its

convergence, we first establish several instrumental properties ofVN , including the monotonicity,

diminishing rations with respect toN and decreasing property.

Recall the definitions ofλ, αN , φN , andφ∞ summarized in Table I. It follows from [22] that

λ ∈ (0, 1), and clearly,1 ≤ φN ≤ φ∞ for anyN ∈ Z>0. Observe that the following holds for

any κ ∈ Z>0:

λmin(P )

φκ+1

=
λmin(P )

λmax(P +KTQK)

λmin(P̄ )

λmax(P̄ )

1− λ

1− λκ+2
≥

λmin(P )

λmax(P +KTQK)

λmin(P̄ )

λmax(P̄ )
(1− λ) ∈ (0, 1).

This ensures the monotonicity ofαN and, moreover, thatαN ց 0 asN ր +∞.

We show the forward invariance property of system (1) inX0 underKx.

Lemma 3.1 (Forward invariance in X0): The setX0 is forward invariant for system (1)

under the auxiliary controllerKx with the control constraintU ; i.e., for anyx ∈ X0, it holds

that u = Kx ∈ U and Āx ∈ X0.

Proof: The differences ofW along the trajectories of the dynamics (1) underu(k) = Kx(k),

x(k) = x can be characterized by:

W (x(k + 1))−W (x) = ‖Āx(k + 1)‖2P̄ − ‖x(k)‖2P̄ = −‖x‖2Q̄ ≤ −λmin(Q̄)‖x‖
2, (3)

whereW (x), Ā, P̄ andQ̄ are given in Table I, and in the second equality we apply the Lyapunov

equation (2). SincēQ > 0, thenW (x(k + 1)) ≤ W (x). Sincex ∈ X0, so isx(k + 1). Since

X0 ⊆ X, we know thatu(k) ∈ U by Assumption 2.2. The forward invariance property ofX0

for system (1) follows.

On the other hand, one can see that theN -QP parameterized byx ∈ X0 has at least one

solution generated by the auxiliary controller.
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Lemma 3.2 (Feasibility of theN -QP): For anyx ∈ X0, consider system (1) withx(k|k) =

x andu(k + τ |k) = Kx(k + τ |k), for 0 ≤ τ ≤ N − 1. Then,u(k) is a feasible solution to the

N -QP parameterized byx(k) ∈ X0.

Proof: It is a direct result of Lemma 3.1 and Assumption 2.2.

The following lemma demonstrates thatVN is bounded above and below by two quadratic

functions, respectively.

Lemma 3.3: (Positive-definite and decrescent properties ofVN ) The functionVN is quadrat-

ically bounded above and below asλmin(P )‖x‖
2 ≤ VN(x) ≤ φN‖x‖

2 for any x ∈ X0.

Proof: Consider anyx ∈ X0. It is easy to see thatVN(x) ≥ λmin(P )‖x‖
2, and thus positive

definiteness ofVN follows. We now proceed to show thatVN is decrescent. In order to simplify

the notations in the proof, we will drop the dependency on time k in what follows. Toward this

end, we let{x(τ)}τ≥0 be the solution produced by the systemx(τ + 1) = Āx(τ), that is, the

closed-loop system solution of the dynamics (1) under the auxiliary controllerKx, with initial

statex(0) = x ∈ X0. We denotex(τ |0) ≡ x(τ) andu(τ |0) ≡ u(τ). Recall the estimate (3):

W (x(τ + 1)) ≤ W (x(τ))− λmin(Q̄)‖x(τ)‖
2 ≤ W (x(τ))−

λmax(Q̄)

λmax(P̄ )
W (x(τ)), (4)

where we use the property thatλmin(P̄ )‖x‖
2 ≤ W (x) ≤ λmax(P̄ )‖x‖

2. It follows from Lemma 3.2

that the sequence of control commandsu(τ) = Kx(τ) for 0 ≤ τ ≤ N − 1 consists of a feasible

solution to theN -QP parameterized byx ∈ X0. Then we achieve the following onVN(x):

VN(x) ≤
N−1
∑

τ=0

(

‖x(τ)‖2P + ‖Kx(τ)‖2Q
)

+ ‖x(N)‖2P

≤

N−1
∑

τ=0

λmax(P +KTQK)‖x(τ)‖2 + λmax(P )‖x(N)‖2

≤
λmax(P +KTQK)

λmin(P̄ )

N−1
∑

τ=0

W (x(τ)) +
λmax(P )

λmin(P̄ )
W (x(N)). (5)

Substituting inequality (4) into (5), we obtain the following estimates onVN(x):

VN(x) ≤
λmax(P +KTQK)

λmin(P̄ )
W (x)

N−1
∑

τ=0

λτ +
λmax(P )

λmin(P̄ )
W (x)λN

≤
λmax(P̄ )λmax(P +KTQK)

λmin(P̄ )

1− λN+1

1− λ
‖x‖2.

where we use the factλ = 1− λmax(Q̄)

λmax(P̄ )
∈ (0, 1) in [22]. The decrescent property ofVN immediately

follows from the above relations.
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Next, one can show that for anyx ∈ X0, VN(x) does not decrease asN increases.

Lemma 3.4 (Monotonicity of VN ): The optimal value functionVN is monotonic inN ; i.e.,

for any x ∈ X0, VN ′(x) ≤ VN(x) for N ′ < N .

Proof: ConsiderN ′ < N , and denote byJN and JN ′ the objective functions of theN -

QP and theN ′-QP, respectively. LetuN be a solution to theN -QP parameterized byx, with

uN = [u(0), . . . , u(N − 1)], and letuN ′ , with uN ′ = [u(0), . . . , u(N ′ − 1)], be a solution to the

N ′-QP parameterized byx ∈ X0. We construct̃uN ′ ∈ UN ′

, a truncated version ofuN , in such

a way thatũ(k) = u(k) for 0 ≤ k ≤ N ′ − 1. SinceuN is a solution to theN -QP parameterized

by x, then one can show that̃uN ′ is a feasible solution to theN ′-QP parameterized byx. This

renders the following upper bound onVN ′(x):

VN ′(x) = JN ′(x,uN ′) ≤ JN ′(x, ũN ′). (6)

Denote byxN , [x(0), · · · , x(N)] the corresponding trajectory touN with initial statex(0) = x

and by x̃N ′ , [x̃(0), · · · , x̃N ′ ] the corresponding trajectory generated by the sequence ofũN ′

with the initial statẽx(0) = x. SinceũN ′ is a truncated version ofuN , we have that̃x(k) = x(k)

for 0 ≤ k ≤ N ′. Denote further̃uN ′ , [ũ(0), · · · , ũ(N ′ − 1)]. Then we have

JN ′(x, ũN ′) =
N ′

∑

k=1

(

‖x̃(k)‖2P + ‖ũ(k)‖2Q
)

+ ‖x̃(N ′)‖2P

=
N ′

∑

k=1

(

‖x(k)‖2P + ‖u(k)‖2Q
)

+ ‖x(N ′)‖2P ≤
N
∑

k=1

(

‖x(k)‖2P + ‖u(k)‖2Q
)

+ ‖x(N)‖2P = VN(x).

The combination of (6) and the above relation establishes that VN ′(x) ≤ VN(x) for x ∈ X0.

The following lemma formalizes that for anyx ∈ X0, the difference betweenVN+1(x) and

VN(x) decreases asN increases by noting thatVN(x) ≤ VN+1(x) andαN is strictly decreasing

in N , whereVN+1 andVN are the optimal value functions for the(N + 1)-QP and theN -QP,

respectively. This property is referred to as the property of diminishing ratios ofVN in N by

noting thatαN ց 0 asN ր +∞.

Lemma 3.5: (The diminishing ratios of VN in N ) The optimal value functionVN is

diminishingly increasing inN in such a fashion thatVN+1(x)−VN (x)

VN (x)
≤ αN for any x ∈ X0.

Proof: Let uN , with uN = [u(0), . . . , u(N − 1)], be a solution to theN -QP parameterized

by x ∈ X0. Let xN = [x(0), . . . , x(N)], x(0) = x, be the corresponding trajectory. Notice
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that x(k) ∈ X0 for 0 ≤ k ≤ N . We construct an extended versionũN+1 ∈ UN+1 of uN as

ũN+1 = [u(0), . . . , u(N − 1), Kx(N)]. Sincex(N) ∈ X0, then x̃(N + 1) := Āx(N) ∈ X0 by

Lemma 3.1, implying that̃uN+1 consists of a feasible solution to the(N +1)-QP parameterized

by x. Then we establish the following upper bounds onVN+1(x):

VN+1(x) ≤ JN+1(x, ũN+1) = JN(x,uN ) + ‖Kx(N)‖2Q + ‖x̃(N + 1)‖2P ≤ VN(x) + ς‖x(N)‖2,

(7)

whereς := λmax(K
TQK+ĀTPĀ). We now turn our attention to find a relation between‖x(N)‖2

andVN(x). To achieve this, we will show the following holds forℓ ∈ {0, · · · , N} by induction:

Vℓ(x(N − ℓ)) ≤
N−1
∏

κ=ℓ

(1−
λmin(P )

φκ+1

)VN(x). (8)

It follows from Bellman’s principle of optimality that

VN(x) = ‖x(0)‖2P + ‖u(0)‖2Q + VN−1(x(1)).

We can further see thatVN(x)− VN−1(x(1)) is lower bounded in the following way:

VN(x)− VN−1(x(1)) ≥ λmin(P )‖x‖
2 ≥

λmin(P )

φN
VN(x), (9)

where we use the decrescent property in Lemma 3.3 in the last inequality. Rearrange terms in (9)

and it renders that (8) holds forℓ = N − 1.

Assume that (8) holds for someℓ+ 1 ∈ {1, · · · , N − 1}; i.e., the following holds:

Vℓ+1(x(N − ℓ− 1)) ≤
N−1
∏

κ=ℓ+1

(1−
λmin(P )

φκ+1

)VN(x). (10)

Similar to (9), it follows from Bellman’s principle of optimality and Lemma 3.3 that

Vℓ+1(x(N − ℓ− 1))− Vℓ(x(N − ℓ)) ≥ λmin(P )‖x(N − ℓ− 1)‖2 ≥
λmin(P )

φℓ+1

Vℓ+1(x(N − ℓ− 1)).

(11)

Combining (10) and (11) renders that

Vℓ(x(N − ℓ)) ≤ (1−
λmin(P )

φℓ+1

)Vℓ+1(x(N − ℓ− 1)) ≤
N−1
∏

κ=ℓ

(1−
λmin(P )

φκ+1

)VN(x).

This implies (8) holds forℓ. By induction, we conclude that (8) holds forℓ ∈ {0, · · · , N}. Let

ℓ = 0 in (8), and we have thatV0(x(N)) ≤
∏N−1

κ=0 (1−
λmin(P )
φκ+1

)VN(x), implying that‖x(N)‖2 ≤
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1
λmin(P )

∏N−1
κ=0 (1−

λmin(P )
φκ+1

)VN(x) by Lemma 3.3. By combining this relation with (7), we obtain

the desired relation betweenVN+1 andVN .

A relation betweenVN(x(k + 1|k)) andVN(x(k)) for x(k) ∈ X0, andx(k + 1|k) generated

through theN -QP, is found next.

Lemma 3.6 (Decreasing property ofVN in X0): With x(k+1|k) generated through theN -

QP starting fromx(k), the following decreasing property holds for anyx(k) ∈ X0:

VN(x(k + 1|k)) ≤ ρNVN(x(k)).

Proof: With Lemma 3.3 and 3.5, we reach the following relation betweenVN(x(k+1|k))

andVN(x(k)) for any x(k) ∈ X0:

VN(x(k + 1|k)) ≤ (1 + αN−1)VN−1(x(1)) ≤ (1 + αN−1)(VN(x(k))− ‖x(k)‖2P )

≤ (1 + αN−1)(VN(x(k))− λmin(P )‖x(k)‖
2) ≤ (1 + αN−1)(1−

λmin(P )

φN
)VN(x(k)),

where Lemma 3.5 and Lemma 3.3 are used in the first and last inequalities, respectively, by

noting thatx(k + 1|k) andx(k) in X0.

Proof of Theorem 2.1:

Proof: [Part 1: Exponential stability] Let us consider the first part ofN ≥ max{N∗(S)+

1, S+1}. Recall thatx(0) ∈ X0 and the state constraintX0 is enforced in theN -QP. Repeatedly

apply Lemma 3.2 and we have thatx(k) ∈ X0 for all k ≥ 0. We now distinguish four cases:

Case 1: ϑ(k) = 1 andϑ(k − 1) = 0. For this case,s(k) = 1, s(k − 1) = 0, and we have

VN−s(k)(x(k + 1)) = VN−1(x(k + 1)) ≤ ρN−1VN−1(x(k))

≤ ρN−1VN(x(k)) = ρN−1VN−s(k−1)(x(k)),

where the first inequality uses Lemma 3.6 and the principle ofoptimality, and the second one

exploits Lemma 3.4.

Case 2: ϑ(k) = ϑ(k − 1) = 0. Here,s(k) = s(k − 1) = 0. By Lemma 3.6, we have

VN−s(k)(x(k + 1)) = VN(x(k + 1)) ≤ ρNVN(x(k)) = ρNVN−s(k−1)(x(k)).

Case 3: ϑ(k) = ϑ(k − 1) = 1. Note thats(k) = s(k − 1) + 1, and then

VN−s(k)(x(k + 1)) ≤ ρN−s(k)VN−s(k)(x(k)) ≤ ρN−s(k)VN−s(k−1)(x(k)),
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where the first inequality utilizes Lemmas 3.6 and the principle of optimality, and the second

one exploits Lemma 3.4.

Case 4: ϑ(k) = 0 andϑ(k − 1) = 1. For this case, we haves(k) = 0, s(k − 1) ≥ 1 and thus

VN−s(k)(x(k + 1)) = VN(x(k + 1)) ≤ ρNVN(x(k)) ≤ ρN

N−1
∏

ℓ=N−s(k−1)

(1 + αℓ)VN−s(k−1)(x(k)),

where the last inequality repeatedly applies Lemma 3.5.

Combine the above four cases, and it renders the following:

VN−s(k)(x(k + 1)) ≤ max{ max
s∈{1,··· ,S}

{ρN−s}, ρN max
s=1,··· ,S

{
N−1
∏

ℓ=N−s

(1 + αℓ)}}VN−s(k−1)(x(k))

≤ γN,SVN−s(k−1)(x(k)). (12)

Since0 < γN,S < 1, {VN−s(k−1)(x(k))} exponentially diminishes, and the following holds:

VN−s(k−1)(x(k)) ≤ γkN,SVN(x(0)). (13)

RecallN ≥ S+1. It follows from (13) that the infinite-horizon cost is characterized as follows:
+∞
∑

k=0

(‖x(k)‖2P + ‖u(k)‖2Q) ≤
+∞
∑

k=0

VN−s(k−1)(x(k)) ≤
+∞
∑

k=0

γkN,SVN(x(0)) =
1

1− γN,S
VN(x(0)).

We then have finished the proofs for the first part.

[Part 2: Asymptotic stability] We now proceed to show the second part ofN ≥ max{N̂∗(S)+

1, S +1}. Towards this end, we partition the time horizon{0, 1, · · · } into a sequence of subsets

{C1, A1, C2, A2, · · · } whereCi = {cLi , · · · , c
U
i } andAi = {aLi , · · · , a

U
i } with for k ∈ Ci, then

ϑ(k) = 0; andk ∈ Ai, thenϑ(k) = 1. Note thatcL0 = 0 andaLi = cUi + 1.

Case 1: k ∈ Ci \ {c
L
i }. Note thats(k) = s(k − 1) = 0 for all k ∈ Ci \ {c

L
i }. By Lemma 3.6,

we have

VN−s(k)(x(k + 1)) ≤ ρNVN−s(k−1)(x(k)), ∀k ∈ Ci \ {c
L
i }.

Case 2: k = aLi . Note thatϑ(aLi ) = 1 andϑ(aLi − 1) = 0. By Case 1 in Part 1, we have

VN−s(aLi )
(x(aLi + 1)) ≤ ρN−1VN−s(aLi −1)(x(a

L
i )).

Case 3: k = Ai \ {a
L
i }. Recall thatϑ(k) = 1 for k ∈ Ai. By repeating the result of Case 3 in

Part 1, we have

VN−s(k)(x(k + 1)) ≤

k−aLi
∏

ℓ=2

ρN−ℓVN−s(aLi )
(x(aLi + 1)), ∀k ∈ Ai \ {a

L
i }.
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Case 4: k = cLi+1 = aUi + 1. Note thatϑ(cLi+1) = 0 andϑ(cLi+1 − 1) = 1. By Case 4 in Part 1,

it holds that

VN−s(cLi+1)
(x(cLi+1 + 1)) ≤ ρN

N−1
∏

ℓ=N−s(cLi+1−1)

(1 + αℓ)VN−s(cLi+1−1)(x(c
L
i+1)).

The combination of the above four relations renders the following:

VN−s(cLi+1)
(x(cLi+1 + 1)) ≤ ρN

N−1
∏

ℓ=N−s(cLi+1−1)

(1 + αℓ)VN−s(cLi+1−1)(x(c
L
i+1))

= ρN

N−1
∏

ℓ=N−s(cLi+1−1)

(1 + αℓ)VN−s(cLi+1−1)(x(a
U
i + 1))

≤ ρN

aUi −aLi
∏

ℓ=2

ρN−ℓ

N−1
∏

ℓ=N−s(cLi+1−1)

(1 + αℓ)VN−s(cLi+1−1)(x(a
L
i + 1))

≤ ρNρN−1

aUi −aLi
∏

ℓ=2

ρN−ℓ

N−1
∏

ℓ=N−s(cLi+1−1)

(1 + αℓ)VN−s(cLi+1−1)(x(a
L
i ))

= ρNρN−1

aUi −aLi
∏

ℓ=2

ρN−ℓ

N−1
∏

ℓ=N−s(cLi+1−1)

(1 + αℓ)VN−s(cLi+1−1)(x(c
U
i + 1))

≤ γ̂N,SVN−s(cLi+1−1)(x(c
L
i )),

where the four inequalities sequentially apply Cases 4 to 1. Since γ̂N,S ∈ (0, 1), the subsequence

{VN−s(cLi+1−1)(x(c
L
i+1))} exponentially decreases.

By the above four cases, it is not difficult to verify that the following holds for all k ∈

Ai ∪ Ci \ {c
L
i }:

VN−s(k−1)(x(k)) ≤ max{ρN−1, 1}ρN max
s∈{2,··· ,S}

s
∏

ℓ=2

ρN−ℓ

N−1
∏

ℓ=N−s(cLi+1−1)

(1 + αℓ)VN−s(cLi+1−1)(x(c
L
i )).

Hence, the whole sequence{VN−s(k−1)(x(k))} diminishes. It establishes the asymptotical stabil-

ity.
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IV. D ISCUSSION

A. Explicit upper bounds on N∗(S) and N̂∗(S)

ConsiderS ≥ 2 and letχ , (1− λmin(P )
φ∞

) andψ ,
λmax(KTQK+ĀTPĀ)

λmin(P )
. Note that

γN,S ≤ (1−
λmin(P )

φ∞

)(1 + αN−1)
N−1
∏

ℓ=N−S−1

(1 + αℓ)

≤ χ(1 + αN−S−1)
S+2 ≤ βN,S , χ(1 + ψχN−S−1)S+2. (14)

So it suffices to findN such thatβN,S < 1. The relationβN,S < 1 is equivalent to the following:

N − S − 1 >
ln
(

1
ψ
(χ− 1

S+2 − 1)
)

lnχ
=

ln(χ− 1
S+2 − 1)− lnψ

lnχ
.

Hence, an explicit upper bound onN∗(S) is ΠE(S) , S + 1 + ln(χ
−

1
S+2−1)−lnψ
lnχ

.

We now move to find an explicit upper bound on̂N∗(S). Note that

γ̂N,S ≤ (1−
λmin(P )

φ∞

)2(1 + αN−1)(1 + αN−2)
(

max
s∈{1,··· ,S}

s
∏

ℓ=2

(1−
λmin(P )

φ∞

)(1 + αN−ℓ−1)
)

N−1
∏

ℓ=N−S

(1 + αℓ)

≤ (1−
λmin(P )

φ∞

)S+1(1 + αN−1)(1 + αN−2)(1 + αN−S−1)
S−1

N−1
∏

ℓ=N−S

(1 + αℓ)

≤ (1−
λmin(P )

φ∞

)S+1(1 + αN−S−1)
2S+1 = χS+1(1 + ψχN−S−1)2S+1.

So, an explicit upper bound on̂N∗(S) is ΠA(S) , S + 1 + ln(χ
−

S+1
2S+1−1)−lnψ

lnχ
. This pair of

upper bounds clearly demonstrate that a higher computational complexity; i.e., a largerN , is

caused by a largerS, indicating that the adversary is less energy constrained.On the other hand,

the second term inΠA(S) approaches a constant asS goes to infinity. SoΠA(S) can be upper

bounded by an affine function. However, the second term inΠE(S) dominates whenS is large.

That is, exponential stability demands a much higher cost than asymptotic stability whenS is

large.

B. A reverse scenario

Reciprocally, for any horizonN ≥ 1, there is a largest integerS∗(N) ≤ N − 1 (resp.

Ŝ∗(N) ≤ N − 1) such that for allS ≤ S∗(N) (resp.S ≤ Ŝ∗(N)), it holds thatγN,S < 1 (resp.

γ̂N,S < 1). Theorem 2.1 still applies to this reverse scenario and characterizes the “security level”

or “amount of resilience” that the proposed receding-horizon control algorithm possesses.
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V. CONCLUSIONS

In this paper, we have studied a resilient control problem where a linear dynamic system is

subject to the replay and DoS attacks. We have proposed a variation of the receding-horizon

control law for the operator and analyzed system stability and performance degradation.
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