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Abstract

This paper studies a resilient control problem for disctate, linear time-invariant systems subject
to state and input constraints. State measurements anlcomtmands are transmitted over a commu-
nication network and could be corrupted by adversariesahtiqular, we consider the replay attackers
who maliciously repeat the messages sent from the ope@tiietactuator. We propose a variation of
the receding-horizon control law to play against the re@tgckers, and analyze the resulting system

stability and performance degradation under the attacks.

. INTRODUCTION

The recent advances of information technologies have bdasie emergence of networked
control systems where information networks are tightlypied to physical processes and human
intervention. Such sophisticated systems create a wehhlew opportunities at the expense of
increased complexity and system vulnerability. In patigumalicious attacks in the cyber world
are a current practice and a major concern for the deploymienetworked control systems.
Thus, the ability to analyze their consequences becomesmépmportance in order to enhance
the resilience of these new-generation control systems.

This paper considers a single-loop remotely-controllestesy, in which the plant, together
with a sensor and an actuator, and the system operator aiallgpdistributed and connected
via a communication network. In particular, state measergs are communicated from the

sensor to the system operator through the network; thengeherated control commands are
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transmitted to the actuator through the same network. Thigaiis an abstraction of a variety of
existing networked control systems, including superyismmtrol and data acquisition (SCADA)
networks in critical infrastructures (e.g., power systeamsl water management systems) and
remotely piloted unmanned aerial vehicles (UAVS). The otije of the paper is to design and
analyze resilient controllers against the replay and diarfitaervice attacks.

Literature review. Recently, it has been receiving increasing attention to es$djointly the
problem of control design and system security. The first §@apers are concerned with attack
detection. For example, the papers of [27], [30] determiaeddions under which consensus
multi-agent systems can detect misbehaving agents. Acpkaticlass of cyber attacks, namely
false data injection, against state estimation has been attracting consideedtantion recently;
an incomplete reference list includes [28], [31], [32]. Tib&per [21] studies the detection of
the replay attacks, which maliciously repeat transmitted data. The secondb@apers focus
on the analysis of the consequences caused by subclassdseofattacks and system resilience
against such attacks. The papers [2], [33], [34] are devmtesudyingdeception attacks, where
attackers intentionally modify measurements and contoshroands.Denial-of-service (DoS)
attacks destroy the data availability in control systems are tackled in recent papers [1], [3],
[4], [11]. More specifically, the papers [1], [11] formulafi@ite-horizon LQG control problems
as dynamic zero-sum games between the controller and thegarin [3], the authors investigate
the security independency in infinite-horizon LQG againsiShattacks, and fully characterize
the equilibrium of the induced game. In [5], [6], the auth@ploit pursuit-evasion games
to compute optimal evasion strategies for mobile agentsnwheing jamming attacks. In our
paper [35], a distributed receding-horizon control law iegosed to ensure that vehicles reach
the desired formation despite the DoS and replay attacks.

The problems of control and estimation over unreliable camication channels have re-
ceived considerable attention over the last decade [14)].iE®ues include band-limited chan-
nels [17], [24], quantization [8], [23], packet dropout [LR5], [29], delay [7] and sampling [25].
Receding-horizon networked control is studied in [9], [12B] for package dropouts and in [16],
[18] for transmission delays. However, none of these papeesacterizes the performance
degradation of receding-horizon control induced by the momication unreliability.

Contributions. We propose a variation of the receding-horizon control &y lgainst the replay

attackers. A set of sufficient conditions are provided touemsasymptotical and exponential
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stability. More importantly, we derive a simple and exgliglation between the infinite-horizon
cost and the computing and attacking horizons. The pretingimesults are published in [34]
where receding-horizon control is used to play against ssabé deception attacks. The technical

relations between this paper and [34] will be explained atuéry beginning of Section Ill.

1. ATTACK-RESILIENT RECEDINGHORIZON CONTROL
A. Description of the controlled system

Consider the following discrete-time, linear time-invatialynamic system:
x(k+1) = Az(k) + Bu(k), (1)

wherez(k) € R™ is the system state, andk) € R™ is the system input at timé > 0. The
matricesA € R and B € R™"™ represent the state and the input matrix, respectivelyeSta
and inputs of system (1) are constrained to be in some sets;(ik) € X andu(k) € U, for all
k >0, where0 € X C R" and0 € U C R™. The quantitie|z(k)||3 and [lu(k)||? are running
state and input costs, respectively, for som@and () positive-definite and symmetric matrices.
We assume the following holds for the system:
Assumption 2.1: (Stabilizability) The pair(A, B) is stabilizable. °
This assumption ensures the existenced<o$uch that the spectrum(A) is strictly inside the
unit circle whereA 2 A + BK. In the remainder of the paper,= Kz will be referred to as
the auxiliary controller. We then impose the following carmh on the constraint sets.

Assumption 2.2: (Constraint sets)The setsX andU are convex andi{x € U for z € X.e

B. The closed-loop system with the replay attacker

System (1) together with the sensor and the actuator aralpaeparated from the operator.
These entities are connected through communication charinghe network, there is a replay
attacker who maliciously repeats the messages delivemed the operator to the actuator. In
particular, the adversary is associated with a memory whtade is denoted by/* (k). If a replay
attack is launched at time the adversary executes the followirig: erases the data sent from the
operator;(ii) sends previous data stored in her memady,(k), to the actuator(iii) maintains
the state of the memory; i.eM“(k + 1) = M*(k). In this case, we usé(k) = 1 to indicate

the occurrence of a replay attack. If the attacker keepsatieme k, then data is intercepted,
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say T, sent from the operator to plant, and stored it in memory; & (k 4+ 1) = Y. In this
case, (k) = 0 andu is successfully received by the actuator. Without loss of generality,
we assume that(—1) = J(0) = 0.

We now define the variablg k) with initial states(0) = s(—1) = 0 to indicate the consecutive
number of the replay attacks. #(k) = 1, thens(k) = s(k — 1) 4 1; otherwise,s(k) = 0. So,
the quantitys(k) represents the number of consecutive attacks up to Aime

A replay attack requires spending certain amount of en&kigyassume that the energy of the
adversary is limited, and adversarys only able to launch at most > 1 consecutive attacks.
This assumption is formalized as follows:

Assumption 2.3: (Maximum number of consecutive attacks)There is an integef > 1
such thatmaxy>o s(k) < S. o

Replay attacks have been successfully used by the viruskatfaStuxnet [10], [20]. This
class of attacks can be easily detected by attaching a temnepsto each control command. This
is formally stated as follows:

Assumption 2.4: (Attack detection)Each transmitted message is attached a time stamp. The

plant and actuator can recognize the occurrence of reptagkat by checking the time stamps.

C. Attack-resilient receding-horizon control law

Here we propose a variation of the receding-horizon comtrad.g. [19], [18], to play against
the replay attacks. Ouattack-resilient receding-horizon control law, (for short, AR-RHC)
is stated in Algorithm 1. In particular, the terminal statsicis chosen to coincide with the
running state cost. This is instrumental for the analysistability and performance degradation

in Theorem 2.1.

D. Sability and performance analysis

In this section, we present the results characterizing thbilgy and infinite-horizon cost
induced by AR-RHC. See Table I, for the main notations employea, Section Il for the
complete proof.

Notice that the following property holds:

)\min(P) o >\min<P) >\min< ) (1 - A)

P
on Dl P+ KTOK) A P) (1 — AN+1) =
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Algorithm 1 The attack-resilient receding-horizon control law
Initialization: The following steps are first performed by the operator:

1: ChooseK so thato(A) is strictly inside the unit circle.

2: Choose) = Q7 > 0 and obtainP by solving the following Lyapunov equation:
ATPA - P =—Q. (2)
3: Choose a constant> 0 such thatX, £ {z € R" | [|z[|% < ¢} C X.

Iteration: At eachk > 0, the operator, actuator and sensor execute the followiggsst

1: The operator solves the followind-horizon quadratic program, namely-QP, parameter-
ized byz(k) € X:
N-1

min N (le(k + 71R) |5+ uk + 7[k)[3) + llz(k + Nk,

u(k)eRmxN £~
st. z(k+ 74 1k) = Ax(k + 7|k) + Bu(k + 7]k),
z(klk) =x(k), z(k+7+1k)e Xy, ulk+7lk)elU, 0<7<N-1,
obtains the solutiomi(k) = [u(k|k),--- ,u(k + N — 1]k)], and sends it to the actuator.
2. If s(k) =0, the actuator setd/”(k + 1) = u(k), implementsu(k|k), and the sensor sends
z(k + 1) to the operator. I&(k) > 1, the actuator implements(k|k — s(k)) in MP(k), sets

MP(k + 1) = MP(k), and the sensor sends$k + 1) to the operator.
3: Repeat fork = k + 1.

where A and ¢y are defined in Table I. On the other hand, fef in Table I, ay \, 0 as
N 7 400, and ¢y is strictly increasing inN and upper bounded by.,. Then, given any
integerS > 1, there is a smallest integéf*(.S) > S such that for allNV > N*(.S), it holds that:

Amin<P))max{(1 +an-s-1), (1 + an-1) 1:[ (1+ap)} <1

{=N-S

Analogously, given any intege§ > 1, there is a smallest integé¥*(S) > S such that for all

ns = (1—

o
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TABLE |

MAIN NOTATIONS USED IN THE FOLLOWING SECTIONS

Amax(R) (resp.Amin(R)) the maximum (resp. minimum) eigenvalue of matfx
VA1 ,\max(@ positive constanti € (0, 1), see [22],
Amin(P) defined withQ, P introduced in AR-RHC
a Amax(P)Amax(P + KTQK) (1 — AV*h) positive constant defined for al > 0,
ov = Amin(P) 1-A with @, P, and K introduced in AR-RHC
b 2 Amax(P)Amai((P + KTQK) positive constant defined witp, P, and K
Amin(P)(1 = X) introduced in AR-RHC
o & Amad( KTQK + AT PA) Aﬁl(l ~ Amin(P) positive constant defined for alV > 0,
Amin(P) o Prt1 with A and K introduced in AR-RHC, and\ introduced here
pN = (1 +an-1)(1— Am;ﬁ”ijim) a discount factor
W(z) £ ||z||% matrix P is the solution to Lyapunov equation (2)
Vi the optimal value function ofV-QP

N > N*(S), it holds that

’A)/N7S £ (1 — Am;;—(jj)y(l —+ C(N,1)<1 + OéN,Q)
s N-1
ey IO -5 0 ko) T e <

One can easily verifyV*(S) < N*(S). The following theorem characterizes the stability and
infinite-horizon cost of system (1) under AR-RHC whéfézx) represents the value of tHeQP
parameterized by € X.
Theorem 2.1: (Stability and infinite-horizon cost) Let Assumptions 2.4, 2.1, 2.2 and 2.3
hold.
1) (Exponential stability) SupposeN > max{N*(S) + 1,5 + 1}. Then system (1) under
AR-RHC is exponentially stable when starting fraky with a rate ofyy g in the sense
that Vy -1y (2(k)) < 7% sV (2(0)). In addition, the infinite-horizon cost of system (1)
under AR-RHC is bounded above %VN(x(O)).
2) (Asymptotic stability) If N > max{N*(S)+ 1,5 + 1}, then system (1) under AR-RHC
is asymptotically stable when starting froiy,.
Remark 2.1: AR-RHC with Theorem 2.1 can be readily extended to severalast®) in-

cluding DoS attacks, measurement attacks and the comtmsatif such attacks. If the adversary
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launches a DoS attack on control commands, the actuatovesceothing and then performs
Step 3 in AR-RHC. The adversary may produce the replay attackbie@measurements sent
from the sensor to the operator. If this happens, then theatgredoes not send anything to the

actuator and the actuator performs Step 3 in AR-RHC. °

[11. ANALYSIS

The proofs of Theorem 2.1 are collected in this section. Irtigadar, the proofs for the
intermediate lemmas are based on the corresponding resuttsir previous paper [34] on
deception attacks. The proofs for the main theorem are neMnanincluded in [34]. In the proof
of Theorem 2.1, we choos€y_,u—1)(z(k)) as a Lyapunov function candidate. To analyze its
convergence, we first establish several instrumental ptiegeof V/y, including the monotonicity,
diminishing rations with respect t& and decreasing property.

Recall the definitions of, ay, ¢n, and¢,, summarized in Table 1. It follows from [22] that
A€ (0,1), and clearly,l < ¢y < ¢ for any N € Z-,. Observe that the following holds for
any k € Z-y:

)xmin(P) - )\min(P) Amin(p) 11— )\min(P> )\min(P>
Gt D P+ KTQR) A P) 1= X7 = P+ KTQK) D)V € OV

This ensures the monotonicity efy and, moreover, thaty \,0 asN * +oo.

We show the forward invariance property of system (1)Ximunder K x.

Lemma 3.1 (Forward invariance in X;): The setX, is forward invariant for system (1)
under the auxiliary controllef{z with the control constraint/; i.e., for anyz € X,, it holds
thatu = Kz € U and Az € X,.

Proof: The differences oft” along the trajectories of the dynamics (1) undét) = Kz (k),

x(k) = x can be characterized by:
W(z(k+1)) = W(z) = [[Az(k + DI — [2(B)[[p = —ll2ll5 < —Amn(@]lz]*, (3)

whereW (x), A, P andQ are given in Table I, and in the second equality we apply theplyiov
equation (2). Sinc&) > 0, then W (x(k + 1)) < W (x). Sincex € X,, so isz(k + 1). Since
Xo C X, we know thatu(k) € U by Assumption 2.2. The forward invariance propertyaf
for system (1) follows. |
On the other hand, one can see that fi€QP parameterized by € X, has at least one

solution generated by the auxiliary controller.
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Lemma 3.2 (Feasibility of the N-QP): For anyx € X,, consider system (1) with(k|k) =
x andu(k + 7|k) = Kx(k + 7]k), for 0 <7 < N — 1. Then,u(k) is a feasible solution to the
N-QP parameterized by(k) € Xj.

Proof: It is a direct result of Lemma 3.1 and Assumption 2.2. [ |

The following lemma demonstrates the};, is bounded above and below by two quadratic
functions, respectively.

Lemma 3.3: (Positive-definite and decrescent properties dfy) The functionVyy is quadrat-
ically bounded above and below ag,(P)||z||* < Vi (z) < ¢nlz|* for any z € X,

Proof: Consider anyr € X,. It is easy to see thdty(z) > Amin(P)||z||?, and thus positive

definiteness o¥/y follows. We now proceed to show thé&l; is decrescent. In order to simplify
the notations in the proof, we will drop the dependency oretinmin what follows. Toward this
end, we let{x(7)},>, be the solution produced by the systerfr + 1) = Az(7), that is, the
closed-loop system solution of the dynamics (1) under theliaty controller Kz, with initial
statex(0) = z € X,. We denoter(7|0) = z(7) andu(7|0) = u(7). Recall the estimate (3):

Wia(r + 1) < Wia(r) = dun @) < Wia(r) = = EW (), @

where we use the property thedi,(P)||z||> < W(z) < Amax( P)||z|/%. It follows from Lemma 3.2

that the sequence of control commands) = Kz(7) for 0 <7 < N — 1 consists of a feasible

solution to theN-QP parameterized by € X,. Then we achieve the following oViy(x):
N-1

V(@) < (lellp + 1 K2(m)13) + [l=(N)]

[e=]

3

N-1
< Amax(P + KT QE)||2(7)|I” 4 Amax(P)[|z(N)||?
7=0
Amax( P + KTQK e | Ana(P)
W (z(N)). 5
<SSP Z (B @) (5)
Substituting inequality (4) into (5), we obtaln the follovg estimates oy (z):
Amax(P + K TQK Amax( P N
Vi(z) < A+ T)A
) = TP ZO A P) )
AmaX(P))\maX(P_+ KTQK)1— \N+! T
- Amm(P) 1—A '
where we use the fadt= 1 ME) (0,1) in [22]. The decrescent property bk, immediately

follows from the above relations. [ |
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Next, one can show that for anye X, Viy(z) does not decrease a&é increases.

Lemma 3.4 (Monotonicity of Vy): The optimal value functioiy is monotonic in\; i.e.,
for any z € Xg, V:(z) < Viy(z) for N' < N.

Proof: ConsiderN’ < N, and denote by/y and Jy: the objective functions of thév-

QP and theN’-QP, respectively. Leti be a solution to theV-QP parameterized by, with
uy = [u(0),...,u(N —1)], and letuy:, with un, = [u(0),...,u(N’ —1)], be a solution to the
N'-QP parameterized by € X,. We constructiay: € UYN', a truncated version afiy, in such
a way thatu(k) = u(k) for 0 < k < N’ — 1. Sinceuy is a solution to theV-QP parameterized
by x, then one can show thaty is a feasible solution to th&/’-QP parameterized by. This

renders the following upper bound . (z):
VN/(QT) = JN/($,uN/) S JN/(ZE,le/). (6)

Denote byxy = [2(0),--- ,z(N)] the corresponding trajectory toy with initial statez(0) =
and byxy = [#(0),--- ,Zx/] the corresponding trajectory generated by the sequendggyof

with the initial statez(0) = x. Sinceuy- is a truncated version afy, we have that (k) = (k)

for 0 < k < N’. Denote furthefiy: = [4(0),--- ,a(N’ — 1)]. Then we have
N/
Ini(an) =Y (IEE) 1B + 1@k 15) + (12N
k=1

= > (le®)IB + 1)) + =N 12 < Y (le®)IE + lu(®)13) + [l2(N)]E = Vi ().

The combination of (6) and the above relation establishasith (z) < Vy(z) for x € X,.
u
The following lemma formalizes that for any € X, the difference betweely ,(z) and
Vn(z) decreases ad increases by noting thaty(z) < Viy.;(z) anday is strictly decreasing
in N, whereVy,; and V) are the optimal value functions for thevV + 1)-QP and theN-QP,
respectively. This property is referred to as the propeftgiminishing ratios oflVy in N by
noting thatay \, 0 as N " +oc.
Lemma 3.5: (The diminishing ratios of Vy in N) The optimal value function/y is
diminishingly increasing inV in such a fashion thajt/% < ay for anyz € Xj.
Proof: Let uy, with uy = [u(0),...,u(N —1)], be a solution to theV-QP parameterized
by = € Xy. Let xy = [2(0),...,2(N)], (0) = z, be the corresponding trajectory. Notice
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that z(k) € X, for 0 < k < N. We construct an extended versian;; € UN*! of uy as
yy1 = [u(0),...,u(N — 1), Kz(N)]. Sincez(N) € Xy, thenz(N + 1) := Az(N) € X, by
Lemma 3.1, implying thafiy; consists of a feasible solution to tfi#” + 1)-QP parameterized

by z. Then we establish the following upper boundsion, ; (z):

Vive1(2) < Iysa(e, nr) = In(z,an) + [[Ka(N)[G + 12N + D5 < Viv(z) +<[la(V)]%,
(7)
wheres := A\nax( KTQK +AT P A). We now turn our attention to find a relation betwee V) |2

andVy(z). To achieve this, we will show the following holds férc {0,--- , N} by induction:
—0)) < Arin(P) V z). 8
H %1 () 8)

It follows from Bellman’s principle of optlmallty that

Viv(@) = 2(0) ][5 + [[u(0)[[g + V-1 (x(1)).

We can further see thaty(z) — Vy_1(z(1)) is lower bounded in the following way:

)\mm(P)
ON

where we use the decrescent property in Lemma 3.3 in thenlagtiality. Rearrange terms in (9)
and it renders that (8) holds fdr= NV — 1.
Assume that (8) holds for some+ 1 € {1,--- , N — 1}; i.e., the following holds:

V(@) = Vv-1(2(1)) = Amin(P)l|2]* > ==V (), (9)

(z ——E-— mm ). 10
Ve (a(N 1)) 1;[ %l )V (@) (10)

Similar to (9), it follows from Bellman’s principle of optintidy and Lemma 3.3 that

Vi (2N = €= 1)) = ViV = 0) 2 Ain PN = £~ DI = 22000 (o - 0~ 1),
1)
Combining (10) and (11) renders that
Ve — 1)) < (0 =2y -0 1)) < NH 1= 2By,
Pet1 ¢H+1

This implies (8) holds for. By induction, we conclude that (8) holds férc {0,--- , N}. Let
¢=0in (8), and we have thalty(z(N)) < [[.55 (1 — 25=2)Viy(x), implying that|«(N)|> <
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m Hfj;ol(l - AL‘;L”—LP))VN(x) by Lemma 3.3. By combining this relation with (7), we obtain
the desired relation betweér,; and Vy. [ ]

A relation betweerVy (xz(k + 1|k)) and Vv (z(k)) for z(k) € Xo, andz(k + 1|k) generated
through theN-QP, is found next.

Lemma 3.6 (Decreasing property ofly in Xjg): With z(k+1|k) generated through th¥-

QP starting fromz(k), the following decreasing property holds for angk) € Xo:

Vn(z(k +1]k)) < pnVi(z(k)).

Proof: With Lemma 3.3 and 3.5, we reach the following relation bewey (x(k + 1|k))
and Vy(z(k)) for any z(k) € Xo:

Vi (@(k +11k)) < (14 an-1)Vy-1(z(1)) < (1 +an-1)(Vi(z(k)) = |z(k)])

Amin( P
< (1-+ o) (Vila(h) = Amn(P)0)1?) < (1-+ o)1 = 22 v o),
N
where Lemma 3.5 and Lemma 3.3 are used in the first and lastiatiegs, respectively, by
noting thatz(k + 1|k) andz(k) in X. u

Proof of Theorem 2.1:

Proof: [Part 1: Exponential stability] Let us consider the first part &f > max{N*(S)+
1,S+1}. Recall thatz(0) € X, and the state constraitx, is enforced in theV-QP. Repeatedly
apply Lemma 3.2 and we have thatk) € X, for all £ > 0. We now distinguish four cases:

Case 1: ¥(k) =1 andd(k — 1) = 0. For this cases(k) =1, s(k — 1) = 0, and we have

Vn—sy(@(k + 1)) = Vo1 (z(k + 1)) < py1Vv-a(z(k))
< pyv-1Vn(z(k)) = pv-1V—se—1) (@(K)),

where the first inequality uses Lemma 3.6 and the principlepimality, and the second one
exploits Lemma 3.4.
Case 2: J(k) =9J(k — 1) = 0. Here,s(k) = s(k — 1) = 0. By Lemma 3.6, we have

Vs (@(k +1)) = Ve (z(k + 1)) < pyViv(z(k)) = pnVa—sg-1)(@(K)).
Case 3: J(k) =9J(k — 1) = 1. Note thats(k) = s(k — 1) + 1, and then

Vs (@(k +1)) < pv—si) Vs (@(k)) < pn—sii) VN—s—1) (2 (k)),

DRAFT



12

where the first inequality utilizes Lemmas 3.6 and the ppleciof optimality, and the second
one exploits Lemma 3.4.

Case 4: 9(k) =0 andd(k — 1) = 1. For this case, we havgk) =0, s(k — 1) > 1 and thus
N-1

Vs (@(k +1)) = Vi (z(k + 1)) < pnVn(z(k) <pv - J[ 0+ ) Vs (2(k)),
¢=N—s(k—1)

where the last inequality repeatedly applies Lemma 3.5.

Combine the above four cases, and it renders the following:
N—-1

IT @+ a0} Vs (z(k))

s

Vst (k4 1)) < max{ _max {py-a}, o Hllg?fs{é

< INsV—s—1) (z(E)). (12)

Since0 < yn,s < 1, {Vy_sx-1)(x(k))} exponentially diminishes, and the following holds:

Vs (@(k)) < 75,5V (2(0)). (13)

Recall N > S+ 1. It follows from (13) that the infinite-horizon cost is chaterized as follows:
+o0

> Ulz®)7 + lu®)g) < > V-spon (@(k) < Y visVa(x(0) =

}=0 - - I —ns

We then have finished the proofs for the first part.

[Part 2: Asymptotic stability] We now proceed to show the second parNof> max{N*(S)+
1, S+ 1}. Towards this end, we partition the time horizfi 1, - - - } into a sequence of subsets
{Cy, Ay, Cy, Ay, -+ } whereC; = {cF,--- YV} and A; = {aF,--- ,aV} with for k € C;, then
J(k) = 0; andk € A;, thend(k) = 1. Note thatc} = 0 anda’ = ¢V + 1.

Case 1: k € C; \ {cF}. Note thats(k) = s(k — 1) =0 for all k € C; \ {cF}. By Lemma 3.6,

we have
Vst (@(k + 1)) < pnVv—sge—ny(@(k)),  Vk € C;\ {c'}.
Case 2: k = al. Note thatd(al) = 1 andd(al — 1) = 0. By Case 1 in Part 1, we have
Viv—staty (@@ +1)) < pxa Vg -1y (#(ay)-

Case 3: k = A; \ {al'}. Recall thatd(k) = 1 for k € A;. By repeating the result of Case 3 in
Part 1, we have

_ L
k—a;

Vioso @k + 1)) < T ov-eVaosusy(alal + 1)), vk € A\ {al}.

(=2
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Case 4: k = cl, = aY + 1. Note thatd(cZ ;) = 0 andd(c’, — 1) = 1. By Case 4 in Part 1,

it holds that
N-1

VNfs(ciLH)(J?(CiLH +1)) < pn H (1+ af)‘/Nfs(ciLJrlfl)(x(CiL+1>>'
{=N-— s(c%Jrl 1)
The combination of the above four relations renders theohg:

N-1

VN—s(ciL+1)(‘T(C7LL+1 + 1)) S PN H (1 + af)VN—s(ciL+l—1) ('T<CiL+1)>
Z:N—s(cf‘+1—1)

N-1
= PN H ( + Oé@)VNfs(ciLJrlfl) (m(aij + 1))
{=N-— s(cl+1 1)
af —af N-1
<pn ] pv—e (1+ ) Vst —1y(@(ai + 1))
(=2 Z:N—s(ciL+1—1)
agjfaiL N-1
< PNPN-1 H PN—¢ H (1+ af)vas(ciLHfl)(x(af))
=2 t=N—s(ck —1)
aif’—aiL N-1
= PNPN-1 H PN—t H (1+ a@)VN—s(ciL+1—1)(x(ciU +1))
(=2 (=N—s(ck,,~1)

S ’A}/N,SVN—s(cf‘Jrl—l) (.’L'(C,LL>),

where the four inequalities sequentially apply Cases 4 tarkeS,y s € (0, 1), the subsequence
{VN—S(Cerl—l)(x(Cz‘L—&-l))} exponentially decreases.

By the above four cases, it is not difficult to verify that thdldaing holds for all &k €
A; UG\ {ck):

N-1

Viv—s—1)(2(k)) < max{pn_1, 1}PN nax HPN e I a+ ) Vgt -1 ((ci))-
{=N-—s clL+1 1)
Hence, the whole sequené®y_,._1)(x(k))} diminishes. It establishes the asymptotical stabil-

ity.
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IV. DISCUSSION
A. Explicit upper bounds on N*(S) and N*(S)

ConsiderS > 2 and lety £ (1 — 222) andq) £ = KQEIATPA) Note that

Amln( )
N—
Amin( P
Tns < (1— mm( ) (14 an-1) H 14 o)
(=N—5—1
< x(14 an_s-1) 512 < By Sé (1+¢XN 5= 1)S+2 (14)

So it suffices to findV such that3y s < 1. The relationSy s < 1 is equivalent to the following:

N-§5-1> =
In x In x

In(x 5+2 —1)— lnw
Inx

Hence, an explicit upper bound a¥i*(S) is TIx(S) = S +1 +
We now move to find an explicit upper bound & (S). Note that

s N—-1
s < (1= 22204 ay )+ awen)(_max, TT0 =224 ) T (1+a)
> sellSh 2 (=N-58
N )\min(P) S+1 S—1 P
<(1l-—"")"0+av)I+ays)(l+ay-s-1) I] 0+
o ¢=N-8
< )\min(P))s+1(1 b g 1) = ST 4 gy NS84

o0

_S+1
In(x 25+ —1)—
Inx

upper bounds clearly demonstrate that a higher computdtmrmplexity; i.e., a largetV, is

So, an explicit upper bound oiV*(S) is TI4(S) £ S+ 1 + Y This pair of

caused by a large¥, indicating that the adversary is less energy constrai@adthe other hand,
the second term il 4(S) approaches a constant 8sgoes to infinity. Sdl4(S) can be upper
bounded by an affine function. However, the second teriiS) dominates wherb is large.
That is, exponential stability demands a much higher caast #symptotic stability whey' is

large.

B. A reverse scenario

Reciprocally, for any horizonV > 1, there is a largest intege$*(N) < N — 1 (resp.
S*(N) < N — 1) such that for allS < §*(N) (resp.S < S*(N)), it holds thatyy s < 1 (resp.
An.s < 1). Theorem 2.1 still applies to this reverse scenario andatierizes the “security level”

or “amount of resilience” that the proposed receding-tmrizontrol algorithm possesses.
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V. CONCLUSIONS

In this paper, we have studied a resilient control probleneneha linear dynamic system is

subject to the replay and DoS attacks. We have proposed atiwariof the receding-horizon

control law for the operator and analyzed system stabiliiy performance degradation.
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