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Abstract— We propose a distributed continuous-time algorithm  continuous time but only require communication between
to solve a network optimization problem where the global cost neighbors at discrete instants of time. We study the stabil-

function is a strictly convex function composed of the sum ; ; ;
of the local cost functions of the agents. We establish that ity and convergence properties Of. our proposed algorithm
through standard Lyapunov analysis.

our algorithm, when implemented over strongly connected and
weight-balanced directed graph topologies, converges exponen- | jterature review of continuous-time optimization algo-
tially fast when the local cost functions are strongly convex and rithms The continuous-time, unconstrained convex optimiza-
their gradients are globally Lipschitz. We also characterize the . - .

privacy preservation properties of our algorithm and extend 10N algorithms proposed in [11], [12] are second-order
the convergence guarantees to the case of time-varying, strgly ~ algorithms which use the inverse of the Hessian. These
connected, weight-balanced digraphs. When the network topol- algorithms require a special initialization and are gutred

ogy is a connected undirected graph, we show that exponential to converge only for connected undirected graph topologies
convergence is still preserved if the gradients of the strongly The algorithm proposed in [9] is a gradient-based scheme
convex local cost functions are locally Lipschitz, while it is . .
asymptotic if the local cost functions are convex. We also study WNOS€ convergence guarantees are valid for connected undi-
discrete-time communication implementations. Specifically, we rected graph topologies. A variation of this algorithm with
provide an upper bound on the stepsize of a synchronous additional convergence properties over strongly conmecte
periodic communication scheme that guarantees convergence and weight-balanced digraph topologies is presented ih [10

over connected undirected graph topologies and, building on ; ; ; : P
this result, design a centralized event-triggered implementation The protocol of [10] is obtained by introducing a gain in

that is free of Zeno behavior. Simulations illustrate our results. (€ @lgorithm of [9] and characterizing the admissible &ng
for which this gain ensures convergence. The convergence

of both algorithms in [9], [10] is asymptotic. In general,
. INTRODUCTION the works mentioned above do not characterize the privacy

Distributed L bl L preservation properties of the proposed algorithms. Byiva
Istributed optimization problems are pervasive in many, oqenation is a crucial requirement in network applirei

scenarios, including parallel systems, distributed campu oo e.g., [13] and references therein. In our specific setup,

tl?r:j,_an_(s) mudltl-agent SVS‘?m_S [_1]’ [21, [SI] A comm_c:jn clash rivacy preservation is concerned with determining whethe
of distributed convex optimization problems considers thg,onq inside or outside the network can discover any in-

constrained or uncon§tralned optlmlzqt|on of a sum of IOC? rmation about the local cost functions by listening to the
convex functions, which represent private local costs °n|¥ommunication messages

available to each agent. Such problems model a wide range of o . )
practical network operations where the global cost fumctioStatement of contributiondNe consider an unconstrained
is a performance metric consisting of a sum of local privatéonvex optimization problem whose objective function is
utility functions. Most of the current distributed optiraizon ~ Strictly convex and can be written as a sum of local cost
solvers for these problems are discrete-time algorithriys [4Unctions, one per agent. We propose a novel gradient-
[5], [6], [7], [8] which employ consensus-based dynambased distributed algorithm for networks with strongly con
ics to arrive at the solution. More recently, a number ofiected and weight-balanced digraph topologies. We show
continuous-time dynamical solvers [9], [10], [11], [12]vea that the algorithm has an_exponential rate of convergence
been introduced whose convergence properties are studifen the local cost functions are-strongly convex and
using control-theoretic tools. Taking this perspectivetoa their gradients are globally Lipschitz and characterize it
design and analysis of optimization algorithms facilisatiee ~ Privacy preservation properties. The results are alsadvali
characterization of properties such as speed of conveegenfor networks with time-varying interaction topologies as
disturbance rejection, and robustness to parameter andimo®ng as the digraph stays strongly connected and weight-
uncertainties. This manuscript further contributes tos thibalanced. For connected undirected graph topologies, we
body of work. Motivated by the practical constraints onshow that the global Lipschitzness of the local gradients ca
communication imposed by real-time implementations, wBe relaxed to local Lipschitzness. Also, for this case, we
also explore the development of distributed convex optimiz Prove that the algorithm converges, asymptotically, whren t

tion strategies that have agents performing computation |acal cost functions are convex. For implementation of the
. . algorithm over networks with wireless communication, we
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Engineering, University of California San Diego, La JolA 92093, USA . . .
{ski a, cort es, soni and}@csd. edu implementations of the proposed algorithm. For networks



with connected graph topologies, we obtain an upper boursgt An edge fromi to j, denoted by(i, j), means that agent
on the suitable stepsizes that guarantee convergence foy aan send information to agentFor an edgdi,j) € &, 4
periodic discrete-time communication implementation. Wés called anin-neighborof j andj is called anout-neighbor
build on this result to design a centralized event-trigdereof i. A graph isundirectedif (i,j) € £ anytime(j,i) € £.
communication implementation which is free of Zeno beA directed pathis a sequence of nodes connected by edges.

havior. A weighted digraphis a tripletG = (V, €, A), where(V, &)
Organization Sectionll introduces basic notation and con-is a digraph andA € RV*¥ is a weightedadjacencymatrix
cepts from graph theory and convex functions. Sectibn with the property that; > 0 if (¢,j) € £ anda; = 0,
presents the problem statement. Sectignintroduces our otherwise. A weighted digraph iandirectedif a; = aji
novel continuous-time distributed convex optimizatiogaal for all 7,5 € V. We refer to a strongly connected and
rithm and characterizes its properties on convergence anddirected graph as eonnected graphThe weighted out-
privacy preservation. Sectiol discusses continuous-time degreeand weighted in-degreef a nodei, are respectively,
implementations with discrete-time-communication of theli = Zj,vzl aj; anddi, = Zé\':l a;;. A digraph isweight-
proposed algorithm. Sectioiv| illustrates our results in balancedif at each nodei € V, the weighted out-degree
simulation. Finally, SectioVIl gathers our conclusions andand weighted in-degree coincide (although they might be
ideas for future work. Due to the space limitations, the oo different across different nodes). Tfmut-) Laplacianmatrix

are omitted and will appear elsewhere. is L = D — A, where D°"" = Diag(dl,, - ,d,) €
RY*N_Note thatLly = 0. A digraph is weight-balanced
Il. PRELIMINARIES if and only if 1L = 0 if and only if Sym(L) = J(L+L")

. ] . ) is positive semi-definite. Based on the structurd ot least
In this section, we introduce our notation and some basige of the eigenvalues dfis zero and the rest of them have
concepts from convex functions and graph theory. nonnegative real parts. We denote the eigenvalues bf
A, ..., An, Where); = 0 and ﬁ()\i) < g}e()\j), for i < j,
and the eigenvalues 8fm(L) by A\q, ..., A\n. For a strongly
the set of real and naturaﬁ?””e‘:ted and weight-balanced digraph, zero is a simple

Let R andN denote, respectively, | £ bOtHL hi h
numbers. We us&(-) to represent the real part of a complex€igenvalue of bott, andSym(L). In this case, we order the

number. The transpose of a matrik is A'. We let1, cgenvalues oBym(L) asA =0 <Xy S A <+ < Aw.
(resp.0,,) denote the vector of. ones (respn zeros), and TOF convenience, we defire = L@ 1, andIl = Ny @ 14
denote byl,, the n x n identity matrix. We letrl,, = I, — t© deal with variables of dimensiofi€ N.

%17112. When clear from the context, we do not specify
the matrix dimensions. FoOA € R"*™ and B € RP*9,
we let A®B denote their Kronecker product. Fare R?,  Consider a network ofV agents with interaction topol-
[u| = vVuTu denotes the standard Euclidean norm. Fopgy described by a strongly connected, weight-balanced di-
vectorsuy, - - -, u,,, We letu = (uy,--- ,u,,) represent the graphg. Each agent € {1,..., N} is endowed with a local
aggregated vector. In a networked system, we distinguigfost functionf? : R — R which is assumed differentiable.
the local variables at each agent by a superscript, &'g., The global network cost functiofi : RY — R is defined as

is the local state of agent If p’ € R? is a variable of f(x) = N, f7(x). We assume this function to be strictly
agenti, the aggregateg’’s of the network of V' agents is convex. Our objective is to design a distributed optimizati
represented bp = (p',---,p") € (RY)". A differentiable  algorithm such that each agent obtains the global minimizer
function f : R¢ — R is strictly convexover a convex set —oo < x* < oo of the feasible optimization problem

C c RY iff

(z—x)"(Vf(z) - Vf(x) >0, Vx,z€C, x#z,

A. Notation

I1l. PROBLEM DEFINITION

x* = arg min f(x
g min f(x)

using only its own local data and exchanged information
and it ism-strongly conveXm > 0) iff with its neighbors (note that the strict convexity pfmplies
the uniqueness of the optimizer). We are also interested
T 2
(z2=x) (Vf(2)-Vf(x)) 2 mlz—x|]", Vx,2 € C, x# 2. characterizing the privacy preservation propertieshas t

A function f : R — R? is Lipschitz with constanfi/ > 0,  algorithmic solution to this distributed optimization ptem.

or simply M-Lipschitz over a setC' c R iff Specifically, we aim to identify conditions guaranteeingtth
no information about the local cost function of an agent is
[f(x) —fW)II < Mx—yl, Vvx,yeC. revealed to, or can be reconstructed by, any other agent in

the network.
B. Graph Theory

IV. DISTRIBUTED SOLUTION FOR CONVEX

Here, we briefly review some basic concepts from graph OPTIMIZATION

theory and linear algebra following [14]. Airected graph
or simply adigraph is a pairG = (V,&), whereV = To solve the distributed optimization problem of Sectltn
{1,...,N} is thenode setand € C V x V is the edge we propose the following distributed optimization alglnit



3 satisfying @) (for example, any3 > 4(¢ + 1)2a/(9p\z)).

N We have observed in simulation tha&) (s only a sufficient
vi= aﬁzaij(xi —x7), (1a) condition for many cases, e.g., in the numerical example
=1 reported here the algorithnil)( converges for any positive
N « and 8. We can interprety > 1 and 3 > 1 as a way of
x' = —aVfi(xh) — Bzazj(xi —x') — v, (1b) increasing the strong convexity coefficient of the localtcos
j=1 functions and the graph connectivity, respectively. Thus,

can expect that the rate of convergence of the algorithm is
increase with higher values af, 5. Our simulations have
confirmed this conjecture. The relationship between these
v = afLx, (2a) parameters and the rate of convergence of the algorithm (
- z is more evident in the case of quadratic local cost functions
X =—aVf(x) = flx —v. (2b) fi(x) = 2(x"x+x"a’ +b"), i € {1,...,N}. In this case,
Here, f : (R))Y — R is defined byf(x) - Zi\’zl Fix). the algorithm {) is a linear time-invariant system where the
This algorithm is distributed because each agent only neeg@igenvalues of the system matrix arev, with multiplicity

to receive information from its out-neighbors about theiff Nd, and;, i € {1,..., N} (A;'s are the eigenvalues of
corresponding variables ia In contrast, the continuous-time L), with multiplicity d. Therefore, one can show that)(
coordination algorithms in [9], [10] require the communica converges regardless of the value @f 5 > 0 with an

tion of the corresponding variables in bathandv. In the —€Xxponential rate equal tmin{ca, SR(X2)}. *

following, we study the stability and convergence progarti Next, we study the convergence of) (over dynamically

of the algorithm () over directed and undirected graphs. changing, strongly connected, and weight-balanced digrap
with uniformly bounded and piecewise constant adjacency

A. Strongly Connected, Weight-Balanced Digraphs matrices. The proof of Theorem.1 relies on a Lyapunov

Here, we study the convergence of the distributed Optlfyncnon with no dependency on the system parameters and

mization algorithm {) over strongly connected and Weight-lts derivative is upper bounded by a quadratic negative defi-

balanced digraph topologies. We first consider the caseewhenrIte function. As such, we can readily extend the convergenc

the interaction topology is fixed, and then discuss timer—e"sult to dynamically changing networks.
varying interaction topologies. The following result idiéies
conditions on the local cost function§f'}Y , and the
parameters to guarantee the exponential convergenceldf (

to the solution of the distributed optimization problem.

forie {1,...,N}, with a > 0, 8 > 0. The collective form
of this algorithm is as follows

Proposition 4.1 (Convergence ofl) over dynamically
changing interaction topologies): L& be a time-varying
digraph which is strongly connected and weight-balanced at
all times and whose adjacency matrix is uniformly bounded
and piecewise constant. Assume the local cost funcfion

Theorem 4.1 (Convergence ) over strongly connected i€ {1,...,N}, is mi-strongly convex, differentiable, and its

and weight-balanced digraphs): L&t be a strongly con- D . ) . e
nected and weight-balanced digraph. Assume the local co%'iad'em ISM’-Lipschitz onR°. Let 5 > 0 satisfy(3) with A,

function f%, i € {1,...,N}, is mi-strongly convex, dif- 'cP/aced by(Ao)min = 2213{5‘2("1’)}’ where” is the index
ferentiable, and its gradient is\/*-Lipschitz onRR¢. For set of all possible realizations @. Then, for anya > 0
mr = min{m?',...,m"} and My = max{M?',...,MN}, and eachi € {1,..., N}, the algorithm(1) over G makes
let 3 > 0 be such that x'(t) — x* exponentially fast as — oo, starting from initial
conditionsx(0), vi(0) € R? with -V vi(0) = 0,.

We conclude this section by analyzing the privacy preser-
is satisfied for some > 0 with ¢ +1 > 477]3“2. Then, for any Vvation properties of the algorithml). More specifically,
o > 0 and eachi € {1,..., N}, the aIgoTrithm(l) overg We characterize the topological requirements on the com-
makesx’(t) — x* exponentially fast as — oo, starting from munication graph and the knowledge about the algorithm’s
initial conditionsx?(0), vi(0) € R with Zf\; vi(0) =0, Parameters and initial conditions that allow an agent to
reconstruct the local gradients of other agents in the mtwo

o2 (p+1)mr+9aB\ap—40> M2 —4a*(¢+1)2> 0, (3)

In Theorem4.1, note that the requireme@fi1 vi(0) = 04

is trivially satisfied by each agent with the choie&0) =  proposition 4.2 (Privacy preservation unddf)): Let G

04. This is an advantage with respect to the continuous-timgs 5 strongly connected and weight balanced digraph. For
coordination algorithms proposed in [12], which requites t , 5 > 0, consider any execution of the coordination al-
nontrivial initialization _;_, V f*(x*(0)) = 04, and in [11],  gorithm (1) over G starting from x?(0),v(0) € R? with
which requires the initialization on a state communicate il\il vi(0) = 04 Then, an agent € {I,...,N} can
among neighbors and is thus subject to communication errogconstruct the local gradient of another ageng i only if j

and all its out-neighbors are out-neighbors @fand agent
knowsv’(0) anda, k € {1,..., N} (here we assume that

ie agent; is aware of the identity of neighbors of agent

Remark 4.1 (Role of the design parameterélin: We pro-
vide here several observations regarding the role of the
sign parameters and 8. First, note that there always exists



and it has memory to save the time history of the data it V. CONTINUOUS-TIME EVOLUTION WITH
receives from its out-neighbors). DISCRETETIME COMMUNICATION

The requirements of Propositioh.2 are trivially satisfied
when agent; is aware that it is the only out-neighbor of
4 and all agents know that the algorithm is initialized with
vI(0) =04, forall j € {1,...,N}.

The implementation ofl() requires continuous-time commu-
nication among the agents. While this abstraction is useful
for analysis, in practical scenarios the communicatioriser

is only available at discrete instants of time. This obséoma
motivates our study here of discrete-time communication
implementations of the algorithni), Throughout the sec-

B. Connected Undirected Graphs tion, we deal with communication topologies described by
connected undirected graphs. In our developments below, we
assume synchronous communication across the network. We

Here, we study the convergence of the algorithth dver ; ; ) .
connected undirected graph topologies. While the results gprt by mtroducm% some useful conventions. At any given
time t € R>o, let X’ be the last known state of agepte

the previous section are of course valid for these topoipgie . o .
here using the structural properties of the Laplacian matriél’n' t ’Nt% trzpnsm'ttf?/v:ﬁ ';S m'rrf'ghbr?lr;' ffk}t < ]\1,%?[;’] their
we establish the convergence df) for a larger family of enotes the times a ch agents communicates €

in . N - i
local cost functions. We are also able to analytically dighb 'g nel%hbci;]s, ther: .On? has t_t'X (tkf) t;;or tl € [tt’r“]’ tk*.lt)h'
convergence for ang, 5 > 0, as we show next. onsider the next implementation of the algorithi) i

discrete-time communication,

Theorem 4.2 (Exponential convergence @) over con- N

nected graphs): Let be a connected graph. Assume the vi= aﬁzaij(fci —%7), (5a)
local cost functionf®, i€ {1,..., N}, is m*-strongly convex j=1

and differentiable ofiR?, and its gradient is locally Lipschitz. N

Then, for anya,3 > 0 and eachi € {1,...,N}, the X' = —aVfi(x) = B) a(x - &) - v (5b)
algorithm (1) over G satisfiesx’(t) — x* exponentially fast j=1

; 2 NN ; ’
ast - ol starting from initial conditionsc' (0), v*(0) € R Clearly, the evolution of §) depends on the sequences of
with > 5, v*(0) = 0. o . :
communication times for the agents. Here, we consider
Note that the requirement that f* is locally Lipschitz is two scenarios. Sectiod-A studies periodic communication
trivially satisfied if f7 is twice differentiable. Next, we study schemes where all agents communicate synchronously at
the convergence oflf over connected graphs when the locafixed A intervals of time, i.e.t, = Ak. We provide a
cost functions are only convex. Here, the lack of strongharacterization of the periods that guarantee the asyimpto
convexity makes us rely on a LaSalle function to establisbonvergence of5) to the optimizer. In general, periodic
asymptotic convergence to the optimizer. schemes might result in a wasteful use of the communication
resources because of the need to account for worst-case
Theorem 4.3 (Asymptotic convergence (@) over con- sjtuations in determining appropriate periods. This nattis
nected graphs): Lety be a connected graph. Assume theyyr study in Section/-B of event-triggered communication
local cost functionf*, i € {1,...,N}, is convex and schemes that tie the communication times to the network
differentiable onR“, and the global cost functiofiis strictly  state for greater efficiency. Here, we discuss a synchronous
convex and differentiable oft”. Then, for anye,3 > 0 centralized event-triggered communication implemeatati
and eachi € {1,..., N}, the algorithm(1) over G satisfies and refer the reader to [15] for a distributed asynchronous
x'(t) — x* ast — oo, starting from any initial conditions jmplementation. We pay special attention to ruling out the
x1(0), v/(0) € R? with "7, v¥(0) = 04. presence of Zeno behavior (the existence of an infinite

o ) number of updates in a finite interval of time).
Remark 4.2 (Simplification ofl) for strictly convex local

cost functions)Using the LaSalle function identified in the

proof of Theorem4.3, one can show that the algorithm A. Periodic Communication

The following result provides an upper bound on the size of

N admissible stepsizes for the execution Bf ¢ver connected
V=) ay(xt - x7), graphs with periodic communication schemes.
Jj=1
%t = —Vfi(xi) - v Theorem 5.1 (Convergence ¢b) with periodic commu-
‘ ’ nication): LetG be a connected graph. Assume the local
cost functionf?, i € {1,...,N}, is m'-strongly convex,

over a connected graph is also guaranteed to asymptoticatlifferentiable, and its gradient i8/?-Lipschitz onR¢. Given
converge to the optimizer starting from any initial conatits  «, 8 > 0, consider an implementation of the algorith{s)
x'(0),v*(0) € RY with Zfil vi(0) = 04 if the local cost with agents communicating over synchronously ever
functions are strictly convex. e seconds starting at; = 0, i.e., tx = Ak for all i €



{1,...,N}. LetO < e < 1 and ¢ > 0 such that above discussion, the sequence of synchronous communica-
1 1 tion times {¢x}ren C R for (5) should be determined
p+1= o M3+ d>1, (6) by (9). However, for a truly implementable law, one should
.T ] guarantee that no Zeno behavior occurs, i.e., the sequénce o
whereMry andmy are given in the statement of Theorém,  times does not have any finite accumulation point. However,

and define observing 9), one can see that Zeno behavior will arise at

2mra’

1 (aMr + 1)¢ least near the agreement surfdde = 0,5. The following
T=——In(1+ , : . - )
aMy + 1 ( aMr+ 1+ BAnvVI+a2(l+ C)> result details how we address this problem to design a Zeno
@ free centralized event-triggered communication law.
where (2 = _2emin{l=cd} __Then ifA € (0,7), Theorem 5.2 (Convergence @) with Zeno-free central-

= G927 551 49) T T ; &) Wi
the algorithm evolution starting from initial conditions ized event-triggered communication): L@tbe a connected

x%(0), v?(0) € R* with Zf\; vi(0) = 04, makesx‘(t) — x*  graph. Assume the local cost functigh i€ {1,...,N},is

exponentially fast ag — oo, for all i € {1,...,N}. m®-strongly convex, differentiable, and its gradient ig’-
Lipschitz onR?. Consider an implementation of the algo-

Remark 5.1 (Dependence of the communication period aithm (5) with agents communicating ovér synchronously

the design parametersit is interesting to note that the value at times{¢; }xen C R>o, Starting at¢; = 0, determined by

of 7 in Theorem5.1 depends on the graph topology, the

parameters of the local cost functions, the algorithm desig 'k+1 = argmax{t € [t), +7,00) |

parametersy and 8, and the variableg and §. One can ITI(x(tr) — x(t)]|* < w||TIx(t)|1*}, (11)

use this dependency to maximize the value-oNotice that where 7 and k < 1 are defined in(7) and (10), re-

the grgument ofn(.) in (7) is a monotonically increasing spectively. Then, for any given,3 > 0 and eachi €
function of ¢ > 0. Therefore, the smaller the value 6f {1,..., N}, the algorithm evolution starting from initial

the larger the value of. Hov_vever, the d(_ependency ofon conditionsx(0), vi(0) € RY with Zg\il vi(0) = 0, makes
the rest of the parameters listed above is more complex. FO[(t) » x* exponentially fast as _>Zgo

given local cost functions, fixed network topology and fixe

values ofa, 3, the maximum value of is whené+ 1 is at  Interestingly, given that9) does not use the full state of the
its minimum ande, min{1 — ¢, 8} is at its maximum. e network but rather relies on the computation of disagre¢men

one can interpret it as an output feedback event-triggered
B. Centralized Event-Triggered Communication controller. Guaranteeing the existence of lower bounded

inter-execution times for such controllers is in general a
This section studies the design of a synchronous centealizgjfficult problem, see e.g., [16]. Augmenting)(with the
event-triggered communication scheme for the algoritin ( condition ¢4, > t;, + 7 results in Zeno-free executions by
In contrast to periodic schemes, event-triggered implemefpwer bounding the inter-event times by The knowledge of

the resources. Our discussion builds upon the examinatigfyring any given time interval.

of the Lie derivative of the Lyapunov function used in the
proof of Theorent.l In fact, the Lie derivative alondgy is VI. SIMULATIONS
negative definite for alt > 0 if we ensure that

Consider a network of30 agents, where the local cost
T (x(tx) = x)[| < ¢V/[Ix — %[>+ |TL(v = ¥)[2. (8) function of agent is given by

Thenr, given in (7), is a lower bound on the time it takes for f(z) = 0.5(z + ¢')? + c'e"*'® + d'e ' ie {1,...,N}.
ITI(x(tx)—x)||/+/]Ix — X2 + |II(v — ¥)]|2 to evolve from
zero to¢. The reason that we cannot empl@y directly as an
event-triggered communication law is the lack of knowledg
of the solutionx* of the optimization problem. We can show
that the Lie derivative of the Lyapunov function identified i
the proof of Theorend.1 is negative definite also when

The coefficients are chosen randomly uniformly és b,

¢, d" ~ U[0.1,1] and e’ ~ U[-1,2], Figure 1 illustrates

e performance of the algorithni)( over a ring digraph
whose edges change direction with time multiple times.
Convergence is achieved as guaranteed by Propositibn
The plot also shows that larger values @fresult in faster
ITI(x(tx) — x(£))||* < &|TIx(t)||?, t >0, (9) convergence, cf. Remark 1 In all our simulations of this

. . example, convergence is achieved for > 0.
wherex is shorthand notation for P g any’

€6 + 26aBX22(1 — €) Figure g(a)-(b) compares the pgrfqrmanpe the algorithin (
K= 5 5 5 (10) employing a periodic communication with the performance
aBoXy +2A202(1 + 9) of the continuous-time algorithml1) over an undirected
(here0 < e < 1 and ¢ is given by @)). Notice that this connected ring communication graph. It is interesting to
condition can be evaluated without the knowledge of thaote the comparable performance between both algorithms
solution x* of the optimization problem. According to the observed in these plots.
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Fig. 1: Executions of the algorithni) over a ring digraph whose direction changes eveseconds (weights are unitary):
the dashed lines (resp. solid blue line) show the time histdrz®’'s (resp.x*).

50 0 10 20 30 40 50

30
t t

40

(a) Algorithm 6) with oo =1,
B=2,A=0.15 sec.

(b) Algorithm (1) witha=1,8=2

(1]
Fig. 2: Performance comparison between the algorittihs ( 2]
and () over an undirected ring communication graph: the
dashed lines (resp. solid blue line) show the time history of
x¥'s (resp.x*). -
[4]

[5]
VIl. CONCLUSIONS

(6]

We have proposed a distributed continuous-time optinopati 7

algorithm for a network with a strongly connected and
weight-balanced interaction topology and a strictly conve (8l
global cost function which is the sum of local cost functions g,
When the local cost functions ar@-strongly convex and
their gradients are globally Lipschitz, we have estabtiishe[m]
that the algorithm converges exponentially fast. This prop

is preserved in dynamic networks as long as the topology
stays strongly connected and weight-balanced. For coadect!!]
undirected graphs, we have proved that the exponential
convergence also holds when the local cost functionsrare
strongly convex and their gradients are only locally Ligsch  [12]
For such networks, we also showed that when the local
cost functions are convex the proposed algorithm converggs]
asymptotically. We have also investigated the discrete-ti
implementation of our algorithm, providing an upper bounqm]
on the suitable stepsize for connected graphs, and design-
ing a centralized, Zeno-free event-triggered impleméntat [15]
Finally, we have characterized the privacy preservatiappr
erties of our algorithm. Future work will focus on pursuing
the design of distributed event-triggered implementatiand  [16]
the use of triggered control methods in other distributed op
timization and coordination problems, including congsteal,
time-varying, and online scenarios, and networked games.
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