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Abstract— We present a novel decentralized cooperative local-
ization algorithm for mobile robots. The proposed algorithm
is a decentralized implementation of a centralized Extended
Kalman Filter for cooperative localization. In this algorithm,
instead of propagating cross-covariance terms, each robot
propagates new intermediate local variables that can be used
in an update stage to create the required propagated cross-
covariance terms. Whenever there is a relative measurement
in the network, the algorithm declares the robot making this
measurement as theinterim master. By acquiring information
from the interim landmark, the robot the relative measurement
is taken from, the interim master can calculate and broadcast
a set of intermediate variables which each robot can then use
to update its estimates to match that of a centralized Extended
Kalman Filter for cooperative localization. Once an update is
done, no further communication is needed until the next relative
measurement. The communication graph can be a time-varying
directed graph with the only requirement that it should have
a spanning tree rooted at the interim master.

I. INTRODUCTION

F. Rounds Sonia ez

Available CL algorithms are either centralized or decdntra
ized. Although centralized schemes (see e.g., [3], [4])ultes

in less conservative estimations, their lack of robustness
and energy inefficiency make them less preferable. A major
challenge in developing a decentralized CL (D-CL) alganith

is how to keep an accurate account of all cross-correlations
among robots without all-to-all communication at each time
step. Ignoring these cross-correlations in future updeges
sults in overconfidence in pose estimates that can lead to
divergence of the estimates. Also, keeping track of cross-
correlations benefits further the entire team from updating
relative measurements between any two members. In [5],
a suboptimal algorithm—where only the robot obtaining the
relative measurement updates its states—is proposed where
in order to produce consistent estimates, a bank of Extended
Kalman Filters (EKFs) is maintained at each robot. Using an
accurate book-keeping of the identity of the robots invdlve

in previous updates and the age of such information, each
of these filters is only updated when its propagated state

The successful deployment of multi-robot systems in tasks not correlated to the state involved in the current update
such as search and rescue, environmental monitoring, aequation. The computational complexity, the large memory
oceanic exploration depends on the accurate localization demand, and the growing size of information needed at
these robots. In these applications, the environment enofteach update time are the main drawbacks of this algorithm.
uncharted, dynamic, and may not be accessible a prioAn alternative approach to develop D-CL algorithms is to
Thus, classical beacon-based localization algorithmsofl] distribute the computation of components of a centralized
fixed feature-based Simultaneous Localization and MappirgL among team members. In a straightforward fashion,
algorithms [2] may not be applicable. Fully or intermittgnt this decentralization can be conducted as a multi-cené@li
GPS-denied environments also deprive these applicatiof4, wherein each robot broadcasts its own information
from exploiting GPS navigation. A technigue that can worko the entire team. Then, every robot can calculate and
best for such multi-robot systems i<Caoperative Localiza-  reproduce the centralized pose estimates, i.e., each robot
tion (CL) strategy. This technique uses relative measuremerdsts as a Fusion Center (FC) [6]. Besides a high-processing
among the robots as a feedback signal to jointly estimate tlvest for each robot, this scheme requires all-to-all robot
location of team members, resulting in increased positiocommunication at the time of each information exchange.
accuracy for the entire team. However, the real benefit of CA D-CL algorithm distributing computations of an EKF
is when occasional access to accurate absolute localizaticentralized CL algorithm is proposed in [7]. To decentliz
information is available to some members, which then ithe cross-covariance propagation, [7] uses a singulaeval
spread to other team members by means of CL. In this papdecomposition to split each cross-covariance term between
we present a novel decentralized CL algorithm. the corresponding two robots. Then, each robot propagates i
portion. However, at update times, the separated partddhou
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the correction step. Subsequently, [8] presents a maximum-
a-posteriori (MAP) D-CL algorithm in which all the robots

in the team calculate parts of the centralized CL. A D-
CL approach equivalent to a centralized CL is proposed
in [9]. This scheme handles both limited communication
ranges and time-varying communication graphs by using an
information transfer scheme wherein each robot broadcasts
all its locally available information to every robot within



its communication radius at each time-step. The broadgaste
information of each robot includes the past and present mea-
surements, as well as past measurements previously rdceive
from other robots. The main drawback of this method is its
high communication cost, which may not be affordable iri
applications with limited communication bandwidth. Figal

CL techniques to handle system and measurement models
with non-Gaussian noises are discussed in [10], [11].

In this note, we propose a novel recursive D-CL algorithm

called Interim Master D-CL which is exactly equivalent Fig. 1: The spheres represent the robots and the dashed circlesiaham

to the centralized EKF for CL of [7]. Our algorithm is represents the communication range of the robots. The cirsetaors depict
developed by using new intermediate variables that eliteinathe exteroceptive sensing zone of the corresponding rétere, robotsl

the explicit calculation of the cross-covariance termsulte  and6 make relative measurements, respectively, of robaad3. For each
ing in decoupled propagation equations. The update stagerobots1 and6, there is a spanning tree in the communication graph of
is performed by designating the robot making the relativéhis team that is rooted at these robots.

measurement as thaterim master, which provides the rest , . )
of the robots with the information they need to update thei® léar from the context. Ify" € R™ is a local variable
pose and covariance in a manner that exactly matches thdde©Poti in a network ?fN rOROIS’ th(? aggrega}&ed“s

of a centralized EKF for CL. In particular, the size of thelS represented byy = (q',....q™) € R%, d = 3_,_, n".
associated messages is independent of the size of the te&ia!ly, we define our communication graph terminology, see
To calculate the update equations, the interim master onfyd- [12]- A directed graph is a pairg = (V, ), where
requires information from thénterim landmark, the robot ¥ = {1,-.., N} is thenode set and & C V' x V is the edge
that the relative measurement is taken from. Because tff&- An €dge from: to j, depicted by an arrow from to

propagation stage is fully decoupled, if there is no retativ/: Means that agent can send information to agent A
measurement in the network, no intra-network communic4lirected path is a sequence of consecutive nodes connected
tion is needed. The communication graph can be a tim&Y €dges. ASp"’/‘””'”g tr/ee of a directed graptg = (V,¢)
varying directed graph with the only requirement that ifS @ Subgrapig’ = (V, &) such thate” C € and there is a
should have a spanning tree rooted at the interim mast&Pot node in) connected to every other node @ through
see Fig. 1. Our algorithm can easily incorporate absolufdlique directed paths.

measurements, and is robust to permanent robot drop-outs. o )
B. Description of the mobile robot group

Il. PRELIMINARIES We consider a team ofV mobile robots with processing
. . . . . and communication capabilities. Every robot has a distinct
In this se_ctu_)n, we mtroduc_:e our n_otatlon, terminologyd an detectable identity. Every robot carries a propriocepsgn-
the description of the mobile robotic group we study. sor to measure its self motion and exteroceptive sensing
devices to monitor the environment for localization feagur
A. Notation and communication graph terminology in its measurement range, which here are other robots in
the team. Exteroceptive sensors can uniquely identifyrothe
robots in the team and measure relative pose, range, bearing
or a combination of them. Every robot has a bounded
communication range, see Fig. 1, and the communications
happen in multi-hop fashion, i.e., every robot re-broaticas
every received message intended to reach the entire team.
®rhe ‘motion of each robot is described by its own linear
or nonlinear equations of motion. The collective motion
dequation of the team is given by:

Let R denote the set of real numbers aMg, represent the
set of real positive definite matrices of dimensiox n. We
denote by0,, ., the zero matrix of dimension x m, and
by I, the identity matrix of dimensiom x n. The transpose
of matrix A € R"*™ is AT. We useDiag(A,--- ,Ay) to
denote the block-diagonal matrix constructed from masric
Ai,...,Ay. Forfinite sets/; and Vs, we denote by;\V;
the set whose elements consist of all the element§/;of
that are not inl,. We distinguish the variables associate
to roboti by the superscript, e.g., x’ is the pose (i.e., x(k+1) =f(x(k),u(k)) + g(x(k))n(k), 1)
position and orientation) of robat %' is its pose estimate,
and P’ is the covariance matrix of its pose estimate. Th
cross-covarianceof the pose vectors of roboisand j is
P;;. We denote the propagated and updated variables,
%', at time-stepk by % (k) and %" (k), respectively. We
drop the time-step argument of the variables whenever

here x, u, and n are, respectively, the aggregated vec-
fors of the posex’ ¢ R", the inputu’ € R™
9d the process noism’ < RP', i € V. Here,
S _ fl 1 ..1 fN N N d _
X,Ll) - ( (X,Ll),---, (X ,/'11 )) _an g(X) -
]Riag(gl(xl)’_... gV (M), Where,f‘(x’,ul) and g*(x"), _
are, respectively, the system function and process noise
1In this note, we use the termoss-covariance to refer to the correlation coefficient f_unCt!on of the ropowt € V. We assume that th.e
terms between two robots in the covariance matrix of the engtevork. process noises’, i € V, are independent zero-mean white



Gaussian processes with a known variafe= E[nﬁni]. where (without loss of generality we let< b)

We model the relative measurement collected by relfiatm ) u o b pir
~ a ~

robot j as: Hy,=[0 " -H, 0 - H, 0 -,
zij(k + 1) = hi; (' (k), %7 (k) + v'(k), zi; €R™, (2) H,(k+1) = —aihab(i“'(k +1),x7(k+1)), (8)
X(L

whereh;;(x*,x7) is the measurement model apd is the } P ) .-
measurement noise of robotc V, assumed to be inde-  Hy(k+1) = @hab(i“ (k+1),x"(k+1)).
pendent zero-mean white Gaussian processes with knO\gn o .

. i T . ubstituting for (6) in (5b), we have:
covarianceR' = E[v" v']. All sensor noises are assumed A )
to be white and mutually uncorrelated. We show below how S,, = R*(k + 1) + Hy(k + 1)P* (k + 1)Hy(k+ 1)
using an EKF, relative measurements between robots are +I:Ib(k+1)Pb'(k+1)I:Ib(k+ T
used to improve the propagated states of the system. Here, we - . - T
assume that all the sensor measurements are synchronized. - I?b(k + Py, (k + DI?@““ +1)
—H,(k+ 1P, (k+1D)H,(k+1)7. 7
[1l. BENCHMARK CENTRALIZED COOPERATIVE

L OCALIZATION ALGORITHM Then, the Kalman filter gain is given by

_ p- Tg -1
In this section, we revisit the centralized EKF CL algorithm K(k+1) =P (k+ DHap(k + 1) Sap
of [7] as our benchmark solution. Our main contributiony\e partition K as K = [KL ,KMT, whereK; €

presented in the next section, is to offer a novel decomposgr' xn! is the portion of the Kalman gain used to update

tion of the computations of this algorithm which results in g pose estimate of the robot V. Then, for alli € V
decentralized implementation without the need to an all-to

all communication. K, = (P;,(k+ 1)H, — P, (k+1H,)S."". (8

Centralized EKF CL Initialization Finally, the collective pose update and covariance update
equations for the network are:

Fori € V, we initialize the EKF algorithm at:
_ . o+ - a

PY(k+1) = P (k+1)-K(k+1)SuK(k+1)",
Centralized EKF CL Propagation

where fori € V andj € V\{i}, it can be expanded as:
Using the collective motion model (1), the collective EKF

state and covariance propagation equations are: ’A‘Z:+(k+1) = ’A‘iv_(kJrl) + Kir?, (9a)

X (k+1) = (X" (k), u(k)), (3a) P (k+1) = P’_"(k+1)—Kz-SabKI (9b)

P (k+1) = F(k)PT(B)FE)T + G(k)Q(E)G(k)T, (3b) Pl (k+1) = Py (k+1) ~KiSuK ). (9c)
where F = Diag(F!,--- ,FY), G = Diag(G', - ,G") Observe that, despite ha}ving decoupled eqqations of motion
and Q = Diag(Q',---,Q"), with, for all i € V, Fi = the source of the coupling in the propagation phase is the

d g(&ﬁ(/{)) Then. fori e cross-covariance equation (4c). Upon an incidence of a rela
Ox? . )

2 £(%"F (k),u'(k)) andG' = 4 _ _
X tive measurement between robatandb, this term becomes

V, the propagation equation (3) can be rewritten as: ) C T . . .
non-zero and its evolution in time requires the information

si- it i .
X" (k+1)=f'(x" (k),u'(k)), (4a)  of these two robots. Thus, these two robots have to either
P (k+1)= Fi(k)Pi+(k)Fi(k)T+G’i(k)Qi(k)Gi(k;)T (4b) communicate with each other all the time or a centralized
- i + G . operation has to take over the propagation stage. As the
Py (k1) =F (k)P (R)F (k). j € V\{i}- (4c) incidences of relative measurements grow, more non-zero
Centralized EKF CL Update cross-covariance terms are created and the _cpmmunlcanon
_ _ _ cost to perform the propagation grows, requiring the data
While there are no relative measurements in the network, rxchange all the time with either a Fusion Center (FC) or all-
update happens, therefore, to-all robot communications, even when there is no relative
fc+(k +1) =x(k+1), P+(k +1) =P (k+1). measurement in the network. The update equations (9) are

) also coupled and their calculations need in principle a FC.
We assume that only one relative pose measurement takes

place at each time. Let robat make a relative pose mea- IV. THE Interim Master D-CLALGORITHM

surement of robok. The EKF update equation is obtained as

follows. The residual of the relative pose measurement and this section, we present our proposkuerim Master D-

its covariance are, respectively, CL algorithm which is a decentralized implementation of
R 1)7)217—(,{ 1), (5a) the centralized CL algorithm of the previous section. Here,

_ S we use the assumption below which generically is valid for
Sap=Hap(k+1)P"(k+1)Hap(k+1) +R*(k+1), (5b)  mpobile robot models:




Assumption 1: F*(k) is invertible for allk > 0 andi € V. P;-l forall j € VW{N} andl € {j +1,---, N}-because

Oof the symmetry of the covariance matrix we only need to

this decentralized algorithm. L&’ ¢ R™ > for alli € V, gave, &9 the upper trian_giulgr part of.this maj[rix.- In the

be a time-varying variable that is initialized @& (0) — T,,., following we assume that iP;; is not expllcnlyimalntalned

which evolves as: by roboti, the robot substitutes the value (B’lj)T for it.
The Interim Master D-CLworks as follows:

We start by introducing the new variables we use to devel

®'(k+1)=F'(k)® (k). , L
Interim Master D-CL _Initialization
Then, we write the propagated cross-covariances (4c) as:

4 - . Every robot: € V initializes its filter as follows:
Pi(k+1)=®"(k+ 1)Py(k)® (k+1)",  (10)

) o 1 0) erR”, PF(0)eM,:, ®(0) =1,
whereP;; € R**" fori,j € V andi # j, is a time- =i . . .

varying variable that is initialized aP;;(0) = 0. Pji(0) = 0ntscns, J €VMNY, L€ {j+1,+, N} (13)
When there is no relative measurement at time 1, (10)
results inP;;(k + 1) = P;;(k). Next, when there is a
relative measurement, we rewrite the update equations (Eyery roboti € V propagates the variables below:

and (8) of the centralized CL algorithm by replacing the P ; ; ; ;
cross-covariance terms by (10): X"(k+1)=f(x" (k),u'(k), ®'(k+1)=F'(k)®'(k),
P (k+1) =F k)P RF (k)T +G(k)Q (k)G (K)T.

Interim Master D-CL Propagation

S. = R®+ H,P“H, + H,P"H,
H,®"(k + 1)P o, (k)®"(k + 1)TI~{;_ (11) Interim Master D-CL Update

H, @b (k + 1) Py (k)@ (k + 1) H, While there are no relative measurements in the network,

o every roboti € V updates its variables as follows:
and the Kalman gain is

K, =®'(k+1)D;, ieV,

KTk +1) =" (k+1), PT(k+1) =P (k+1),

PL(k+1)=Pj;(k), jeVW{N}, le{j+1,--- N}
where

_ N _ . If there is a robotz that makes a measurement with respect
D; = (Poy(k)®" H, —Pyo(k)®° H, )Suy 1, i€ V\{a,b} b

to another robob, then robota is declared as the interim

D, = (Pab(k)cprf{;_(@a)—lpa'ﬁ;r)sab—{ (12) master and acquires the following information from robot
=T = aT T _ - -
Dy, = ((®")'P"H, —Py,(k)®" 'H, S, " landmark-message (fcb (k+1),®(k+1),P" (k + 1))‘

Notice that due to Assumption ®'(k), forall k > 0andi € - Ropotq makes the following calculations upon receiving the
V, is invertible. Letr® = (Sy) 2r?%, andD; =D;(Su) 2, landmark-message

1€Y. Then, we can write the state estimate and covariance

equations (9a) and (9b) as follows: r = zg, — hg (X7, %),
(k1) =% (k+ 1)+ ® (k+1)D; 2, S. = R® + H,PH, +H, P"H,
P (k+1)=P"(k+1)— & (k+1)D,D, ®(k +1)T. _H,e°P%,®" H, —H,e'P. & H,
Fori # j andi, j € V, we let D, = (#"'$°PL,@" H, — " 'P"H, )S, *,
Py(k+1) = Py(k) - DD, D, = (" 'P"H, - P}, & H,)S,, ?,
then the cross-covariance update (9c) can be rewritten aswhere H,(k + 1) = H,(x*,x”) and Hy(k + 1) =

H, (%% %"") are obtained using (6). We assume that the
communication graph has a spanning tree rooted at the
Therefore, at timek + 2, the propagated cross-covariancesnterim master, (seeFig. 1). The interim master passes the
satisfy (10). As such, we can reproduce the effect of thiollowing data, either directly or indirectly (by message
cross-covariance terms of the centralized CL using the vapassing), to the rest of the robots in the network:
ables®’(k)’s and P;;’s. Examining (5a), (6), (11) and (12)
shows that robot: can calculate these terms by acquiring UPdate-message

1 (k+1) € R?", ®°(k+1) € R""*"" andP" (k+1) € M,,» (a, b, 5% D,, Dy, @bTﬁ;sab%,@aTﬂzsab*%),
from robot b if it knew P;;(k), Vi, € V. Then robota

can assume the role of the interim master and issue tlvery roboti € V, upon receiving theipdate-messagérst
update terms for other robots in the network. Based on th@glculatesy; € V\{a, b}, using information obtained at.
observation, we develop oumterim Master D-CLalgorithm
by keeping a local copy oP;;’s at each robot € V), i.e.,

Pl(k+1)=® (k+1)P;;(k+ 1)@ (k+1)".

(NI

_ _ i T~ T _ - T
D, =P),®" H,S, ¢ - P/, @ H,S,"

)



and then updates the following variables wheje € per time-step of thénterim Master D-CLalgorithm in terms
V\{N}le{j+1,--- N} of the size of the mobile robot tear.

fci+(/f+1) = x"(k+1)+®'(k+1)D, t°, (14a) In the Interim Master D-CL algorithm, at the propagation

+1

i+ - ; = =T _; . stage the computations per robot are independent of the size
I: (k+1) = 1?: (k+1)7 qu]H_l)Dz i ®k+1), (14b) of the team but at the update stage, for each measurement
P (k+1) =P;(k)-D;D, . (14c) update, because of (14c), the computation of every robot is

of order N(N —1)/2. As multiple relative measurements are

Remark 4.1 (Multiple synchronized relative measurements):  processed sequentially, the computational cost per robot a
To accommodate multiple synchronized relative measurghe completion of any update stage depends on the number of
ments in the network, we use sequential updating (c.f. [18e relative measurements in the team, henceforth dengted b
ch. 3],[14]). In the Kalman filter development, sequentialy,. Then, the computational cost per roboO$N. x N?),
updating is possible under the assumption that the megnplying a computational complexity of ordé€r(N'*) for the
surements acrosime and sensors are white sequences. worst case where all the robots take relative measurement
To implement a sequential updating procedure in the with respect to all the other robots in the team, i, =
terim Master D-CL algorithm, we assume that all I’ObOtSN(N — 1) The storage cost per robot is of orc@(N2)
have an identical pre-specified teequential-updating-order which, due to the recursive nature of theerim Master D-
guideline indicating the priority order for robots to regtie CL algorithm, is independent oN.. This cost is due to
the landmark-messagend broadcast the update-messagehe initialization (13) and update equation (14c) which are
One can expect that the updating order should not dramajf order N(N — 1)/2. We complete our analysis by eval-
ically change the results. Discussion regarding the updagfting the communication cost. There is no communication
ordering can be found in [14, page 10] and references therefquired in the propagation stage of tiwerim Master D-CL
The sequential updating procedure in theerim Master D-  algorithm. However at the update stage, due to the actions
CL algorithm is then as follows: (a) every robote V  outlined in Remark 4.1 intra-network communications are
making relative measurements informs the entire team thatjeeded. Recall that every robot re-broadcasts any received
has madeV; relative measurements; (b) in the order dictate¢hessage other than their landmark-messagesM.dte the
by sequential-updating-ordethe interim master robots, one number of the robots that have made a relative measurement
by one, proceed by requesting thrdmark-messagfom  at the current time. Therefore, to fulfill the steps (a) and (c
their landmarks and (c) broadcasting thedate-messagél  of the sequential updating in Remark 4.1, every robot will

Relative measurements help the robots improve their |&"d Up broadcasting, respectively, and IV, times. Every
calization accuracy but they can not bound the overalPPOt can be a master a¥, robots and/or a landmark of
uncertainty. As shown in [7], even when all the robots iVa robots, requiring that robot to, respecuvely, broadcast
the team are making relative measurements simultaneouslyy requests andV, landmark-messages, to fulfill step (b).
the observability matrix of the collective system is ranfide AS Vo < Ny < N and N, < N, then the total number of
cient. This rank deficiency can be removed by incorporatingroadcast per robot is of order(\V. ), implying a worst case

— 2
absolute pose measurements in the the process. As sudl; = V(/V —1)) broadcast cost aD(IV*) per robot. If the
the tracking performance can be improved significantly ifommunication range is unbounded, the broadcast cost per

robots have occasional absolute positioning informatiog,, 0ROt iO(max{N;, N, }), with the worst case cost of order
via GPS o relative measurements taken from a fixed lan§(\V). The communication message size of each robot in
mark with a priori known absolute location. The inclusionPoth single or multiple relative measurements is independe
of absolute measurements in theterim Master D-CLis ©f the group sizeéV and as such for the worst case scenario
straightforward. The robot making an absolute measureméfi communication message size is of ord&i ).

is an interim master that can calculate thedate-message The results of the analysis above are summarized in Table |
using only its own data and then broadcast it to the team.and are compared to those of a trivial decentralized imple-
Finally, observe that thénterim Master D-CLalgorithm is ~ Mentation of the EKF for CL (denoted by T-D-CL) in which
robust to permanent robot dropouts from the network. THEVETY roboti € V' at the propagation stage computes (4)-
operation only suffers from a processing cost until all tsbo YSINY the ‘broadcastdﬁ](k) from every other team member
become aware of the dropout. Also, notice that an externd| € Y\{i}—and at the update stage computes (8) and
authority, e.g., a search-and-rescue chief, who needsainob (9)-using the broadcast,(b, r*, Sa, Ha, Hp, R") from

the location of any robot, can obtain this location update ifPPOt a that has made relative measurement from rdbot

] ' : b b
any rate (s)he wishes to by communicating with that roboRRObot a calculatesS,,, H,, Hy, by requesting X, P%)
This reduces the communication cost of the operation, ~ fom robotb. We assume that multiple measurements are

processed sequentially and the communication procedure is
A. Complexity analysis multi-hop. Although the overall cost of the T-D-CL algorith
For the sake of an objective performance evaluation, wis comparable with thelnterim Master D-CL algorithm,
provide a thorough study of the computational complexityihis implementation has a more stringent communication
the memory usage, as well as communication cost per robepnnectivity condition, requiring atrongly connected di-



TABLE I: Complexity analysis per robot of theterim Master D-CLalgorithm (denoted by IM-D-CL) compared to that of
the trivial decentralized implementation of EKF for CL (d¢&d by T-D-CL) introduced in Subsection IV-A.

Computation Storage Broadcast Message Size Connectivity
Algorithm IM-D-CL T-D-CL IM-D-CL T-D-CL IM-D-CL T-D-CL IM-D-CL | T-D-CL IM-D-CL T-D-CL
Propagation o(1) O(N?) O(N?) | O(N?) 0 O(N) 0 o(1) None strongly
Update per N. N. x N2 N. x N2 N2 N2 N N 1 1 spanning tree| connected
relative measur. O(N= x ) O(N=x ) o) owT) ON:) OWN-) ow ow rc?oted gt the| digraph
Overall worst case O(N4) O(N4) O(N2) O(NQ) O(N2) O(NQ) O(1) O(1) master robots

*Broadcast cost is for multi-hop communication. If the communication rangaelisunded, the broadcast cost per roboDienax{ Ny, N, }) with the worst cost oD (V).

graph topology (i.e., all the nodes on the communicatiorintra-network communication is needed. The communication
graph can be reached by every other node on the grapghgtween robots is only required in the update stage when
at each time-step, regardless of whether there is a relativee robot makes a relative measurement with respect to
measurement incidence in the team. As an example, notiaaother robot. The algorithm declares the robot made the
that the communication graph of Fig. 1 is not stronglyneasurement as interim master that can, by using the data
connected and as such the T-D-CL algorithm can not becquired from the landmark robot, calculate the updategerm
implemented whereas thiaterim Master D-CL algorithm  for the rest of the team and deliver it to them by broadcast.
can be. Recall that thiaterim Master D-CLalgorithm needs Future work involves extension of the algorithm to let new
no communication at the propagation stage and it onlsobots join the group and also study the effect of missed

requires an existence of a spanning tree rooted at the rollmbadcast messages as well as asynchronous operation.

making the relative measurement at the update stage. ¥inall
the Interim Master D-CLalgorithm incurs less computational

cost at the propagation stage. (1

We close this section with a comparison study with re-
spect to the decentralized MAP algorithm of [8]. The [
simulations reported in [8] indicate that the MAP strat-
egy for CL is less conservative than the EKF strat-
egy. However, this improvement can come with a de-[!
manding computation/communication/storage cost as a re-
sult of the MAP strategy’s batch processing nature. Ref4]
call that the MAP computes the localization estimates for
the entire time-steps until the current time-stép, as
opposed to the Kalman filtering, a recursive algorithm,
which computes only the current localization estimate ev.®]
ery time-step. The decentralized algorithm of [8] con-
sists of a7-step procedure, required to be repeatedv [6]
times, with a reported computational and a broadcast cost
of, respectively,{O(k.N),O(N + log(N)),O(k.),O(k.+
log(N)),O0(k.N),O(k.+log(N)),0(k.N)} and{0,0(1),0,
0(1),0(k.),0(1),0} per repetition regardless of wether
there is a relative measurement among the team memberg;
Such procedure results in a total computational complefity
order O(k?N?) and a broadcast cost 6f(k2N) per robot.
Finally, the storage cost per robot of the D-CL algorithm g
of [8] is of order O(k.N). As such as time elapses and
k. grows the cost of D-CL algorithm of [8] can become
substantially larger than that of thiaterim Master D-CL |1
algorithm. Note that the broadcast cost of [8] is calculated
based on the assumption that a broadcast by any robot can
reach the entire team. This cost will go up to deal with multiry 1
hop communications by means of re-broadcasting.

(7]

V. CONCLUSIONS
o [12]
For a team of communicating robots, we presented a de-
centralized cooperative localization algorithm that i@y
equivalent to the centralized EKF algorithm of [7]. In this
decentralized algorithm, the propagation stage is fully dg14]

coupled i.e., the propagation is a local calculation and no

(23]
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