
Proceedings of the ASME 2015 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference

IDETC/CIE 2015
August 2-5, 2015, Boston, Massachusetts, USA

DETC2015-46535

FOCUSED REFINEMENT IN THE RRT*: TRADING OPTIMALITY FOR IMPROVED
PERFORMANCE

Beth Boardman ∗

Sonia Martı́nez
Mechanical and Aerospace Engineering

University of California San Diego

9500 Gilman Dr, La Jolla, California 92093-0411
Email: {bboardman, soniamd}@ucsd.edu

Troy Harden

Los Alamos National Laboratory

PO Box 1663, MS J580, Los Alamos, New Mexico 87545

Email: harden@lanl.gov

ABSTRACT
This paper investigates how to limit the exploration property

of the RRT* algorithm in order to decrease the computation time

needed to produce a low-cost, but good enough, path. We aim

to do this by (i) focusing the attention of the RRT* algorithm on

paths that are found quickly by RRT*, and by (ii) reducing the

number of nodes in the obtained paths. The latter is achieved by

an online smoothing process that aims to connect added nodes

directly to their grandparents. Extensive two-dimensional sim-

ulation results are provided to examine how the number of ob-

stacles in an environment affects the proposed extensions. Sim-

ulations for a Dubins’ vehicle are presented to show how the

modifications perform for vehicles with differential constraints.

INTRODUCTION
Motion planning for high-degree-of-freedom systems in

many obstacle environments is a difficult problem that has stim-

ulated a main research effort in the robotics field. By relaxing

the notion of completeness to resolution or probabilistic com-

pleteness, sampling-based motion planners can return a feasible

path to a goal configuration in a relatively fast manner. The ob-

tained path can even satisfy asymptotically optimal performance

at the cost of a higher run-time. However, obtaining the opti-

mal path may be detrimental in real-time implementations, for

which the computation time can outweigh the benefit of the path

∗Address all correspondence to this author.

optimality. Motivated by this issue, we investigate and analyze

exploration-exploitation tradeoffs in the Rapidly Random Tree

Star exploration algorithm.

Rapidly-exploring Dense Tree algorithms (RDTs, also

known as RRTs) [1] and Sampling-Based Roadmaps (SBRs, in-

cluding Probabilistic Roadmaps (PRMs) [2]) are sampling-based

motion planners which are resolution or probabilistically com-

plete and are able to find a feasible path to the goal in the pres-

ence of narrow corridors. As opposed to SBRs, RDTs do not re-

quire pre-processing and can find a path relatively quickly. How-

ever, the path produced by these planners can be very jagged and

result in unnecessary motion that can increase the execution time.

Consequently, this motivated research into how to obtain better

paths from these planners.

One way to obtain improved paths is to apply a post-

processing algorithm. In [3], a post-processing algorithm for

path smoothing is presented for any given path. The algorithm

limits the allowable deviation from the original path and results

in a path with fewer nodes. A divide and conquer method is used

in [4] in order to shorten any given path by connecting the first

and last nodes in the path directly. If not successful, then the set

of nodes in the path list is bisected until the connections are suc-

cessful. Similarly, the post-processing algorithm in [5] randomly

selects two points from the path list and attempts to replace the

segment between them with a straight line. This process is re-

peated a predetermined number of times.

A subsequent effort focuses on obtaining paths that guaran-

1 Copyright c© 2015 by ASME

tee asymptotic optimality with probability one. In this line of

work, we can find PRM* and RRT* [6]. The RRT* paths can be

composed of many more nodes than are strictly necessary. The

RRT* can handle any-time applications [7] and manipulators [8].

The Ball-tree algorithm, presented in [9], is a sampling-based

motion planner that improves the performance of the RRT and

RRT* by using volumes of free-space instead of points in the

free-space as the vertices of the tree.

The following papers also study the effects of exploitation

versus exploration on the RRT*. Akgun et al. [10] uses local

biasing to choose the sampling point based upon the current best

path to the goal. A node, q, is selected from the path and then

the sampled configuration point is, in comparison to q, chosen

to be closer to the path between q’s parent node and child node.

The RRT*-Smart in [11] finds an initial path to the goal, then it

optimizes it using first a smoothing technique, and then it further

shapes it by biasing sampling to balls around the nodes in the

optimized path. While these two papers share the same idea of

exploitation of a given path to the goal, this paper presents an

alternative approach to choosing the biased sampling points and

smooths the entire tree, not just a single path. This more global

methodology can lead to a further cost reduction, and this paper

evaluates the computational tradeoffs.

This paper introduces the Focused-Refinement algorithm, a

modification of RRT*, to reduce the computation time needed

to obtain a low-cost path to the goal. This is done by exploring

the environment quickly until a set of paths to the goal is found.

Then, the algorithm focuses on lowering the cost of this set of

paths while periodically exploring the environment. In this way,

the algorithm returns an asymptotically optimal path within the

regions that are more intensively exploited. We present a novel

way of uniformly sampling randomly within these regions that,

with the right parameters, can recover the entire configuration

space. We combine this idea with a so-called grandparent con-

nection modification to reduce the number of nodes in the path,

and thus, lower the cost. This grandparent connection strategy

acts similar to the path smoothing algorithms discussed above

except the path is smoothed directly in the motion planning algo-

rithm after each node is added. Also, unlike the earlier smoothing

techniques, our grandparent connection smooths out the entire

tree, not just a single path which results into a lower cost.

The paper is organized as follows. First, the RRT* algorithm

is reviewed. Then, the details of the proposed algorithm modifi-

cations are presented. These are then analyzed through extensive

simulation. Finally, conclusions and ideas for future work are

presented.

RAPIDLY-EXPLORING RANDOM TREE STAR
This section briefly describes the RRT* algorithm by Kara-

man and Frazzoli which is theoretically analyzed in [6]. The

kinodynamic RRT* is presented in [12].

The RRT*, outlined in Algorithm 1, builds a tree, T which

is dense with probability one in the entire configuration space,

X , as the number of samples, n, goes to infinity. Denote by Xfree

the free configuration space in X and Xobs as the obstacles space.

The tree is composed of a set of vertices, v ∈ T .V , and edges,

e ∈T .E . Each edge is an ordered pair of vertices e1,2 = (v1,v2),
where v1 is the parent and v2 is the child. We use Cost as the no-

tation for the cost function being minimized. Each edge added to

T has a cost associated with it, denoted cedge(e), where e∈T .E .

In the original work by [6], the edge cost considered is the cost-

to-go; that is the cost of e1,2 = (v1,v2) is the cost of moving from

the parent v1 to the child v2. Then, the cost of a vertex, Cost(v),
is the sum of the costs of the edges connecting the root to v.

The paths in T are then asymptotically optimal, meaning that as

n→ ∞ the optimal path from the initial configuration, xI ∈ Xfree,

to any other configuration in Xfree is recovered. More precisely,

the functions involved in the RRT* process are described as fol-

lows. With some abuse of notation, we will use the configuration,

xv, instead of v.

After initializing T at xI , the RRT* begins by using the

Sample function to output xrand, a uniformly sampled random

configuration from Xfree. The Nearest function finds the near-

est vertex, xnearest ∈ T , and extends T toward xrand a distance ε

from xnearest to get xnew.

Next, the set of near vertices from T with respect to xnew

are output as the set Xnear from the function Near. Vertices that

are farther than r = min(ε,γ(log(nv)/nv)
(1/d)), where nv is the

number of vertices in T , d is the dimension of the configura-

tion space, and γ is an independent parameter, are omitted from

Xnear. The best parent for xnew, determined in FindBestParent, is

the vertex in Xnear that has a collision free path with the lowest

Cost(xnew), as outlined in Algorithm 2. The paths that connect

the vertices to each other (determined using Steer), do so ac-

cording to the system dynamics. Only collision free edges are

added to T . The collision checker, CollisionFree, returns true if

the edge is collision-free. If xnew is added to T , then Rewire at-

tempts to add the other vertices in Xnear as children of xnew based

upon a lower cost and collision-free edge. The Rewire function

is outlined in Algorithm 3.

THE FOCUSED-REFINEMENT AND GRANDPARENT
CONNECTION MODIFICATIONS

In this section, two extensions to the RRT* are described

in detail. The first is the Focused-Refinement (FR) modifica-

tion that attempts to recover a near optimal path much quicker

than RRT*. The second extension, the grandparent connection,

is aimed at reducing the number of nodes in the path to the goal

and reducing the computation time needed to discover the opti-

mal path.

2 Copyright c© 2015 by ASME

Algorithm 1 T = (V,E)← RRT∗(xI ,ε)

T ← InitializeTree();
T ← InsertNode(/0,xI,T);
for i = 1 to i = N do

xrand← Sample(i);
xnew← Nearest(T ,xrand,ε);
Xnear← Near(T ,xnew);
xparent← FindBestParent(Xnear,xnew);
if xparent 6= NULL then

T ← InsertNode((xparent,xnew),xnew,T);
T ← Rewire(T ,Xnear,xnew);

end if

end for

return T

Algorithm 2 xparent← FindBestParent(Xnear,xnew)

xparent← /0;

cmin← ∞;

for xnear ∈ Xnear do

enear,new← Steer(xnear,xnew);
cnear← Cost(xnear)+ cedge(enear,new);
if cnear < cmin and CollisionFree(enear,new) then

xparent← xnear;

cmin← cnear;

end if

end for

return xparent;

Algorithm 3 T ← Rewire(T ,Xnear,xnew)

for (xnear) ∈ Xnear do

enear,new = Steer(xnew,xnear);
if Cost(xnew)+ cedge(enear,new)< Cost(xnear) then

if CollisionFree(enear,new) then

xoldparent← Parent(T ,xnear);
T .remove((xoldparent,xnear));
T .add((xnew,xnear));

end if

end if

end for

return T ;

The Focused-Refinement algorithm

As shown in [6], the RRT* initially constructs a tree that is

the same as the the RRT and then, as more nodes are added,

the RRT* begins to look at many neighboring vertices to re-

cover an asymptotically optimal path. The RRT* finds and re-

fines all paths in the configuration space. The refinement exten-

sion, Focused-Refinement (FR), focuses on refining only those

paths that have already reached the goal region after some time

in hopes of reducing the amount of time needed to find a suffi-

ciently optimal path.

The FR begins the construction of a tree using the RRT*

algorithm until there exists at least one path that reaches the goal

region. This set of paths is denoted as Π, with p vertices defining

a set VΠ. The FR has two options: exploring the configuration

space or exploiting Π by lowering its cost. If exploring, then the

algorithm proceeds as the RRT* but if exploiting then the set of

vertices in Π, VΠ, is determined. The sample xnew is determined

by perturbing a vertex randomly drawn from the set VΠ. The FR

then proceeds as the RRT*.

The pseudo code for the FR is presented in Algorithm 4,

and uses three parameters. The first is Cexploit ∈ N, which is

the number of consecutive iterations the FR will exploit Π. The

number of consecutive iterations to explore Xfree is the second

parameter needed, Cexplore ∈ N. The third parameter, Creset ∈ N,

tells the algorithm when to update VΠ. The sampling region de-

fined by VΠ does not change dramatically every iteration, there-

fore, to save computation time, the set VΠ is only updated every

Creset +Cexplore iterations. If Cexploit = 0 and Cexplore = ∞, the FR

becomes the RRT*. In order to take advantage of the exploita-

tion property of the FR, Cexploit should be greater than Cexplore.

In environments with multiple routes to the goal, Cexplore can be

increased in hopes of finding a better or more direct route to the

goal than what is found first.

Exploitation only occurs if GoalReach returns true (there ex-

ists at least one path to XG) and exploitation has occurred less

than Cexploit times consecutively. Once Π has been exploited

Cexploit iterations, the RRT* is allowed to explore the space as

normal for Cexplore iterations. The following are the details of

how xnew is chosen when in the exploitation stage of the FR.

The new sample, xnew, is determined as illustrated in Fig. 1

and in Algorithm 5. Given a d-dimensional configuration space,

X ⊂R
d , consider k ∈ {1,2, · · · ,d}. First, the minimum and max-

imum k-component from VΠ ∈R
d×p, wmin = minV k

Π and wmax =
maxV k

Π, are found. Here, V k
Π is the set of all k-components of the

vertices in VΠ. Next, the k-component of xnew (xk
new) is taken as

a uniformly random sample between wmin− ε and wmax + ε . For

every j 6= k, the j-component of the vertex whose k-component

is nearest to xk
new is determined, x

j
nearest, where

xnearest = argmin
x∈VΠ

‖xk
new− xk‖.

Given ε > 0, the j-component of xnew is uniformly sampled be-

tween x
j
nearest − ε and x

j
nearest + ε . The FR alternates through

which k-component is used to determine xnew, this provides a

uniform distribution of samples around Π. As ε is increased, the

entire configuration space is uniformly sampled randomly, thus

recovering the original RRT*.

3 Copyright c© 2015 by ASME

Note that VΠ can consist of multiple distinct paths to the

goal. Determining distinct paths is non-trivial and potentially

time-consuming. In general, and in the simulation section, VΠ

is taken to be only the current best path. Efficiently determining

distinct paths is a subject of future work.

ε

ε ε

x
k

x
j
new

x
k

new

xnearest

wmin wmax

x
j

FIGURE 1: An illustrative example of how the FR algorithm

chooses xnew when refining a single path. The red rectangle is

an obstacle in the environment. The blue dots are the the set of

vertices, VΠ, used to determine the region from which xnew is

sampled. The k-component of xnew is a uniform random sample

between the maximum and minimum (plus and minus ε , respec-

tively) k-component values from VΠ. Next, with respect to xk
new,

determine the nearest k-component from VΠ and label its corre-

sponding j-component as x
j
nearest. Finally, the x

j
new is a random

value from between x
j
nearest−ε and x

j
nearest+ε , ε > 0. The sample

xnew is represented as the green dot.

The Grandparent Connection modification
Reducing the amount of time needed to determine the con-

trols to get from one node to the next is important for high-

dimensional systems. One way of doing this is to reduce the

number of nodes in a path; this idea is what inspires the grand-

parent connection, RRT*-gp. Before adding a node to the tree,

the modified algorithm attempts to connect directly to its grand-

parent node, as outlined in Algorithm 6. A successful connection

to the grandparent occurs when a lower cost, collision-free path

is found. It is also predicted that the grandparent connection will

produce smoother paths with fewer nodes. Because the grandpar-

ent connection is applied during construction of the tree as every

node is added to the tree, the grandparent connection smooths out

every path in the tree. There are two advantages to smoothing the

entire tree as opposed to a single path. First, the grandparent con-

nection can potentially find a better route than the first recovered.

Algorithm 4 T = (V,E)←
FR(xi,ε,d,Cexploit,Cexplore,Creset)

T ← InitializeTree();
T ← InsertNode(/0,xi,T);
creset = 1; cexploit = 1; cexplore = 1; k = 1;

for i = 1 to i = N do

if GoalReach and cexploit <Cexploit then

if creset = 1; then

VΠ = PathSet(T);
end if

(creset,cexploit)←UpdateParameters(creset,cexploit,Creset);
xnew = NewPointPathSet(VΠ,ε,k,d);
k← UpdateDimension(d);

else

(cexplore,cexploit)←UpdateParameters(cexplore,cexploit,Cexplore);
xrand← Sample(i);
xnew← Nearest(T ,xrand,ε);

end if

Xnear← Near(T ,xnew);
xparent← FindBestParent(Xnear,xnew);
if xparent 6= NULL then

T ← InsertNode((xparent,xnew),xnew,T);
T ← Rewire(T ,Xnear,xnew);

end if

end for

return T

Algorithm 5 xnew← NewPointPathSet(V,ε,k,d)

wmin = min(V k);
wmax = max(V k);
xk

new = Rand(wmin− ε,wmax + ε);
xnearest = NearestComponent(V,xk

new);
for j = 1 to j = d; do

if j 6= k then

vmin = x
j
nearest− ε;

vmax = x
j
nearest + ε;

x
j
new = Rand(vmin,vmax);

end if

end for

Second, if the tree is ever needed for replanning (i.e. when deal-

ing with unexpected obstacles as in [13–18]), then only having

a single smoothed path is a disadvantage compared to having a

tree filled with smoothed paths. The grandparent connection can

also be used in combination with the FR algorithm.

4 Copyright c© 2015 by ASME

Algorithm 6 xparent← FindBestParent(Xnear,xnew)

xparent← /0;

cmin← ∞;

for xnear ∈ Xnear do

enear,new← Steer(xnear,xnew);
cnear← Cost(xnear)+ cedge(enear,new);
if cnear < cmin and CollisionFree(enear,new) then

xparent← xnear;

cmin← cnear;

end if

if xparent 6= /0 then

xgrandparent← T .parent(xparent);
egrandparent,new← Steer(xgrandparent,xnew);
cgrandparent← Cost(xgrandparent)+ cedge(egrandparent,new);
if cgrandparent < cmin and CollisionFree(egrandparent,new)
then

xparent← xgrandparent;

cmin← cgrandparent;

end if

end if

end for

return xparent;

SIMULATION RESULTS
Simulations of the proposed algorithms were implemented

in MATLAB on a computer with a 2.66 GHz Intel Core i7 pro-

cessor and 8 GB RAM running Mac OS X 10.8.5. The perfor-

mance of the proposed algorithms is compared to the perfor-

mance of the RRT*, RRT*-smart [11], and RRT with smooth-

ing [4]. The RRT*-smart begins by building an RRT*, but once

a path to the goal is determined, the path is smoothed and then the

algorithm continues to refine the path using samples drawn from

balls of radius epsilon centered at each node in the smoothed

path. The path smoothing used in the simulations attempts to

connect the first and last node in the path list, then if not success-

ful the set of nodes in the path list is bisected until the connec-

tion is successful. The RRT is very similar to the RRT*, except

that xnew is added to the tree as a child of xnearest and there is

no Rewire phase. There are two different vehicle types tested in

simulation. The first is a vehicle without differential constraints

with the graph edge cost being Euclidean distance. The second is

a Dubins’ vehicle with the graph edge cost being the travel time.

Two-Dimensional Euclidean Space
The results presented in this section are an average over 25

simulations for each algorithm. The same 25 sample sequences

of 20 thousand configurations, drawn randomly from Xfree, are

used for each algorithm’s results. The FR simulation results are

run with Cexploit = 21, Cexplore = 1, Creset = 10, and ε = 0.5. For

consistency, the RRT*-smart also used an ε = 0.5.

The algorithms are tested in five two-dimensional environ-

ments, each containing a different number of obstacles: 10, 25,

50, 75, and 100. A pentagon is used as the standard obstacle

that is randomly inserted in the environment 10, 25, 50, 75, or

100 times. Because the placement is random, the obstacles are

allowed to overlap.

To begin, the graphs of the trees made by the RRT* and FR,

with and without the grandparent connection, in the 50 obstacle

environment are shown in Figs. 2a-2c. These represent a typical

tree produced by the respective algorithms.

Average Cost For each of the five environments,

Figs. 3a - 3e show the average minimum cost of the path to the

goal plotted as a function of the run-time for each of the five al-

gorithms, RRT*, RRT*-gp, FR, FR-gp, and RRT*-smart. The

RRT* and FR find the same initial path, Π, at the same time.

But, because the FR switches to sampling near Π, the cost for

FR initially decreases much quicker compared to the RRT*. The

RRT*-smart initially finds a low cost path in comparison to the

RRT* and FR. But, because the RRT*-smart does not continue

to explore, after an initial cost decrease, the cost flattens out. The

RRT*-smart also has an increased run-time due to the extra col-

lision checks performed during the path smoothing stage every

time the cost decreases. The RRT*-gp and FR-gp both find low

cost initial paths and continue to decrease the path cost, but at a

much slower rate compared to the FR-gp. The FR-gp decreases

the path cost the fastest of all five algorithms and by the end of

the 20 thousand iterations has found the lowest cost path.

Table 1 compares the average cost of the first path found

by the RRT* and RRT*-gp to the RRT with smoothing applied.

For comparison the average cost of the best path found near the

end of the algorithm run-time of the RRT* and RRT*-gp are also

presented. The optimal cost is the single best path cost found

by the simulations. Each path cost is compared to the optimal

cost and the cost error is given. In all environments, the first

path the RRT*-gp finds is lower than that of the RRT-smooth,

usually at the expense of an increase in run-time. As the RRT*-

gp is run longer, to 50 seconds in the 10 obstacle environment,

the cost error decreases and in the more complex environments

this decrease is significant. In the 100 obstacle environment the

RRT-smooth has a path cost error of 11.33%, the RRT*-gp orig-

inally finds a path with a cost error of 10.73%, and then after

450 seconds the RRT*-gp finds a path with cost error of 2.53%.

This drop in cost is attributed to the exploration property of the

RRT*-gp which was able to find a lower cost path.

A comparison of the algorithms’ average path cost at a given

run-time, toward the end of the 20 thousand iterations, is in Ta-

ble 2. The average costs are compared to the optimal cost and the

error is given. In all environments the FR-gp produced the best

paths. The reason the RRT*-smart does not perform as well is

because it does not continue to explore the environment looking

5 Copyright c© 2015 by ASME

00

1

2

2

3

4

4

5

6

6

7

8

8

9

10

10

(a) FR

00

1

2

2

3

4

4

5

6

6

7

8

8

9

10

10

(b) RRT*-gp

00

1

2

2

3

4

4

5

6

6

7

8

8

9

10

10

(c) FR-gp

FIGURE 2: These are typical trees produced in the 50 obstacle two-dimensional Euclidean environment. The obstacles are outlined

in red and the trees are in blue. Figure 2b is the RRT* tree with grandparent connection. The FR produced the tree in Figure 2a and

Figure 2c is the FR with grandparent connection. The minimum cost path to the goal region for each algorithm is outlined in black.

for a better route and it spends extra time smoothing the current

best path. The proposed FR-gp is the algorithm most closely re-

lated to the RRT*-smart. In all but the 75 obstacle environment,

the FR-gp has a cost error less than half of the cost error of the

RRT*-smart. All of the proposed modifications perform better

than the RRT*.

Number of Nodes The RRT* and FR produced paths

with an increasing number of nodes, this is due to the limited

connection range xnew has to the vertices in the tree. The grand-

parent connection modification substantially decreased the num-

ber of nodes in both the RRT*-gp and FR-gp. The paths from

the FR simulations show an increase in the number of nodes

in the path compared to the RRT*, which is expected. The

RRT*-gp and FR-gp found paths with fewer nodes than their

non-grandparent connection counterparts, RRT* and FR, respec-

tively. This reduction in the number of nodes in the path is one

of the desired effects that was expected.

Dubins’ Vehicle

Initial simulations were also run for a Dubins’ vehicle, us-

ing the same algorithm parameter values as the Euclidean simu-

lations. The results are averaged over ten simulations in the 10,

25, and 50 obstacle environments. Each simulation was run for

10,000 iterations. The dynamics for the Dubins’ vehicle are

ẋ(t) = vcos(θ) (1a)

ẏ(t) = vsin(θ) (1b)

θ̇ (t) = u, |u| ≤
v

ρ
, (1c)

where v is the speed of the vehicle and ρ is the minimum turning

radius. It is assumed that both v and ρ are constant (v = 0.1 and

ρ = 0.1). The optimal trajectory between two configurations for

these dynamic constraints is discussed in [19]. Simulations were

not done in the 75 and 100 obstacle environments because they

produced corridors that were too narrow for the Dubins’ vehicle

trajectory with ρ = 0.1.

Average Cost Figures 4a-4c show typical trees produced

by each of the four algorithms. The FR tree, in Fig. 4a, has not

explored the full configuration space as it has focused on sam-

pling around the path to the goal. The grandparent connection

modifications, in Figs. 4b and 4c, produced trees with straighter

paths, which is beneficial for the Dubins’ vehicle as the paths

without the grandparent modification tend to be very curvy and

even circular.

Table 3 compares the RRT* and RRT*-gp to the RRT and

RRT with path smoothing. The average cost of the first path

found and the average run-time at which it was found are shown

and compared to the optimal cost via the calculated error. The

optimal cost is the cost of the single best path found in the sim-

ulations. For further comparison the average cost of the RRT*

and RRT*-gp at a run-time close to the end of the simulation

is presented. The RRT-smooth and the RRT*-gp both produce

initial paths whose average cost is significantly less than those

produced by the RRT and RRT*. In the 10 obstacle environ-

ment, the RRT*-gp initially finds, on average, a better path than

the RRT-smooth and as the RRT*-gp continues to run its aver-

age path cost decreases further. In the 25 obstacle environment

the RRT-smooth on average produces the better path, then even-

tually the RRT*-gp reduces its average path cost to that of the

RRT-smooth.

The average path cost near the end of the simulations’ run-

6 Copyright c© 2015 by ASME

0 20 40 60 80 100
14

15

16

17

18

C
o

st

Run-Time (s)
(a) 10 Obstacles

0 20 40 60 80 100 120 140
14

15

16

17

18

19

C
o

st

Run-Time (s)
(b) 25 Obstacles

0 50 100 150 200 250
14.5

15

16

17

18

18.5

C
o

st

Run-Time (s)
(c) 50 Obstacles

0

20

100 200 300 400 500
16

17

18

19

20.5

C
o

st

Run-Time (s)
(d) 75 Obstacles

20

100 300 500 700
17

18

19

20.5

C
o

st

Run-Time (s)
(e) 100 Obstacles

FIGURE 3: Minimum cost of the path to the goal as function of the run-time for (left-to-right, top-to-bottom) 10, 25, 50, 75, and 100

obstacles in the Euclidean environment. The blue-◦ are the results for the RRT*, cyan-� for the results of the RRT*-gp, green-∗ for the

FR, red-△ for the FR-gp, and magenta-⋄ for the RRT*-smart.

times for the RRT*, RRT*-gp, FR, FR-gp, and RRT*-smart are

compared in Table 4. The optimal cost is the single best cost

found by the simulations. The average costs are compared to

the optimal cost and the cost error is calculated. The FR-gp on

average produced the best path and the RRT* produced the worst.

Number of Nodes While the Dubins’ vehicle simula-

tions show that the grandparent connection modification can, on

average, reduce the number of nodes in the best path to the goal,

the reduction is not as significant as seen in Euclidean simula-

tions. The Dubins’ vehicle simulations for the FR algorithms

increased the number of nodes but once again, the increase is not

as dramatic as seen in the Euclidean simulations.

CONCLUSION AND FUTURE WORK

In conclusion, the Focused-Refinement algorithms decrease

the minimum cost path much quicker than the standard RRT*.

The grandparent connection modification decreases the mini-

mum cost path in low obstacle density environments. More work

is needed to determine how effective the grandparent connec-

tion is in environments with high obstacle density. The Dubins’

vehicle simulations show that the Focused-Refinement and the

grandparent connection can be useful modifications to the RRT*

for vehicles with differential constraints. More Dubins’ vehicle

simulations are needed to determine how efficient the FR and

grandparent connection are in higher obstacle density environ-

ments.

More analysis will be done to analyze the performance of the

Focused-Refinement and the grandparent modification for higher

dimensional configuration spaces. Ways to more efficiently re-

cover VΠ when there are two or more distinct paths are being

investigated. Because the optimal path is not always within the

region defined by ε and VΠ based on the first path the RRT*

finds, especially in the denser environments, it may be beneficial

to wait to exploit Π until it contains two or more sufficiently dif-

ferent paths. The tuning of ε to deal with higher obstacle density

environments should also be investigated.

7 Copyright c© 2015 by ASME

TABLE 1: This table compares, for each of the five Euclidean environments, the performance of the algorithms when they return their

first path. The average costs of the first path, and average run-time at which that path was recovered, are shown for the RRT, RRT-smooth,

RRT*, and RRT*-gp. The cost of the first path is compared to the optimal (best path found) cost and the error is calculated. Further

comparison is given to the path cost of RRT* and RRT*-gp at a time that is near the end of the algorithms’ run-time.

First Path Final Path

RRT RRT-Smooth RRT* RRT*-gp RRT* RRT*-gp Optimal

Run-Time (s) 6.74 6.74 6.99 7.04 50.00 50.00

10 obs Cost 17.63 14.46 17.10 14.35 15.20 14.30 14.18

Error (%) 24.33 1.95 20.57 1.22 7.20 0.84

Run-Time (s) 11.88 11.92 13.77 12.98 100.00 100.00

25 obs Cost 18.34 15.13 17.65 14.78 15.34 14.60 14.31

Error (%) 28.17 5.77 23.41 3.30 7.20 2.07

Run-Time (s) 33.82 34.00 37.72 32.92 160.00 160.00

50 obs Cost 19.24 16.39 18.08 15.99 15.63 15.33 14.44

Error (%) 33.25 13.51 25.17 10.73 8.25 6.13

Run-Time (s) 101.74 102.24 139.33 115.68 400.00 400.00

75 obs Cost 21.62 18.74 18.84 17.90 16.85 16.60 15.14

Error (%) 42.83 23.81 24.46 18.26 11.34 9.64

Run-Time (s) 156.68 157.30 211.94 180.26 450.00 450.00

100 obs Cost 21.93 19.04 19.11 18.24 17.97 17.54 17.11

Error (%) 28.20 11.33 25.17 10.73 5.06 2.53

ACKNOWLEDGMENT

This work was supported by Los Alamos National Labora-

tory and is approved for public release under LA-UR-15-20423.

Los Alamos National Laboratory, an affirmative action/equal op-

portunity employer,is operated by the Los Alamos National Se-

curity, LLC for the National Nuclear Security Administration

of the U.S. Department of Energy under contract DE-AC52-

06NA25396. By approving this article, the publisher recognizes

that the U.S. Government retains nonexclusive, royalty-free li-

cense to publish or reproduce the published form of this contri-

bution, or to allow others to do so, for U.S. Government pur-

poses. Los Alamos National Laboratory requests that the pub-

lisher identify this article as work performed under the auspices

of the U.S. Department of Energy. Los Alamos National Labora-

tory strongly supports academic freedom and a researcher’s right

to publish; as an institution, however, the Laboratory does not

endorse the viewpoint of a publication or guarantee its technical

correctness.

REFERENCES
[1] LaValle, S. M., 2006. Planning algorithms. Cambridge

University Press.

[2] Kavraki, L. E., Svestka, P., Latombe, J.-C., and Overmars,

M. H., 1996. “Probabilistic roadmaps for path planning

in high-dimensional configuration spaces”. IEEE Transac-

tions on Robotics and Automation, 12(4), pp. 566–580.

[3] Waringo, M., and Henrich, D., 2006. “Efficient smooth-

ing of piecewise linear paths with minimal deviation”. In

IEEE/RSJ Int. Conf. on Intelligent Robots & Systems,

pp. 3867–3872.

[4] Carpin, S., and Pillonetto, G., 2005. “Motion planning

using adaptive random walks”. IEEE Transactions on

Robotics, 21(1), pp. 129–136.

[5] Sánchez, G., and Latombe, J.-C., 2003. “A single-query

bi-directional probabilistic roadmap planner with lazy col-

lision checking”. In International Symposium on Robotic

Research. Springer, pp. 403–417.

[6] Karaman, S., and Frazzoli, E., 2011. “Sampling-based al-

8 Copyright c© 2015 by ASME

TABLE 2: For the Euclidean environments, the average path cost at a given time, close to the algorithms’ total run-time, is compared to

the optimal (best path found) cost and the error is calculated for the RRT*, RRT*-gp, FR, FR-gp, and RRT*-smart.

Obstacles Run-Time (s) RRT* RRT*-gp FR FR-gp RRT*-smart Optimal

10 50
Cost 15.20 14.30 14.40 14.26 14.51 14.18

Error (%) 7.20 0.84 1.54 0.55 2.35

25 100
Cost 15.34 14.60 14.59 14.57 15.04 14.31

Error (%) 7.20 2.07 1.96 1.86 5.12

50 160
Cost 15.63 15.33 15.07 14.94 15.78 14.44

Error (%) 8.25 6.13 4.35 3.42 9.27

75 450
Cost 16.85 16.60 16.67 16.44 17.25 15.14

Error (%) 11.34 9.64 10.09 8.61 13.96

100 500
Cost 17.97 17.54 17.45 17.30 17.69 17.11

Error (%) 5.06 2.53 1.99 1.15 3.39

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

(a) FR

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

(b) RRT*-gp

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

(c) FR-gp

FIGURE 4: These are the best paths produced in the 50 obstacle environment for the ten Dubins’ vehicle simulations. The obstacles are

outlined in red. Figure 4b is the RRT* tree with grandparent connection. The FR produced the tree in Figure 4a and Figure 4c is the

RRT* with both the FR and grandparent connection.

gorithms for optimal motion planning”. International Jour-

nal of Robotics Research, 30(7), pp. 846–894.

[7] Karaman, S., Walter, M. R., Perez, A., Frazzoli, E., and

Teller, S., 2011. “Anytime motion planning using the

RRT*”. In IEEE Int. Conf. on Robotics and Automation,

pp. 1478–1483.

[8] Perez, A., Karaman, S., Shkolnik, A., Frazzoli, E., Teller,

S., and Walter, M. R., 2011. “Asymptotically-optimal path

planning for manipulation using incremental sampling-

based algorithms”. In IEEE/RSJ Int. Conf. on Intelligent

Robots & Systems, pp. 4307–4313.

[9] Shkolnik, A., and Tedrake, R., 2011. “Sample-based plan-

ning with volumes in configuration space”. Computing Re-

search Repository, arXiv:1109.3145.

[10] Akgun, B., and Stilman, M., 2011. “Sampling heuristics for

optimal motion planning in high dimensions”. In IEEE/RSJ

Int. Conf. on Intelligent Robots & Systems, pp. 2640–2645.

[11] Islam, F., Nasir, J., Malik, U., Ayaz, Y., and Hasan, O.,

2012. “RRT-smart: Rapid convergence implementation

of RRT towards optimal solution”. In IEEE Int. Conf. on

Mechatronics and Automation, pp. 1651–1656.

[12] Karaman, S., and Frazzoli, E., 2010. “Optimal kinody-

namic motion planning using incremental sampling-based

methods”. In IEEE Int. Conf. on Decision and Control,

pp. 7681–7687.

[13] Boardman, B. L., Harden, T. A., and Martinez, S., 2014.

9 Copyright c© 2015 by ASME

TABLE 3: This table compares, for each of the three environments, the performance of the Dubins’ vehicle algorithms when they return

their first path. The average cost of the first path, and average run-time at which that path was recovered, are shown for the RRT, RRT-

smooth, RRT*, and RRT*-gp. The cost of the first path is compared to the optimal (best path found) cost and the error is calculated.

Further comparison is given to the path cost of RRT* and RRT*-gp at a time that is near the end of the algorithms’ run-time.

First Path Final Path

RRT RRT-Smooth RRT* RRT*-gp RRT* RRT*-gp Optimal

Run-Time (s) 48.03 52.17 17.60 135.54 450.00 450.00

10 obs Cost 354.16 128.30 334.30 126.36 320.57 125.08 122.49

Error (%) 189.12 4.74 172.92 3.16 161.71 2.11

Run-Time (s) 62.98 70.35 65.95 232.71 1200.00 1200.00

25 obs Cost 372.66 133.01 360.49 134.71 339.53 133.44 124.88

Error (%) 198.41 6.51 188.67 7.87 171.88 6.85

Run-Time (s) 551.41 586.20 211.94 858.87 1800.00 1800.00

50 obs Cost 418.65 151.85 394.27 149.70 374.13 148.34 134.64

Error (%) 210.95 12.79 192.84 11.19 177.88 10.18

TABLE 4: The average path cost for a Dubins’ vehicle at a given time, close to the algorithms’ total run-time, is compared for the RRT*,

RRT*-gp, FR, FR-gp, and RRT*-smart. For each of the environments the path costs are compared to the optimal (best path found) cost

and the error is calculated.

Obstacles Run-Time (s) RRT* RRT*-gp FR FR-gp RRT*-smart Optimal

10 450
Cost 320.57 125.08 149.71 124.30 127.23 122.49

Error (%) 161.71 2.12 22.22 1.47 3.86

25 1200
Cost 339.53 133.44 155.99 129.14 132.72 124.88

Error (%) 171.88 6.85 24.91 3.41 6.28

50 1200
Cost 374.1283 148.3430 175.3647 144.17 149.67 134.64

Error (%) 177.88 10.18 30.25 7.08 11.16

“Optimal kinodynamic motion planning in environments

with unexpected obstacles”.

[14] Ferguson, D., Kalra, N., and Stentz, A., 2006. “Replanning

with RRTs”. In IEEE Int. Conf. on Robotics and Automa-

tion, pp. 1243–1248.

[15] Zucker, M., Kuffner, J., and Branicky, M., 2007. “Multipar-

tite RRTs for rapid replanning in dynamic environments”.

In IEEE Int. Conf. on Robotics and Automation, pp. 1603–

1609.

[16] Bruce, J., and Veloso, M., 2002. “Real-time randomized

path planning for robot navigation”. In IEEE/RSJ Int. Conf.

on Intelligent Robots & Systems, Vol. 3, pp. 2383–2388.

[17] Li, T.-Y., and Shie, Y.-C., 2002. “An incremental learning

approach to motion planning with roadmap management”.

In IEEE Int. Conf. on Robotics and Automation, Vol. 4,

pp. 3411–3416.

[18] Gayle, R., Klingler, K. R., and Xavier, P. G., 2007. “Lazy

Reconfiguration Forest (LRF) - An approach for motion

planning with multiple tasks in dynamic environments.”. In

IEEE Int. Conf. on Robotics and Automation, pp. 1316–

1323.

[19] Dubins, L. E., 1957. “On curves of minimal length with a

constraint on average curvature, and with prescribed initial

and terminal positions and tangents”. American Journal of

Mathematics, pp. 497–516.

10 Copyright c© 2015 by ASME

