
Distributed Robust Consensus using RANSAC
and Dynamic Opinions

Eduardo Montijano, Sonia Martı́nez and Carlos Sagues

Abstract— Sensor networks must be able to fuse nodes’ percep-
tions in a reliable way in order to reach a trustworthy consensus.
Data association mistakes and measurement outliers are some
of the factors that can contribute to incorrect perceptions and
considerably affect consensus values. In this paper, we present a
novel distributed scheme for robust consensus in autonomous
sensor networks. The proposed method builds on random
sampling consensus to exploit measurement redundancy, and
enables the network to determine outlier observations with local
communications. To do this, different hypotheses are generated
and voted for using distributed averaging. In our approach, nodes
can change their opinion as the hypotheses are computed, making
the voting process dynamic. Assuming that enough hypotheses are
generated to have at least one composed exclusively by inliers, we
show that the method converges to the maximum likelihood of all
the inlier observations under some natural conditions. We present
several simulations and examples with real information that
demonstrate the good performance of the proposed algorithm.

Index Terms - Robust Data Fusion, Distributed Consensus, Outlier
rejection, RANSAC.

I. INTRODUCTION

Recent advances in communication, computation and con-
trol are leading to a new generation of autonomous systems
that can execute complex tasks while interacting over dynamic
networks. To exploit their full potential, an intensive research
is being devoted to the development of decentralized algo-
rithms that enable the scalable management of these networks.
Within the control and robotics communities, a canonical prob-
lem that has received much attention is that of consensus; see
e.g., [1] and references therein. In this problem, the goal is to
devise a distributed algorithm that allows a group of agents to
agree upon some specific information. Several algorithms have
been proposed to achieve consensus in different situations such
as directed communications [2], time-varying topologies [3],
[4], or fast convergence [5]. One of the major drawbacks of
the current approaches is their lack of robustness to outliers.
That is, the consensus value can be severely affected by wrong
sensor measurements and information completely unrelated
to the quantity that the robots would like to measure. In
this manuscript, we address this issue by means of random
sampling techniques.

This work was supported by the projects DPI2009-08126, DPI2012-32100,
CUD2013-05, NSF-0712746, NSF-0930919 and AFOSR-11RSL548.

E. Montijano is at Centro Universitario de la Defensa (CUD) and In-
stituto de Investigación en Ingenerı́a de Aragón (I3A), Zaragoza, Spain,
emonti@unizar.es

S. Martı́nez is at the Department of Mechanical and Aerospace Engineering,
Univ. of California, San Diego, soniamd@ucsd.edu

C. Sagues is at Instituto de Investigación en Ingenerı́a de Aragón (I3A),
Universidad de Zaragoza, Spain, csagues@unizar.es

Faulty agents implementing a consensus algorithm have
been considered in [6]–[10]. In these papers, failing nodes
introduce additive errors in the consensus algorithm, either
because they are unable to update it correctly or because they
are malicious. These works then propose the use of linear
detection filters that the well-behaving nodes can employ to
identify the faulty ones. The algorithms are guaranteed to work
provided the number of well-behaving nodes is sufficiently
large, and the connectivity among them is high enough. A main
drawback of these approaches is the requirement of a global
knowledge of the network topology by all nodes, which has
to be essentially non-switching. In this way, each node keeps
an estimate of the state of all other nodes in the network,
which does not scale well if the network size is very large.
In [11], this assumption is dropped by introducing several
network operators who supervise a subnetwork each. However,
the precise detection of arbitrarily faulty agents still requires
the implementation of a non-scalable number of filters, one per
subset of potentially failing nodes. Finally, these papers do not
adequately address the problem of how to remove the influence
of “spurious” initial conditions from the final consensus value,
which is a main focus of this work.

Distributed robustness to outliers has been recently stud-
ied in [12] and the problem of robust acoustic localization
with non-gaussian noise is analyzed in [13]. These works
present distributed outlier detection solutions that exploits a
distributed optimization problem formulation. The solutions
are distributed and scalable as agents are not required to know
the network topology, and is implementable over switching
communication graphs. However, these algorithms can not
handle properly multi-modal distributions, which can lead to
different clusters of good measurements.

Finally, a connection can be made to works dealing with
noise and quantized messages, e.g., [14]–[16]. These solutions
analyze the influence of sending messages that have finite
precision and how the exact final consensus value can still be
reached. Unlike these previous algorithms, our iteration does
not employ quantized information feedback from neighbors.
Instead of that, we exploit the quantized nature of vote
counting to propose a consensus iteration that converges in
a finite number of iterations to the exact number of votes.

In this paper, we depart from the above problem scenarios
and techniques in the following way. First, nodes are con-
sidered to be faulty or “outliers” (as opposed to “inliers”) if
their initial measurements are out of pattern by the rest of

the data.1 Other than this, all nodes are able to implement
consensus protocols correctly and with infinite precision, are
not malicious, and collaborate together to arrive at a good
average observation value. Thus, the need of keeping an
estimate of other nodes’ states can be avoided. Additionally,
we exploit the quantized nature of the initial conditions to
reach the average in finite time.

The main contribution of this paper is a novel and
scalable robust distributed consensus method which iden-
tifies outlier information and achieves consensus by dis-
carding it. Our approach integrates random sampling prin-
ciples [17] with those of distributed averaging [18]. In
this way, we propose two algorithms which can be imple-
mented by agents without knowledge of the network topology,
and tolerate switching network interactions. The first one,
DISTRIBUTED STATIC-OPINION RANSAC algorithm inte-
grates the creation of best hypotheses, voting process, and
creation of a better model sequentially. Due to random sam-
pling, the method has a high tolerance to large number of
outliers and can be adapted to deal with multi-modal distri-
butions. In the DISTRIBUTED DYNAMIC-OPINION RANSAC
algorithm, nodes are further allowed to change their opinion
online, making the voting process dynamic and leading to the
simultaneous execution of the aforementioned steps for the
first algorithm. We present reasonable sufficient conditions that
guarantee the dynamic process converges and preserves the
good properties of random sampling, which, in particular, do
not depend on how the outliers or inlier nodes are connected
among them. More precisely, our algorithm scalability and
success depend on the probability of randomly picking a node
that is an “inlier”; i.e. the inlier ratio, which is independent
of the number of nodes in the network.

Preliminary versions of this paper were presented in [19],
[20]. In this version we include the proofs of all the theoretical
results, omitted in the conference versions, and we present
three other contributions: (i) An extension of the averaging
rule to guarantee convergence in finite time when the con-
sensus value has finite precision. (ii) A distributed averaging
primitive to compute the number of active nodes in a network.
(iii) Analysis of the performance of the algorithm on the
following relevant application scenarios: distributed sensor-
network event localization and distributed people identification
by camera networks. In this way, our algorithm expands the
utility of random sampling by adding a new set of applications
where it can be used by sensor networks such as robust lo-
calization [21], face recognition [22], distributed labeling [23],
multi-robot mapping [24], or collaborative sensor-bias calibra-
tion [25].

The remainder of the paper is organized as follows: Sec-
tion II briefly reviews a consensus algorithm for Maximum
Likelihood approximation and presents the main objective of
this paper. A distributed algorithm considering static opinions
is described in Section III. In Section IV we extend this algo-
rithm to allow the nodes change their opinion. A finite time
rule to count the number of votes is explained in Section V.

1These are data with arbitrarily large errors. A more precise definition will
be given in Section II

Simulation results are reported in Section VI and finally, the
conclusions of the work are presented in Section VII.

II. PRELIMINARIES AND OBJECTIVE

We consider a network of N nodes labeled by i ∈ V =
{1, . . . , N}. At each time t > 0, communications among
nodes are modeled by an undirected graph G(t) = {V, E(t)},
where E(t) ⊂ V × V represents the edge set at time t.
Thus, nodes i and j can communicate at time t if and only
if (i, j) ∈ E(t). The neighbors of node i ∈ V at time
t > 0 are those that can directly communicate with it; i.e.,
Ni(t) = {j ∈ V | (i, j) ∈ E(t)}.

Assumption 2.1 (Periodic Connectivity): There exists an
integer T > 0 such that, for any instant of time t ≥ 0, the
graph G(V, E(t) ∪ E(t+ 1) ∪ . . . ∪ E(t+ T)) is connected.

Let θ ∈ Rd be a set of attributes that represent an object of
interest for the network. These attributes can be, for example,
the position of the object in a world coordinate frame, its shape
and color, or a set of descriptors that identify it. Each node
makes some noisy measurement of θ, say xi ∈ Rd, subject
to uncertainty characterized by the symmetric, semi-definite
positive covariance matrix Λi ∈ Rd×d, for i ∈ {1, . . . , N}.
We denote by CH(V), the convex hull of the observations xi.

The maximum likelihood (ML) of θ, θML, is estimated
using a weighted least-squares approximation from the node
measurements as

θML = (ΣN
i=1Λ

−1
i)−1ΣN

i=1Λ
−1
i xi. (1)

A distributed algorithm to compute the ML can be found
in [18]. By means of this, each node first initializes two state
variables, Pi and qi, as

Pi(0) = Λ−1
i , qi(0) = Λ−1

i xi. (2)

Then, at each iteration, they update these variables using

Pi(t+ 1) = Pi(t) +
∑

j∈Ni(t)

aij(t)(Pj(t)− Pi(t)),

qi(t+ 1) = qi(t) +
∑

j∈Ni(t)

aij(t)(qj(t)− qi(t)),
(3)

where A(t) = [aij(t)] are the weight matrices associated with
G(t), satisfying the following assumption:

Assumption 2.2 (Symmetry and Row Stochasticity): The
matrices A(t) satisfy the following conditions ∀t:

aij(t) ∈ {0} ∪ [α, 1],

aii(t) = 1−
∑

j 6=i aij(t) ≥ α, ∀i, j, t,
1T A(t) = 1T , A(t)1 = 1,

where α is some positive constant and 1 = (1, . . . , 1)T ∈ Rd.
In [18] it is shown that under the Periodic Connectivity
Assumption 2.1 and the Symmetry and Row-stochasticity
Assumption 2.2, all the nodes in the network reach the average
of the initial conditions:

lim
t→∞

Pi(t) =
1

N

∑
j∈V

Pj(0), lim
t→∞

qi(t) =
1

N

∑
j∈V

qj(0),

lim
t→∞

P−1
i (t)qi(t) = θML, ∀i ∈ {1, . . . , N}.

The covariance associated to the ML estimate is ΛML =
1
N limt→∞ P−1

i (t). Note that the inverse of P−1
i (t) is always

well defined because of the properties of Λi and eq. (3).
The algorithm relies only on local communications and

is robust to changes in the network topology. Moreover, the
intermediate estimates, θi(t) = P−1

i (t)qi(t), are unbiased; that
is, E[θi(t)] = θML,∀t ≥ 0. However, if some of the initial
measurements contain extreme noise or spurious information
about the attributes of the measured object, the final estimation
will be erroneous and unreliable.

In order to give a formal definition of what an outlier is we
use the Mahalanobis distance of the nodes’ measurements to
the real value of the quantity they are measuring:

d(xi,θ,Λi) =

√
(xi − θ)TΛ−1

i (xi − θ). (4)

Definition 2.1: (Inlier, Outlier): A node is said to be an
inlier if

d(xi,θ,Λi) ≤ χ2
d,p, (5)

where χ2
d,p is the value of the Chi-square distribution for

d degrees of freedom, equal to the dimension of θ, and
confidence probability p. Respectively, one node is considered
as an outlier if eq. (5) is not true. We denote by Vin ⊂ V the
subset of nodes with inlier information.

The Mahalanobis distance is a standard tool in multivariate
analysis to detect and discard outliers. In this case, it provides
statistical information about the similarity of nodes’ observa-
tions to the actual value. The confidence probability, p, is a
parameter that needs to be fixed by the network (or its user)
prior the execution of the algorithm, usually with standard
values of 95% or 99%. The observations that do not pass the
chi-square test will be considered to be highly uncorrelated
with the real feature, and therefore, they should not be merged
in the distributed computation of the ML in (3).

The goal of this paper is to identify this set of nodes
with incorrect information and discard their influence in the
computation of the maximum likelihood, all in a distributed
fashion. In other words, the goal is to estimate the ML of the
observations of the nodes in Vin in a distributed way.

III. DISTRIBUTED RANSAC WITH STATIC OPINIONS

To filter out outliers, we propose an algorithm following
the random sampling consensus (RANSAC) approach [17].
The algorithm in [17] is divided in three steps. First, subsets
of nodes are randomly chosen to compute different possible
consensus solutions using only their observations. Each one
of these possible solutions is called a hypothesis in the
RANSAC algorithm. Secondly, hypotheses are ranked by a
voting procedure in which the votes are given by contrasting
the observations of the nodes with each hypothesis. As a
consequence, the hypothesis with the most number of votes
is considered to be the best solution, and the nodes who
voted for it are categorized as a set of inliers. Finally, the
consensus value is computed using only the information of
this set of inlier nodes. We emphasize the assumption that
nodes are not considered to be malicious, and so the steps of
our algorithm can be performed correctly. In the following,

we explain how to make the process distributed, leading to
our DISTRIBUTED STATIC-OPINION RANSAC algorithm.

A. Distributed Generation of Hypotheses

The first step of the RANSAC algorithm consists of fixing
the number K of hypothetical values of the real quantity, θ.
Taking into account that the final consensus value is computed
as the maximum likelihood of a set of uncertain observations,
a hypothesis is defined as the maximum likelihood of a subset
of the observations of the network.

Following the RANSAC principles, we assume that the
observation of each node has equal probability of being a
good observation, pin, independent of the probability of the rest
of observations. This probability represents the ratio between
inliers and outliers. Given a desired probability of succeeding
to generate a hypothesis only of inliers, psuc, the number of
required hypotheses is:

K =
log(1− psuc)

log(1− pcin)
,

where c is the number of observations used to generate a
hypothesis, see [17].

Noting that K is an increasing function of c, the smaller
this value is, the less hypotheses will be required. Therefore,
here we choose c = 1, meaning that each hypothesis will be
the observation of a single node. Observe that the number
of hypotheses does not depend on the number of nodes. For
example, for pin = 0.7 and psuc = 0.99, the network will only
generate K = 4 hypotheses, independently of the number
of nodes N . The probability pin, is in general not known
and, therefore, it is based on an estimated conservative value.
Typically, pin is based on the largest set of observed inliers,
or employs a priori information about this probability.

By setting c = 1, we can use a max-consensus algorithm to
compute the set of hypotheses in finite time [1], [26]. We
describe the process for a single hypothesis, noting that it
should be run in parallel for all hypotheses.

To generate the hth hypothesis each node initializes a
random number, auxh

i . The hypothesis is defined by the mean
and the covariance of the node with the maximum value of
auxh

i ,

(θh
ML,Λ

h
ML) = {(xi,Λi) | i = arg max auxh

i }. (6)

Algorithm 1 shows the distributed computation of (6) by the
nodes. It is basically a max-consensus computation of the
values auxh

i while assigning the corresponding values to θh
ML

and Λh
ML. After the execution of the algorithm, which is known

to finish in a finite number of communication rounds, all the
nodes in the network have the information of the hypothesis,
contained in the variables θh

ML and Λh
ML.

B. Distributed Voting of Hypotheses

Next, agents vote for the different hypotheses in a decentral-
ized fashion. The number of votes on the hypotheses can be
counted in a distributed manner using distributed averaging.
To do so, each node initializes a voting vector, vi ∈ RK , with
as many elements as hypotheses to be voted for.

Algorithm 1 Computation of one hypothesis - Node i
1: auxh

i = rand; θh
ML = xi; Λh

ML = Λi

2: for it = 1 . . .Diam(G) do
3: Send (auxh

i ,θ
h
ML,Λ

h
ML) to all j ∈ Ni

4: Receive (auxhj ,θ
j
ML,Λ

j
ML) from all j ∈ Ni

5: if auxh
j > auxh

i then
6: (auxhi ,θ

h
ML,Λ

h
ML) = (auxhj ,θ

j
ML,Λ

j
ML)

7: end if
8: end for

For every hypothesis h, the hth component of the voting
vector of node i, vh

i , is initialized as

vh
i (0) =

{
1, if d(xi,θh

ML,Λ
h
i) ≤ χ2

d,p,

0, if d(xi,θh
ML,Λ

h
i) > χ2

d,p,
(7)

where

d(xi,θh
ML,Λ

h
i) =

√
(xi − θh

ML)T (Λh
i)−1(xi − θh

ML). (8)

For other nodes whose observations were not used to generate
the hypothesis, the covariance, Λh

i , is set equal to

Λh
i = Λh

ML + Λi, (9)

as xi and θh
ML are uncorrelated. For the node whose observa-

tion generated the hypothesis, d(xi,θh
ML,Λ

h
i) is set to zero as

xi and θh
ML are equal.

After this, the nodes use distributed averaging to reach a
consensus about the number of votes of the different hypothe-
ses. That is,

vi(t+ 1) = vi(t) +
∑

j∈Ni(t)

aij(t)(vj(t)− vi(t)). (10)

Since initially
∑

i vhi (0) equal the total number of votes,
eventually, by the Periodic Connectivity Assumption 2.1 and
the Symmetry and Row-stochasticity Assumption 2.2, the
vectors of all nodes will converge to the total number of votes
divided by the number of nodes in the network. Therefore,
the hypothesis with the maximum value will correspond to
the hypothesis with the most votes, which we denote by
h∗ = arg maxh vhi . Additionally, since the nodes know if they
voted or not for the hypothesis, they are also aware if they are
inliers or outliers.

C. Distributed Computation of the ML of the Inliers

The last step computes the ML of those observations that
voted for the best hypothesis, the set of inliers.

Let Vin be the subset of inlier nodes. The maximum likeli-
hood of the observations of this set is equal to

θML = (
∑
i∈Vin

Λ−1
i)−1

∑
i∈Vin

Λ−1
i xi. (11)

Proposition 3.1 (Distributed ML Computation): The vari-
able θi(t) = P−1

i (t)qi(t), updated using (3) with initial
conditions

[Pi(0),qi(0)] =

{
[Λ−1

i ,Λ−1
i xi] if i ∈ Vin,

[0, 0] otherwise,
(12)

asymptotically converges to (11) for all i ∈ V .
Proof. As stated in [18], Pi(t) and qi(t) converge to the
average of the initial values of all the Pj(t) and qj(t), j ∈ V.
However, the initial values for any node j 6∈ Vin are zero by
eq. (12), therefore, for all i ∈ V , it holds that

lim
t→∞

θi(t) = lim
t→∞

P−1
i (t)qi(t) =

= (
1

N

∑
j∈V

Λ−1
j)−1 1

N
(
∑
j∈V

Λ−1
j xi) =

= (
1

N

∑
j∈Vin

Λ−1
j)−1 1

N
(
∑
j∈Vin

Λ−1
j xi) = θML.

The covariance associated to the ML will be ΛML =
1
N limt→∞ P−1

i (t).

Note that, compared to a centralized implementation
of RANSAC, our DISTRIBUTED STATIC-OPINION RANSAC
algorithm offers the same performance guarantees. It generates
the same number of hypotheses with random subsets of
observations, it uses the same ranking function that centralized
RANSAC would use and therefore, it returns the same voting
count. Finally, Proposition 3.1 ensures the computation of the
desired result for the best hypothesis. Thus, our algorithm
offers the same behavior but in a fully distributed fashion.

IV. DISTRIBUTED RANSAC WITH DYNAMIC OPINIONS

The previous DISTRIBUTED STATIC-OPINION RANSAC
requires three different consensus steps, one for the generation
of the hypotheses, one for the distributed voting process, and
a last one to compute the ML of the inlier observations. Here,
we propose a DISTRIBUTED DYNAMIC-OPINION RANSAC
algorithm where the nodes vote for (or not) a hypothesis as
soon as their observations pass the Chi-square test. In this
way, we reduce the amount of information exchanged in the
hypotheses generation step and we merge the voting and the
computation of the ML of the inliers into a single step. In order
to make the presentation clearer, we describe the algorithm just
for one hypothesis, omitting the superscript h.

First, nodes initialize a random number, auxhi , as in
the DISTRIBUTED STATIC-OPINION RANSAC algorithm and
perform a max-consensus to decide which node is the gen-
erator of the hypothesis. For the sake of legibility, we will
denote by i∗ = arg max auxh

i . The difference is that in this
version of the algorithm the nodes do not send the values of
xi and Λi to their neighbors, therefore reducing the amount of
communications of this step. Also recall that this step requires
a finite number of communication rounds.

After this, nodes initialize their states as follows

[Pi(0),qi(0), vi(0)] =

{
[Λ−1

i ,Λ−1
i xi, 1] if i = i∗,

[0, 0, 0] otherwise.
(13)

In contrast with the previous approach, now the nodes start
to vote without knowing the hypotheses. The ML computation
of the positive votes also starts at the same time as the voting

itself. The new local updates for each node are

Pi(t+ 1) = Pi(t) +
∑

j∈Ni(t)

aij(t)(Pj(t)− Pi(t)) + uP
i (t),

qi(t+ 1) = qi(t) +
∑

j∈Ni(t)

aij(t)(qj(t)− qi(t)) + uq
i (t),

vi(t+ 1) = vi(t) +
∑

j∈Ni(t)

aij(t)(vj(t)− vi(t)) + uv
i (t),

(14)

where uP
i (t),uq

i (t) and uv
i (t) are dynamic inputs to the con-

sensus rule.
In order to decide the inputs, each node executes the Chi-

square test with the current value of θi(t) = P−1
i (t)qi(t). For

brevity, we will denote

di(t) = d(xi,θi(t),Λi). (15)

Note that the inverse of Pi(t) is not always well defined. For
the time instants t for which P−1

i (t) does not exist, we cannot
compute the Mahalanobis distance. However, at these instants
we assign the distance di(t) a value larger than χ2

d,p.
Note that compared to (9), the covariance matrix in this case

does not include the term caused by the hypothesis, Λh
ML.

This is a conservative solution adopted because in the first
iterations the estimation of Pi(t) is highly unreliable. Usually,
at these times Pi(t) is multiplied by weights very close to zero,
resulting in large covariances due to the inverse P−1

i (t). When
this happens, the Mahalanobis distances are close to zero and
votes from the outliers appear in the algorithm. Thus, by not
considering this term, even when some inliers might not vote
for the hypothesis, we ensure that the outliers do not vote for
it, which is the most important part of the process.

Denote the set of time instants in which node i changes its
opinion as follows:

T +
i = {t ∈ N | di(t) ≤ χ2

d,p ∧ di(t− 1) > χ2
d,p},

T −i = {t ∈ N | di(t) > χ2
d,p ∧ di(t− 1) ≤ χ2

d,p}.
(16)

The control inputs of node i are given by:

[uP
i (t),uq

i (t),uv
i (t)] =


[Λ−1

i ,Λ−1
i xi, 1] if t ∈ T +

i ,

−[Λ−1
i ,Λ−1

i xi, 1] if i ∈ T −i ,

[0, 0, 0] otherwise.
(17)

Proposition 4.1: (Convergence to ML with Dynamic Opin-
ions): If T +

i and T −i are finite for all i ∈ V then the rule (14)
with control inputs (17) converges to

lim
t→∞

θi(t) = (
∑

j∈Vcon

Λ−1
j)−1

∑
j∈Vcon

Λ−1
j xj , (18)

lim
t→∞

vi(t) =
|Vcon|
N

. (19)

where Vcon = {i ∈ V | di(tmax) ≤ χ2
d,p} and tmax =

maxt(T +
i , T −i),∀i ∈ V.

Proof. The sets T +
i and T −i are finite. This means that there

is some time instant, tmax, that upper bounds T +
i and T −i ,∀i ∈

V. Moreover, ∀t > tmax and i ∈ V, the sign of di(t) − χ2
d,p

remains constant, which means that the nodes do not change
their opinion after tmax.

Let us analyze the evolution of Pi(t). After tmax, the
iteration rule (14) behaves like (3) because uP

i (t) = 0 for all i
and t, and therefore, Pi(t) will converge to 1

N

∑
i∈V Pi(tmax).

The sum of the values of Pi(tmax) can be written as∑
i∈V

Pi(tmax) = Λ−1
i∗ +

∑
i∈V

tmax∑
t=0

uP
i (t). (20)

The sum of the inputs for each node is
tmax∑
t=0

uP
i (t) =

∑
t∈T +

i

Λ−1
i −

∑
t∈T −

i

Λ−1
i = (|T +

i | − |T
−
i |)Λ

−1
i .

By the eq. (16), for any node i, −1 ≤ |T +
i | − |T

−
i | ≤ 1.

At the beginning, for the node i∗ it holds that di∗(0) ≤ χ2
d,p,

because θi∗(0) = xi∗ . Therefore,
tmax∑
t=0

uP
i∗(t) =

{
−Λ−1

i∗ if di∗(tmax) > χ2
d,p,

0 otherwise,
(21)

The rest of the nodes initially cannot compute the distance
because the inverse of Pi(0) is not defined; but this situation
in our algorithm is equivalent to having a distance larger than
χ2
d,p. Then we have that for any i 6= i∗,

tmax∑
t=0

uP
i (t) =

{
Λ−1

i if di(tmax) ≤ χ2
d,p,

0 otherwise,
(22)

Putting together (20), (21) and (22), in the limit we have

lim
t→∞

Pi(t) =
1

N

∑
i∈V

Pi(tmax) =
1

N

∑
i∈Vcon

Λ−1
i , (23)

Applying the same argument to qi(t), we obtain

lim
t→∞

qi(t) =
1

N

∑
i∈V

qi(tmax) =
1

N

∑
i∈Vcon

Λ−1
i xi, (24)

and then eq. (18) holds. Finally, following the same reasoning
with vi(t) eq. (19) is obtained and the proof is complete.

If the nodes are not indefinitely changing their vote, then the
algorithm will achieve convergence to the ML of the subset of
nodes that have voted for it. If we consider all the hypotheses
at the same time the nodes execute the same process with all of
them simultaneously. At the end the hypothesis with the larger
value of vhi will be the one selected by all the nodes as the
good one. Note that with this approach, once the hypothesis is
selected there is no need to compute additional ML estimates.

What remains to be done now is to determine conditions
that guarantee the covergence to the ML of the inliers.

A. Conditions to reach the ML of Vin

We derive a set of reasonable conditions such that, if i∗ ∈
Vin for one hypothesis, then the assumptions in Proposition 4.1
are met and Vcon = Vin for that hypothesis.

First, we impose a condition on the inlier observations.
Since they are different measurements of the same vector, they
have to be close to each other.

Condition 1 (Relative Inlier location): For any pair of
nodes i, j ∈ Vin it holds that d(xi, xj ,Λi) ≤ χ2

d,p.

Lemma 4.1 (Mahalanobis distance to the Convex Hull):
Let CH(Vin) be the convex hull of the inlier observations. If
Condition 1 is satisfied, then, for any node i ∈ Vin and any
x ∈ CH(Vin), we have d(xi, x,Λi) ≤ χ2

d,p.
Proof. Let us note that xi ∈ CH(Vin) for all i. For any point
in the convex hull, the maximum distance to points inside the
hull is achieved at one of the corner points. Since these points
are observations that belong to Vin

d(xi, x,Λi) ≤ max
xj∈Vin

d(xi, xj ,Λi) ≤ χ2
d,p.

This means that we have a set of points voted for by all the
inliers, which leads to a second condition:

Condition 2 (Location of the ML of Inliers): For any sub-
set S ⊆ Vin, the maximum likelihood estimate of S is inside
CH(Vin).

The lemma also suggests a restriction to impose to the
outlier observations.

Condition 3 (Location of Outliers): For all x ∈ CH(Vin)
and k 6∈ Vin it holds that d(xk, x,Λk) > χ2

d,p.
However, let us note that the above conditions are not

enough to ensure that one hypothesis instantiated with inliers
will end up with all the inliers voting for it and all the outliers
rejecting it. It could be possible that some outliers vote for
it at some intermediate estimation or that one or more inliers
constantly change their vote and there is no convergence. An
additional condition to ensure that these two situations do not
occur is imposed.

Let us notice that θi(t) and the Mahalanobis distance, di(t),
can be written as functions of a vector w = (w1, . . . , wN) ∈
[0, 1]N , which represents the weights of the linear combination
of the different observations.

θi(w) = P−1
i (w)qi(w) = (

∑
i∈V

wiΛ
−1
i)−1(

∑
i∈V

wiΛ
−1
i xi),

di(w) = d(xi,θi(w),Λi) =

=

√
(xi − θi(w))TΛ−1

i (xi − θi(w)).

Without loss of generality, let us assume that the nodes are
ordered so that we can separate the different elements of w in
win ∈ [0, 1]|Vin|, the corresponding to the inliers and wout the
components of the outliers, w = [win,wout].

Condition 4 (Distance Minimization by Inliers): For any
i ∈ V, the partial derivatives of di(w),

∂di(w)

∂wj
=

(xi − θi(w))TΛ−1
i P−1

i (w)Λ−1
j (xj − θi(w))

di(w)
,

(25)
satisfy, ∀j ∈ V and wout = 0, that

∂di(w)

∂wj
= 0⇔


θi(w) = xi, xj , if i, j ∈ Vin,

θi(w) = xi, if i ∈ Vin, j 6∈ Vin,

θi(w) = xj , if i 6∈ Vin, j ∈ Vin.

(26)

The derivation of (25) is included in the Appendix.
The following Theorem demonstrates that under the con-

ditions given in the section, all the inliers vote for a good
hypothesis and none of the outliers vote for it at any time:

Theorem 4.1 (Convergence to the ML of the Inliers):
Under Conditions 1-4 for any Vh ⊆ Vin, the following holds:
• All inliers eventually vote for the hypothesis

∃ t+ | ∀t > t+,∀i ∈ Vin, di(t) ≤ χ2
d,p. (27)

• Outliers do not vote for the hypothesis at any time

∀k 6∈ Vin, dk(t) > χ2
d,p, ∀t > 0. (28)

This means that, by Proposition 4.1, (14) will converge and
that Vcon = Vin.
Proof. The main idea of the proof is to analyze the behavior
of di(w) for outliers and inliers in order to demonstrate that
for outliers it is always greater than χ2

d,p, whereas for inliers
it goes below that value and remains there.

Let us denote by Cε, the set that contains values of w with
the weights associated to the outliers equal to zero and at least
one inlier with weight different than zero, i.e.,

Cε = {w | wout = 0 and win ∈ [0, 1]|Vin| \ [0, ε)|Vin|} (29)

with ε > 0 an arbitrarily small value. In the values of win,
we remove the relatively open set [0, ε)|Vin| in [0, 1]|Vin| to
avoid the possibility of w = 0, since that would mean that
di(w) > χ2

d,p and any agent would vote for the hypothesis at
any time. The subtraction of the relatively open set [0, ε)|Vin|

ensures that Cε remains a closed set. Denoting by ei the ith

vector of the canonical basis, the set of corners (the end values)
of Cε is characterized as

w∗ = {
∑
i∈S

ei,S ⊆ Vin}
⋃
{ε
∑
i∈S

ei,S ⊆ Vin}, (30)

with S any possible subset of Vin.
Note that θi(ei) = xi, di(w) = di(εw), and if w is

equal to the sum of several vectors of the canonical basis,
then θi(w) is equal to the maximum likelihood estimate
of the corresponding nodes’ observations. Combining these
equalities with Condition 4, we conclude that the extreme
values of di(w), with w ∈ Cε are reached at the corners
of Cε [27].

Let us consider any outlier node k 6∈ Vin. First, Pk(0) =
0 because i∗ ∈ Vin, and therefore k does not vote for the
hypothesis. Let us denote now by k the first outlier for which
Pk(t) 6= 0. At this moment w ∈ Cε for a small enough ε.
Condition 2 together with Condition 3 implies that

dk(
∑
i∈S

ei) = dk(ε
∑
i∈S

ei) > χ2
d,p, ∀S ⊆ Vin.

For all the corner points of Cε, the Mahalanobis distance is
larger than χ2

d,p. Since the corners represent the extreme values
of the Mahalanobis distance, there is no value of w ∈ Cε for
which dk(w) ≤ χ2

d,p. Therefore, the outlier will not vote for
the hypothesis. As successive outliers have Pk(t) 6= 0, still the
same argument applies. This means that none of the outliers
will vote the hypotheses and the condition in (28) is true.

A similar argument can be applied for the inliers. We
already know that wout = 0 for any time instant. Looking
at the corners of Cε, by Conditions 1 and 2, for any i ∈ Vin

di(
∑
j∈S

ej) = di(ε
∑
j∈S

ej) ≤ χ2
d,p, ∀S ⊆ Vin,

then for any win ∈ Cε, di(win) ≤ χ2
d,p. This means that once

Pi(t) 6= 0, node i will vote for the hypotheses and will keep
doing so. By taking t+ the first time instant for which for all
i ∈ Vin Pi(t) 6= 0, the condition in (27) is satisfied and the
result holds.

From the above theorem one can also conclude that if pin ≥
0.5, then not only all the inliers will vote for the hypothesis,
but they will also represent the majority, which leads to the
choice of this hypothesis as the most voted. Also, if for any
other subset S ∈ V different from Vin for which Conditions 1-
4 are satisfied it holds that |S| < |Vin|, then the network will
choose as the best hypothesis the correct one, i.e., the one
formed by the inliers.

Let us note that the above sufficient conditions are relatively
easy to hold in practice. Condition 1, on the relative inlier
location, is easy to hold as it corresponds to good measure-
ments of the same object. Condition 2, on the location of the
ML of inliers, might be violated for a small number of inliers
(two or three). However, if the number of inliers is sufficiently
large, the ML behaves more and more as a weighted average,
resulting in the fulfillment of Condition 2. Condition 3, on the
outlier location, is a natural condition, otherwise it may be
argued that these measurements are not really outliers, as they
would be posing a good observation of the feature.

Finally, Condition 4 essentially states that the Mahalanobis
distance is minimized by inlier observations, when the con-
tribution of the outliers to the maximum likelihood of the
observations is zero. Note that, for any i, a global minimum of
di is obtained when θi(w) = xi, and the Mahalanobis distance
di becomes zero. This naturally holds for inliers, since they
must vote for the hypotheses. In contrast, the satisfaction of
this property by outliers would pose a problem. However, it
is hard that a combination of observations satisfying Con-
ditions 1-3 can return such an outlier. An extreme can also
be given by a w such that (xk − θ(w)) is orthogonal to all
(xi−θ(w)) with respect to Λ−1

k P−1
k (w)Λ−1

i . Nevertheless, we
have not encountered this situation in any of the simulations
we have carried out and, provided that this extreme satisfies
that dk(w) > χ2

d,p, the algorithm would still converge.
Additionally, let us remark that the algorithm may still

converge to the desired result if some of these conditions are
not met. In Section VI we provide evidence of this situation.

To conclude, the algorithm presented in this section, com-
pared to RANSAC, might not necessarily have the same output
on a general instance due to dynamic opinions. Nevertheless,
the hypothesis generation step is performed in the same
fashion as in Section III, which implies the same probability
of generating one hypothesis composed by inliers. This fact
combined with the result given in Theorem 4.1 leads to the
conclusion both algorithms will have the same performance.

V. VOTE COUNTING IN FINITE TIME

In this section, we propose a modification of the standard
averaging rule that allows the network to compute the number
of votes of the different hypotheses in a finite number of
iterations. In this way, the nodes can identify in less time which
hypotheses have low rankings and discard them, reducing the

amount of communications. We divide this section in three
parts: first, we present the modified averaging rule to reach
the value of a given function in finite time. In the second part
we explain how this new rule can be applied to the problem
of counting the votes in finite-time. Since vote counting in
finite time requires the knowledge of the total number of active
nodes in the network, the last part of the section presents a
distributed primitive to compute this number.

A. Distributed Averaging in Finite-Time

For general graph-switching sequences, the asymptotic con-
vergence of the distributed averaging rule achieves conver-
gence only asymptotically. However, when consensus involves
integers, as it happens with voting vectors, or with real
numbers with finite precision, this is possible as we see next.

Definition 5.1 (Finite-precision Set): We will say that Φ ⊆
RD is a ϕ-set, ϕ ∈ R, D ∈ N if ∀ x, x′ ∈ Φ

|xk − x′k|
ϕ

∈ N, ∀k = 1, . . . , D, (31)

with xk, x′k being the kth component of x, x′ respectively.
Considering the examples above mentioned, the set of integers,
Z, is defined as a 1-set and the set of reals with s decimal
digits as a 10−s-set.

We introduce next a modification of the standard consensus
algorithm when dealing with elements in a ϕ-set. The idea
of the new rule is to keep the distributed update in (3) and
combine it with a rounding rule that returns the closest element
in Φ. If the average, or the value of some function evaluated
in the average, belongs to Φ, then the algorithm will reach the
exact consensus value for all the nodes in finite time.

Proposition 5.1 (Distributed Averaging in Finite Time):
Let g(x) be a continuous function, g : Rd → RD and
xi(0) ∈ Rd be initial conditions with x̄ = 1

N

∑
i∈V xi(0)

their average. Given Φ as a known ϕ-set, if g(x̄) ∈ Φ, then
the iteration

xi(t+ 1) = xi(t) +
∑

j∈Ni(t)

aij(t)(xj(t)− xi(t)),

yi(t+ 1) ∈ arg min
x∈Φ
‖x− g(xi(t))‖2,

(32)

leads to the finite-time convergence of the variables yi to the
consensus value g(x̄). That is,

∃t∗ > 0 | ∀t > t∗, yi(t) = yi(t
∗) = g(x̄), ∀i ∈ V.

Proof. By Assumption 2.1 on Periodic Connectivity and
Assumption 2.2 on Symmetry and Row Stochasticity, we know
that xi(t) in (32) will asymptotically converge to x̄ for all the
nodes. Given ε > 0, the asymptotic convergence allows us to
find t∗ such that

∀t > t∗ ‖x̄− xi(t)||2 < ε, ∀i ∈ V.

In addition, the continuity of g in x implies that for all ψ > 0
there exists ε > 0 such that

‖x̄− xi(t)‖2 < ε⇒ ‖g(x̄)− g(xi(t))‖2 < ψ.

Considering again the definition of the ϕ-set and that g(x̄) ∈
Φ, by choosing ψ < ϕ

2 , there exists t∗ depending on ε, and
thus on ψ, such that for all t > t∗

‖g(x̄)− g(xi(t))‖2 <
ϕ

2
,

and therefore

arg min
x∈Φ
‖x− g(xi(t))‖2 <

ϕ

2
.

Now, let us suppose that there exists some x ∈ Φ, x 6= g(x̄),
such that for some t > t∗

‖x− g(xi(t))‖2 < ‖g(x̄)− g(xi(t))‖2.

This would imply

‖x− g(x̄)‖2 ≤ ‖x− g(xi(t))‖2 + ‖g(xi(t))− g(x̄)‖2 < ϕ,

which by definition of Φ is not possible. Then

g(x̄) = arg min
x∈Φ
‖x− g(xi(t))‖2. (33)

The proposed rule converges in finite time to the same value
for all the nodes. In addition to the knowledge of g, nodes
require to know ϕ, which is easy to find out before running the
application. The following corollary, provides a bound on the
number of iterations in terms of the initial error with respect
to the average:

Corollary 5.1 (Bound on the total iterations): Let us de-
fine e(t) = ‖x(t) − x̄1‖∞, the maximum difference of the
nodes’ estimations with respect to the average at iteration
t. Then, under Assumptions 2.1, on the network periodic
connectivity, and 2.2, on symmetry and row stochasticity,
yi(t) = g(x̄) for all t such that

t > T
log
(

ϕ
2e(0)

)
log λ2

(34)

with

λ2 = sup
t
ρ

(
T∏

t1=0

A(t+ T − t1)− 1T 1
N

)
, (35)

and ρ(·) the spectral radius operator.
Proof. By Assumptions 2.1 and 2.2, the product

∏T
t1=0 A(t+

T − t1) returns a doubly stochastic matrix associated to a
connected communication graph for all t. Thus, it has one
eigenvalue equal to one, and the rest of the eigenvalues strictly
smaller than one (in modulus). The parameter λ2 represents
the supreme of all these eigenvalues, and it can be shown that
this parameter is also strictly smaller than one (in modulus).
The error, e(t), at iteration t can be bounded by

e(t) = ‖x(t)− x̄1‖∞ ≤ ‖x(t)− x̄1‖2 < λ
b t
T c

2 e(0).

When e(t) < ϕ/2, then eq. (33) holds. Combining this with
the last equation and operating the result is demonstrated.

B. Distributed Vote Counting in finite-time

Let us see now how we can apply the previous iteration
rule to the problem of counting the number of votes in the
distributed RANSAC algorithms.

Basically the problem consists on finding an appropriate
function, g(x) such that when it is evaluated in the different
components of the voting vectors, vi(t), it returns a suitable
output, in the sense that it contains the information about the
number of votes and it belongs to some ϕ-set. Such a function
is given in the following proposition:

Proposition 5.2 (Distributed Voting in Finite Time): For
any initial voting, the rule (32) with g(x) = Nx converges to
the total number of votes in finite time.
Proof. First, let us notice that the initial voting belongs to
the 1-set, because all the votes are integers. Also the sum
of the initial conditions belongs to the 1-set. Finally note
that

∑
i∈V vi(t) = N v̄ = g(v̄). The function satisfies all the

conditions of Proposition 5.1 and then convergence in finite
time follows.

The application of the rule in the static voting solution is
straightforward. Letting xi(t) in eq. (32) be the value of the
voting vectors, vi(t), in eq. (10), the vectors yi(t) converge
to the number of votes in finite time.

In the dynamic scenario, the update given in eq. (32) is
slightly different than the one for the voting vectors given in
eq. (14) because of the dynamic input. Indeed, depending on
the changes of opinions of the nodes, there might be some
hypotheses for which convergence does not occur. However,
under Conditions 1-4, recalling Theorem 4.1 we know that
there exists some time instant for which all the inliers vote a
good hypothesis and keep the positive opinion. At this point
the dynamic inputs of the votes remain equal to zero all the
time and the algorithm behaves as a standard static consensus
algorithm. Thus, the application of the finite-time rule also
guarantees convergence to the number of votes in finite-time.

Finally, the chosen function, g(x) = Nx, to compute the
exact number of votes in finite time requires the network to
know how many nodes are participating in the process. This
information can be very useful in many situations, but that
may not always be available. In the following, we present a
distributed procedure to obtain this information.

C. Distributed Primitive for Node Counting

We propose a distributed algorithm that allows a network to
compute the number of nodes participating in the consensus
process. The algorithm is based on distributed averaging com-
bined with a max-consensus rule. The idea of the algorithm
is to make the network evolve in such a way that the sum
of the initial conditions is equal to one. Since the average
value is divided by the total number of nodes involved in the
computation, the system will tend to 1/N and every node will
be able to know how many nodes are participating.

Let Ni(t), i ∈ V , be the estimated value of N that node i
has at time instant t. In order to make Ni(t) → N the node
exchange a 2-dimensional vector, β, initialized as

βi(0) = (IDi, 1)T , (36)

−8 −6 −4 −2 0 2 4
−6

−4

−2

0

2

4

6
ML

MLin

Observations of the nodes

X(m)

Y
(m

)

20 40 60 80 100 120

5

10

15

20

25

30

35

40

45

50
Consensus on the number of active nodes (1/β

i1
)

Iterations

N
um

be
r

of
 a

ct
iv

e
no

de
s

(a) Communication Graph (b) Observations of the nodes (c) Distributed Node Counting
Fig. 1. Robust sensor fusion of a bi-dimensional feature observed by ten nodes. (a) Communication network. Blue circles represent the nodes with inlier
information and red squares the outliers. (b) Observations of the ten nodes. Five of them have a good observation of the feature (blue crosses and solid ellipses)
whereas five nodes have observed different features (red crosses and dashed ellipses). This implies a 50% of outlier observations. If all the measurements are
considered in the computation of the Maximum Likelihood, the obtained result is the black cross and dash-dot ellipse with the ML mark. The good maximum
likelihood is the one in the middle of the inlier observations (MLin). (c) Distributed computation of the number of active nodes. Each line of the graphic
represents the estimation of one node about the total number of nodes participating. In a finite number of iterations all the nodes know that there are 10 active
nodes participating in the algorithm.

where IDi is the identifier of node i in the network.
Assumption 5.1 (Node Identifiability): Each node i ∈ V

can be univocally identified.
At each time step the nodes update their values as follows:

βi1(t+ 1) = max(βi1(t), βj1(t)), j ∈ Ni(t), (37)

βi2(t+1) = βi2(t)+
∑

j∈Ni(t)

aij(t)(βj2(t)−βi2(t))+ui(t+1),

(38)
denoting βi1(t) and βi2(t) as the first and second component
of β(t) that node i has at time instant t and aij(t) satisfying
Assumption 2.2 on Symmetry and Row Stochasticity.

In eq. (38), the initial input is set to zero, ui(0) = 0, and
for the rest of time instants is defined as

ui(t+ 1) =

{
−1, if βi1(t) 6= IDi and

∑t
s=0 ui(s) = 0,

0, otherwise.
(39)

Proposition 5.3 (Distributed Node Counting): If all the
nodes have initial values, β, defined in (36) and update their
states using (37) and (38), then, for all i ∈ V,

1) βi1(t)→ maxi∈V IDi, in finite time.
2) βi2(t)→ 1

N as t→∞.
3) The iteration rule

Ni(t) = arg min
n∈N
|n− 1

βi2(t)
|, (40)

converges to N in finite time.
Proof. 1) The rule in (37) is a max consensus update rule.
Under Assumption 2.1, the max consensus algorithm is proved
to converge in a finite number of iterations for all the nodes
in the network [26].

2) The sum of the initial conditions is
∑

i βi2(0) = N. In
order to compute the sum of the inputs, taking into account
1) and Assumption 5.1 on Node Identifiability, we have that
after some time instant t∗ <∞, βi1 6= IDi,∀i \maxi∈V IDi.
Since the initial input is equal to zero for all the nodes, then,
by (39), every node but the leader (the one with ID equal to
the max consensus) will have an input ui(t) = −1 for some t
within the interval [2, t∗]. After that, the sum of the previous

inputs will be different from zero and, therefore, the future
inputs will also be equal to zero. Thus,

t∗∑
t=0

∑
i∈V

ui(t) = −N + 1. (41)

Then,
∑

i βi2(t∗) = 1 and ui(t) = 0, ∀ i ∈ V, t > t∗, which
means that (38) behaves like (3) and βi2(t)→ 1

N as t→∞.
3) Choosing g(x) = 1

x , which is continuous for any x 6= 0
and satisfies that g(x̄) = N ∈ N, by direct application of
Proposition 5.1 the result is proved.

VI. SIMULATION RESULTS

A. Illustrative Example

We first show the behavior of the dynamic voting algo-
rithm with an illustrative example. In Fig. 1 (b), we show
the observations of a two-dimensional feature by a network
composed by 10 nodes. We have chosen a two-dimensional
feature in order to have a good visualization of the results,
however, we note that the algorithm is not restricted to this
case and can be used with descriptors of any dimension. The
communication network is fixed (Fig. 1 (a)) and we have used
Metropolis Weights [18] to ensure the Symmetry and Row-
Stochasticity Assumption 2.2. Five of the nodes have good
observations of the feature (blue crosses and solid ellipses)
and other five nodes have outlier information (red crosses and
dashed ellipses).

If all the measurements are considered in the computation of
the Maximum Likelihood, the obtained result is the black cross
and dash-dotted ellipse with the ML mark at value (1.00, 3.47)
while the ML of the inlier observations is (3.31, 4.56) (MLin).
In this example, the conditions stated in section IV-A are
satisfied, ensuring convergence to the ML of the inliers if one
hypothesis is instantiated by nodes in Vin.

Initially, the nodes do not know how many other sensors
are active due to failures, initialization errors, etc. Fig. 1 (c)
shows the evolution on the consensus about the number of
active nodes using the finite-time rule. The final value is 10,
the exact number of active sensors, for all the nodes in the
network. Once this computation is done, the nodes decide the

0 10 20 30 40 50 60 70 80 90
3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

Evolution of X (ML of most voted h)

Iterations

X
(m

)

0 10 20 30 40 50 60 70 80 90

4.2

4.4

4.6

4.8

5

5.2

Evolution of Y (ML of most voted h)

Iterations

Y
(m

)

0 10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

12

Evolution of V (Most voted h)

Iterations

V
ot

es

(a) (b) (c)

Fig. 2. Evolution of the Maximum Likelihood and the number of votes of the most voted hypothesis. In figures (a) and (b) we show the evolution of θi(t)
for the hypothesis that has obtained the most number of votes in the end. The dashed black line is the value of the ML of the nodes with inlier information
whereas the colored lines represent the estimations of the different nodes. It is observed that in both coordinates the values of θi(t) asymptotically converge
to the dashed black line, meaning that all the nodes reach the correct value. The evolution of the number of votes is depicted in (c). It converges to 5 for all
the nodes, which is exactly the number of nodes with inlier information.

hypotheses using max consensus. In this experiment, we have
set the probability of being an inlier to 0.6 and the probability
of success in RANSAC to 0.99, resulting in a total of K = 5
hypotheses. In Fig. 2 (a), (b), we show the evolution of the
two coordinates of θi(t) for the most voted hypothesis. The
values of the different nodes converge to the value of the ML
of all the inliers (depicted in black dashed line in the graphics).
In Fig. 2 (c), the evolution of the number of votes for the
same hypothesis is depicted. Eventually, all the nodes reach
the value 5, which is exactly the number of nodes with good
information. It is also remarkable that the number of iterations
in which the nodes change their opinion is considerably small.
In less than 10 iterations, the plots do not show discontinuities
due to the inputs (14). After that point, the algorithm behaves
as a static consensus algorithm and the number of iterations
required to converge is of the same order.

B. Monte Carlo Simulations

We have also run a Monte Carlo simulation considering
more general situations where the conditions of Section IV-
A do not always hold to analyze the performance of our
algorithm.

1) Influence of pin: In a first experiment, we analyze
the performance of our algorithms with static and dynamic
opinions (algorithms in Sections III and IV respectively),
considering different percentages of inlier information (pin).
We run 1000 trials in which 20 nodes are considered. For
each trial we randomly generate a 2-dimensional feature that
is used as ground truth to measure the final errors in the
estimations of the network. For each node we have generated
a different measurement of the feature. The inlier nodes have
measurements of the feature with zero-mean gaussian error
and standard deviation of 1 meters. For the outlier nodes we
have assigned a deviation of 10 meters. Covariance matrices
are randomly generated with eigenvalues of mean 0.5 and
standard deviation 0.5. Regarding the communication topology
we have changed it, also in a random fashion, at each iteration
of each trial without affecting our results.

The results are reported in Table I. The row “Total Outliers”
contains the total number of outlier nodes generated in each
experiment. As expected, the smaller pin, the larger the number
of outliers. The row “Outliers Detected” represents the number

of nodes that were correctly classified as outliers whereas the
row “Inliers Discarded” shows the number of inlier nodes that
were mistakenly considered as outliers by our algorithm. Even
in the worst-case scenario, with only a 20% of inlier nodes
(pin = 0.2) both approaches were able to discover almost of
the outliers, 14101 out of 15034 in the static case, and 14534
out of 15034 in the dynamic case. The last row, “% Failure”,
shows the percentage of occasions that the most voted solution
did not correspond to a solution voted by inliers only. Again,
even in the worst case, in only the 18.4% and 12.9% of the
situations our algorithms failed. In the last row we analyze the
number of iterations required for each of the two algorithms
to reach the final results. The static voting algorithm requires
in all the cases 220 iterations per trial, which are divided in 20
iterations for the max-consensus, 100 iterations to vote for the
hypothesis and 100 iterations in order to compute the ML of
the inliers. The dynamic voting algorithm executes the voting
and the computation of the ML at the same time, and therefore,
it only requires 120 iterations.

TABLE I
ROBUSTNESS FOR DIFFERENT VALUES OF pin

Static Voting (1000 trials)
pin 1 0.75 0.5 0.2

Total Outliers 0 5059 9913 15034
Outliers Detected 0 4797 9390 14101
Inliers Discarded 10 98 111 154

% Failure 0 1.4 4.1 18.4
Iterations per Trial 220 220 220 220

Dynamic Voting (1000 trials)
pin 1 0.75 0.5 0.2

Total Outliers 0 5059 9913 15034
Outliers Detected 0 4952 9680 14534
Inliers Discarded 126 185 201 306

% Failure 0 0.9 2.0 12.9
Iterations per Trial 120 120 120 120

2) Comparison with other approaches: We have also com-
pared the results obtained by our method with the distributed
consensus algorithm proposed in [18] to compute the ML of all
the observations and the robust approach in [12] considering
the L1.5 loss norm. The conditions of the experiment are the
same as in the previous scenario considering a fixed probability
for each node to have inlier information equal to 0.8, leading
to the generation of only 3 hypotheses in each trial.

TABLE II
COMPARISON OF THE DIFFERENT ALGORITHMS

Method ML [18] Optim. [12] Static Dynamic
Trials 1000

False Positive Votes 4004 - 488 341
False Negative Votes 0 - 191 163
Avrg. Norm of Error 2.07 0.46 0.47 0.39

Std. Deviation of Error 2.36 0.27 0.60 0.51
Iterations per Trial 100 100 220 120
Data per iteration 6 6 21 21

The results obtained in the simulation can be seen in
Table II. In the table a false positive represents a node
with outlier information that has given a positive vote to the
best hypothesis, i.e., a node that should not have voted the
hypothesis but has done so. In contrast, a false negative is a
node who had inlier information but did not vote for the best
hypothesis. The results using the non-robust algorithm [18]
are in the first column. In this case all the outliers participate
in the different trials (a total of 4004 false positives). As a
consequence, the average error in the estimation, computed
using the Euclidean distance to the ground truth feature, is
large (2.07 meters). If we use our approach with static opinions
(third colum), the results are improved because only 488 false
positive votes appear and the average error is reduced to
0.47 meters, with only 191 inliers thinking they have outlier
information. The use of [12], optimizing a robust loss function
is in the second column. In this case we cannot count the
number of false positives and false negatives because all the
nodes participate in some way in the final consensus value.
The consensus solution given by this approach has a slightly
smaller mean Euclidean distance with respect to the ground
truth than our static-voting algorithm. On the other hand, the
obtained results by means of dynamic voting are better, with
an average error of 0.39 meters. This can be explained by
the violation of Condition 1 (Relative Inlier location) in the
experiment. While two inlier observations might not be close
to each other in practice, it is very likely, as shown by the
results, that both of them are sufficiently close to the ML
of the set of inliers to eventually give a positive vote to the
hypothesis. Moreover, since the nodes are voting a dynamic
observation which tends to the good ML, a fewer number of
false negatives is registered (163). This is explained by the
violation of Condition 3 (Location of Outliers), similarly as
we have done to explain the violation of Condition 1.

In terms of communications, the dynamic voting only
requires as additional iterations the max-consensus to initialize
the hypothesis, which we have upper-bounded by the number
of nodes in the experiment, leading to 120 iterations compared
to the 100 iterations of existing techniques. The size of the
messages is shown in the last row of the table. In this example,
using [12], [18] the nodes need to send at each iteration 6
floats (2 floats for the coordinates of the feature plus 4 floats
for the covariance matrix) whereas using our method, for
each hypothesis we require to send the same 6 floats plus an
additional one for the vote counting. Since we are handling 3
hypotheses, we require to send 21 floats per iteration.

In order to show another important advantage of our

approach, in Table III we repeat the previous comparison,
but considering that nodes produce a measurement of either
of two different features. In principle, nodes are not aware
that there can be two different events, and this can lead to
large deviations in final consensus values. In our simulations,
each feature is observed by a 40% of the nodes, while the
remaining 20% has outlier observations. In this way, since
the observations are on both features, the total percentage
of outliers will amount to a 60% of the total number of
nodes. Since in our approach the nodes can consider multiple
hypotheses in parallel, it is possible to handle both features
simultaneously as follows: once the best hypothesis has been
identified, nodes will select the next most voted hypothesis
such that
• They did not vote for it if they were inliers.
• They voted for it if they were outliers.

Since the experiment is repeated 1000 times, the total number
of features generated in the simulation is equal to 2000. The
row (Features Detected) in Table III shows how many of the
real features the different algorithms were able to identify,
computing the number of final consensus values (reached after
an algorithm run) located at an Euclidean distance smaller than
0.75 meters of the ground truth value of the features of that
run. Since the approaches in [12], [18] only output one value
for each trial, in the best case they are able to identify half
of the real features, though they are only able to detect 20
and 28 out of 2000, respectively. In [12], this is explained
because the algorithm looks for a value that optimizes the
L1.5 norm of the error, and therefore most trials return a
value halfway of the two features, leading to a very small
number of localized events. The mean error in these methods is
calculated considering the Euclidean distance of their solutions
to the closest event. Using our algorithms, static or dynamic,
although there are more false positives than in the previous
experiment (1852 and 1080 respectively), a larger number of
real features are correctly identified (1268 and 1656), also
leading to a smaller number of false negatives (1256 and
1036), which means that they are also robust to the presence
of multiple features mixed in the same consensus process. The
number of iterations and information exchanged by the nodes
is the same as in the previous experiment.

TABLE III
COMPARISON OF THE DIFFERENT ALGORITHMS (2 EVENTS)

Method ML [18] Optim. [12] Static Dynamic
Trials 1000

Total features 2000
Features Detected 20 28 1268 1656

False Positive Votes 4000 - 1852 1080
False Negative Votes 0 - 1256 1036
Avrg. Norm of Error 16.98 16.24 5.92 3.60

Std. Deviation of Error 8.87 8.58 8.81 6.83
Iterations per Trial 100 100 220 120
Data per iteration 6 6 21 21

We show an example of this situation in Fig. 3, where
the solutions of the different algorithms can be visualized.
The non-robust solution (ML) and the optimization solution
(Optim) return solutions approximately half way between the

two events. For our algorithms, we show the two most voted
hypotheses, which correspond to the locations of the two
events.

−8 −6 −4 −2 0 2

−10

−8

−6

−4

−2

0

2

4

ML

Event1

Event2

Observations of the event

X(m)

Y
(m

) Optim

Static1

Static2

Dynamic1

Dynamic2

Fig. 3. Simulation considering two events and the robust distributed
estimation of their locations. The network is composed by 20 nodes, some
of them have seem Event 1 (cyan ellipses), others have seen Event 2 (green
ellipses) and some have not observed any useful information (red ellipses).
The non robust solution (ML) and the optimization solution (Optim) return
solutions approximately half way between the two events wheareas the
dynamic consensus algorithm (Dynamic), due to the handling of different
hypotheses, is able to detect both events with more precision.

C. People Identification in Camera Networks

A challenging problem in computer vision is the identifi-
cation of people across multiple views. In camera networks
with limited communications, the complexity of this problem
is increased by the lack of information provided by all the
cameras. We present an example to show the possibilities
of our algorithm in this context. We consider a network
composed by six cameras, A to F, forming a ring topology.
Each camera acquires a picture of the scene, not necessarily
in the same time instant, and extracts the faces using a Haar
classifier with the implementation available in Open CV [28].
For a better interpretation, we have manually assigned the
faces identifiers ∈ {1, 2, 3, 4}. The patches containing the
faces are resized to a fixed dimension of 100x100 pixels.
Therefore, each face is described by a 10000 dimensional
vector containing the intensities of each of the pixels (values
from 0 to 255). Since we are not considering a database of
faces to recognize the extracted ones, neighboring cameras
match their observations computing the absolute differences
between pairs of descriptors. That is,

d(Ii, Ij) =

10000∑
x=1

|Ii(x)− Ij(x)|, (42)

where Ii(x) and Ij(x) are the intensities of the pixel x for the
faces i and j respectively. Then, two faces of two different
images are matched if and only if the distance between their
descriptors is smaller than the distance of these faces to any
other face.

This simple matching algorithm has been chosen for sim-
plicity, but more sophisticated methods as in [29] could be

used. Figure 4 (a) shows the initial correspondences of the
network. Each color in the figure represents one association set
that ideally, should include the same face in the six cameras.
However, as we can see, there are some mistakes in the global
correspondences. The yellow association, which corresponds
to face number 2, contains two entries of face 4 in cameras A
and B and the green association, which should contain only
entries of face 4, has two entries of face 2 in cameras A and
B. This is caused by mistakes matching faces 2 and 4 between
cameras A and F and cameras B and C.

We can use our approach to discard the mismatches and
improve the data association process. Since our algorithm con-
siders only one datum per camera, the algorithm is executed in
parallel 4 times, one for each of the four association sets. Each
execution considers as local information the face descriptor
belonging to the corresponding association set. For example,
when the algorithm is run with the green set, the descriptor
of face 2 is used by cameras A and B and the descriptor
of face 4 by the rest of the cameras. Assuming the initial
data association is relatively good, we set pin to 0.9, which
implies that each camera only generates one hypothesis. Since
this example does not contain covariance matrices, instead of
using the Mahalanobis distance to vote for the hypotheses, we
have used the same error function used to match the faces,
eq. (42). The threshold to vote for one hypothesis has been
empirically set and the robust average of the descriptors has
only been used to identify the outliers.

The results of the application of our method are shown in
Fig. 4 (b). The algorithm has been able to detect that faces
2 and 4 were wrongly matched in the green and yellow sets
respectively, and has removed these faces in cameras A and
B. Also, for the blue and red executions, where faces 1 and
3 were correctly matched in all the cameras, the algorithm
has not removed any match. On the other hand, the algorithm
has also considered as an outlier in the green set face 4 in
camera C, which was a correct association (false negative).
This happens because of choosing a restrictive threshold for
the voting. A possible way to improve this could be to
use a smaller threshold in the error function to vote for
the hypotheses. However, in real applications it is better to
eliminate all the spurious matches rather than missing some
good correspondences.

VII. CONCLUSIONS

This paper introduces new static and dynamic algorithms
that allow a sensor network to compute robust consensus
values when nodal information includes outliers. Our ap-
proach combines the random sampling consensus algorithm
with consensus-algorithmic tools, which enables decentralized,
network-consistent implementations, and the handling of large
number of outliers. Our algorithms allow nodes to detect
locally if their measurement is an outlier or not, and have
convergence guarantees under mild assumptions. In particular,
the dynamic approach is based on a modification of the
standard averaging iteration that converges in finite time. This
can be used by nodes to compute the total number of active
sensors in the network, and the total number of votes, speeding

A

31 2
4

B

12 4
3

C

3

1

2
4

D

4 2

3

1

E

3
1

4
2

F

3
421

A

31 2
4

B
12 4 3

C

3

1

2
4

D

4 2

3

1

E

3
1

4
2

F

3
421

Initial correspondences Robust correspondences
Fig. 4. People Identification in Camera Networks. For a better interpretation we have manually assigned the faces identifiers and colors to the association sets.
In the initial correspondences (a) faces 2 and 4 have been wrongly matched in the yellow and green sets in cameras A and B. After applying our algorithm
in (b) these faces have been removed from the association sets.

up the whole process. Simulation results confirm the good
performance of our approach in practice, even in situations in
which which not all the requirements are satisfied.

The current algorithm considers hypotheses that require a
single observation to be generated. The static voting method
could also handle hypotheses generated by several observa-
tions by appropriately modifying the first step, letting the
nodes gather the information required to generate the different
hypotheses. Whether this can be done with dynamic opinions
is an open question. Another limitation of the current approach
is that it only works with static features. We leave for future
work the extension of the algorithms for multi-target tracking
problems, with the features representing the time-varying
positions of the possible targets, and the investigation of how
the method depends on fixed parameters or random sampling.

REFERENCES

[1] F. Bullo, J. Cortés, and S. Martı́nez. Distributed Control of Robotic
Networks. Applied Mathematics Series. Princeton University Press,
2009. Electronically available at http://coordinationbook.info.

[2] W. Ren. Consensus tracking under directed interaction topologies:
Algorithms and experiments. IEEE Transactions on Control Systems
Technology, 18(1):230–237, January 2010.

[3] A. Jadbabaie, J. Lin, and A. S. Morse. Coordination of groups of mobile
autonomous agents using nearest neighbor rules. IEEE Transactions on
Automatic Control, 48(6):988–1001, June 2003.

[4] M. Zhu and S. Martı́nez. Discrete-time dynamic average consensus.
Automatica, 46(2):322–329, February 2010.

[5] E. Montijano, J. I. Montijano, and C. Sagués. Chebyshev polynomials
in distributed consensus applications. IEEE Transactions on Signal
Processing, 61(3):693–706, March 2013.

[6] M. Franceschelli, M Egersdedt, and A. Giua. Motion probes for fault
detection and recovery in networked control systems. In American
Control Conference, pages 4358–4363, June 2008.

[7] E. Franco, R. Olfati-Saber, T. Parisini, and M. M. Polycarpou. Dis-
tributed fault diagnosis using sensor networks and consensus-based
filters. In IEEE Int. Conference on Decision and Control, pages 386–
391, December 2006.

[8] S. Sundaram and C. N. Hadjicostis. Distributed function calculation via
linear iterations in the presence of malicious agents - part i: Attacking
the network. In American Control Conference, pages 1350–1356, June
2008.

[9] S. Sundaram and C. N. Hadjicostis. Distributed function calculation via
linear iterations in the presence of malicious agents - part ii: Overcoming
malicious behavior. In American Control Conference, pages 1357–1362,
June 2008.

[10] F. Pasqualetti, A. Bicchi, and F. Bullo. On the security of linear
consensus networks. In IEEE Int. Conference on Decision and Control,
pages 4894–4901, Shanghai, China, December 2009.

[11] F. Pasqualetti, F. Dorfler, and F. Bullo. Attack detection and identi-
fication in cyber-physical systems. IEEE Transactions on Automatic
Control, 58(11):2715–2729, November 2012.

[12] J. Li, E. Elhamifar, I-J Wang, and R. Vidal. Consensus with robustness
to outliers via distributed optimization. In IEEE Conference on Decision
and Control, pages 2111–2117, 2010.

[13] Y. Liu, Y. H. Hu, and Q. Pan. Distributed, robust acoustic source
localization in a wireless sensor network. IEEE Transactions on Signal
Processing, 60(8):4350–4359, August 2012.

[14] R. Carli, F. Bullo, and S. Zampieri. Quantized average consensus via
dynamic coding/decoding schemes. International Journal of Robust and
Nonlinear Control, 20(2):156–175, January 2010.

[15] T. C. Aysal, M. J. Coates, and M. G. Rabbat. Distributed average
consensus with dithered quantization. IEEE Transactions on Signal
Processing, 56(10):4905–4918, October 2008.

[16] S. Kar and J. M. F. Moura. Distributed Consensus Algorithms in
Sensor Networks: Quantized Data and Random Link Failures. IEEE
Transactions on Signal Processing, 58(3):1383–1400, March 2010.

[17] M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm
for model fitting with applications to image analysis and automated
cartography. Communications of the ACM, 24(6):381–395, 1981.

[18] L. Xiao, S. Boyd, and S. Lall. A scheme for robust distributed sensor
fusion based on average consensus. In Proceedins of the International
Conference on Information Processing in Sensor Networks, pages 63–
70, 2005.

[19] E. Montijano, S. Martı́nez, and C. Sagués. De-RANSAC: Robust
consensus for robot formations. In Network Science and Systems in
Multi-Robot Autonomy, Workshop at the IEEE International Conference
on Robotics and Automation 2010, May 2010.

[20] E. Montijano, S. Martı́nez, and C. Sagues. Distributed robust data fusion
based on dynamic voting. In IEEE Int. Conference on Robotics and
Automation, pages 5893–5898, May 2011.

[21] M. Schwager, P. Dames, D. Rus, and V. Kumar. A multi-robot control
policy for information gathering in the presence of unknown hazards.
In Proceedings of the International Symposium on Robotics Research,
August 2011.

[22] R. Tron and R. Vidal. Distributed face recognition via consensus on
se(3). In Workshop on Omnidirectional Vision, 2008.

[23] E. Kokiopoulou and P. Frossard. Distributed classification of multiple
observation sets by consensus. IEEE Transactions on Signal Processing,
59(1):104–114, January 2011.

[24] E. Montijano and C. Sagues. Distributed multi-camera visual map-
ping using topological maps of planar regions. Pattern Recognition,
44(7):1528–1539, July 2011.

[25] V. Bychkovskiy, S. Megerian, D. Estrin, and M. Potkonjak. A collabo-
rative approach for in-place sensor calibration. In IPSN, volume 2634
of Lecture Notes in Computer Science, pages 301–316. Springer-Verlag,
2003.

[26] N. Lynch. Distributed Algorithms. Morgan Kaufmann publishers, 1997.

[27] J. Marsden and A. Weinstein. Calculus, Volume III, Chapter 16. Applied
Mathematics Series. Springer, 1985.

[28] P. Viola and M. Jones. Rapid object detection using a boosted cascade
of simple features. In Computer Vision and Pattern Recognition, pages
511–518, 2001.

[29] R. Garg, D. Ramanan, S. Seitz, and N. Snavely. Where’s waldo:
Matching people in images of crowds. In IEEE International Conference
on Computer Vision and Pattern Recognition, pages 1793–1800, 2011.

APPENDIX

A. Computation of the derivative of the Mahalanobis distance
The Mahalanobis distance can be rewritten as

di(w) =
√
d2(w),

d2(w) = (xi − θi(w))TΛ−1
i (xi − θi(w)),

θi(w) = P−1
i (w)qi(w).

(43)

We compute the partial derivative applying the chain rule.
The partial derivative of θi(w) with respect to wj is a

function of Pi(w) and qi(w), whose partial derivatives are

∂Pi(w)

∂wj
= Λ−1

j ,
∂qi(w)

∂wj
= Λ−1

j xj . (44)

By passing the inverse matrix to the left member we have

∂Pi(w)

∂wj
θi(w) + Pi(w)

∂θi(w)

∂wj
=
∂qi(w)

∂wj
. (45)

Clearing ∂θi(w)/∂wj in (45) and plugging (44) yields

∂θi(w)

∂wj
= P−1

i (w)Λ−1
j (xj − θi(w)). (46)

The partial derivative of d2(w) with respect to θi(w) is
obtained as

∂(xi − θi(w))TΛ−1
i (xi − θi(w))

∂θi(w)
=

(xi − θi(w))TΛ−Ti + (xi − θi(w))TΛ−1
i =

2(xi − θi(w))TΛ−1
i .

(47)

Finally, computing the partial of di(w) with respect to d2(w)
and applying the chain rule we get

∂di(w)

∂wj
=

(xi − θi(w))TΛ−1
i P−1

i (w)Λ−1
j (xj − θi(w))

di(w)
.

The derivative is well defined at any point but the set of
points such that θi(w) = xi, because di(w) = 0. However, at
this points we already know that di(w) has a global minimum
because the distance is always positive (or zero). Therefore,
they do not affect our analysis in Theorem 4.1.

Eduardo Montijano (M’12) received the M.Sc. and
Ph.D. degrees from the Universidad de Zaragoza,
Spain, in 2008 and 2012 respectively. He has been
a visiting scholar at University of California San
Diego, University of California Berkeley and Boston
University in the United States and at Royal In-
stitute of Technology, in Stockholm, Sweden. He
is currently a Professor at Centro Universitario de
la Defensa, in Zaragoza, Spain. His main research
interests include distributed algorithms, cooperative
control and computer vision. His Ph.D. obtained

the extraordinary award of the Universidad de Zaragoza in the 2012-2013
academic year.

Sonia Martı́nez is an associate professor at the
Mechanical and Aerospace Engineering department
at UC San Diego. She received her Ph.D. degree
in Engineering Mathematics from the Universidad
Carlos III de Madrid, Spain, in May 2002. Fol-
lowing a year as a Visiting Assistant Professor of
Applied Mathematics at the Technical University
of Catalonia, Spain, she obtained a Postdoctoral
Fulbright fellowship and held positions as a visiting
researcher at UIUC and UCSB. Dr Martı́nez main
research interests include nonlinear control theory,

cooperative control and networked control systems. In particular, her work
has focused on the modeling and control of robotic sensor networks, the
development of distributed coordination algorithms for groups of autonomous
vehicles, and the geometric control of mechanical systems. She is also
interested in distributed control applications in energy and demand-response
systems. For her work on the control of underactuated mechanical systems
she received the Best Student Paper award at the 2002 IEEE Conference
on Decision and Control. She was the recipient of a NSF CAREER Award
in 2007. For the paper Motion coordination with Distributed Information,
coauthored with Francesco Bullo and Jorge Cortes, she received the 2008
Control Systems Magazine Outstanding Paper Award.

Carlos Sagüés (M’00, SM’11) received the M.Sc.
and Ph.D. degrees from the Universidad de
Zaragoza, Spain. During the course of his Ph.D.
he worked on force and infrared sensors for robots.
Since 1994 he has been Associate Professor and,
since 2009 Full Professor with the Departamento de
Informática e Ingenieı́a de Sistemas, Universidad de
Zaragoza, where he has also been Head Teacher. His
current research interest includes control systems,
computer vision, visual robot navigation and multi-
vehicle cooperative control.

