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Abstract— This paper proposes two novel nonlinear discrete-
time distributed algorithms to solve a class of resource allo-
cation problems. The proposed algorithms allow an intercon-
nected group of agents to collectively minimize a global cost
function subject to equality and inequality constraints. Under
some technical conditions, we show that the algorithms converge
to the solution in a practical way as long as the stepsize chosen
is sufficiently small. Of particular interest is that the proposed
algorithms are designed to be robust so that temporary errors in
communication or computation do not change their convergence
to a neighborhood around the equilibrium, and to this end,
agents do not require global knowledge of total resources in
the network or any specific procedure for initialization. The
convergence of the algorithms is established via second-order
convexity theory together with nonsmooth Lyapunov analysis.
To illustrate the applicability of our strategies, we studya virus
mitigation problem over computer and human networks.

I. I NTRODUCTION

Distributed resource allocation is a general problem in
which a group of agents decides how to assign a set of scarce
resources to solve a common objective while satisfying
operational and communication constraints. The problem is
often formulated via an objective function in the form of a
weighted sum of individual costs, which models a fair agent
contribution towards the reduction of the shared cost.

A specific real-world problem leading to such a setting
arises in computer networks, epidemiology, and viral mar-
keting, where a viral outbreak can threat to the security of in-
terconnected infrastructure and the well-being of the general
public. The implementation of strategies to stop epidemics
can be specially challenging when networks are operated
by multiple managers who need to preserve the privacy and
interests of their local users. These scenarios would benefit
from the development of distributed anonymous coordination
algorithms that allow the implementation of best responsesin
a robust way, where it is not required a specific initialization
and the convergence is not affected by a single erroneous
update in the system state. For this reason, a distributed
and robust implementation of these optimal responses over
networks calls for the use of distributed algorithms that the
multiple operators can employ for this purpose. Motivated by
this problem, we propose distributed and robust algorithms
for resource allocation, which converge regardless of the
initial condition under some technical assumptions.
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Literature review.In a distributed resource optimization
problem, the cost function may be linear or nonlinear. The
linear scenario has been extensively studied in the control
literature. Some approaches utilize consensus-based algo-
rithms [1] and gossip-based interactions [2]. For consensus-
based algorithms, robust solutions can be always obtained by
using ideas from [3], where consensus is achieved indepen-
dently what the initial states are. On the other hand, when
the utility function is nonlinear, some approaches are based
on dual decomposition methods, e.g., [4] for unconstrained
problems, or [5], [6] for constrained ones. Other approaches
are based on a combination of subgradients and consen-
sus [7], or on the local version of the replicator equation [8],
[9], and yet others are based on gossip algorithms [10], or
saddle-point methods [11], or Laplacian gradient dynam-
ics [12], [13]. However, such approaches are not proven
to be robust since they assume no errors in communication
or computations. In addition, the total amount of resources
available to all agents needs to be known in advance in order
to initialize the algorithm.

Statement of contributions.Here, we present and analyze
two novel distributed discrete-time nonlinear algorithmsto
solve a class of distributed resource allocation problems.In
particular, we extend our previous work [14] by providing al-
ternative discrete-time algorithms with provable convergence
guarantees to the solution of a class of resource allocation
problems. Our approach allows an interconnected group
of agents to collectively minimize a global cost function
subject to equality and inequality constraints. Under some
technical conditions, we show that the algorithms converge
to the solution in a practical way as long as the chosen
stepsize is sufficiently small. Of particular interest is that
the proposed algorithms are convergent to a neighborhood
around the equilibrium even when there are temporary er-
rors in communication or computation. And thus, agents
do not require global knowledge of total resources in the
network or any specific procedure for initialization. We
analyze the algorithms over weight-balanced and strongly
connected networks. Finally, we illustrate the applicability of
our algorithms on a virus spreading problem over computer
and human networks. In this application we approximate the
gradient of the cost function by means of the well-known
distributed power iteration algorithm.

II. PRELIMINARIES

This section presents notation and basic notions from
graph, matrix, and stability theory that are used in the sequel.



A. Notation and graph-theoretic notions

We denote byN the set of natural numbers,RN
>0 the

positive orthant ofRN , for someN ∈ N, IN the identity
matrix of sizeN ×N , diag(a1, . . . , aN ) theN ×N matrix
with entriesai along the diagonal, and1N ∈ R

N the column
vector whose elements are all equal to one. The spectrum
of A is denoted byspec(A), an eigenvalue of a symmetric
matrix A ∈ R

N×N is denoted byλi(A), whereλ1(A) ≥
. . . ≥ λN (A) ∈ spec(A) and the singular values are
denotedσ1(A) ≥ . . . ≥ σN (A). When we use inequalities
for vectors, we refer to componentwise inequalities. We let
[l]+ = max{0, l}, for l ∈ R. The two-norm and∞-norm of
a vector are denoted by‖.‖2 and‖.‖∞, respectively.

A matrix A = [aij ] ∈ R
N×N
≥0 is called nonnegativeif

aij ≥ 0, for all i, j ∈ {1, . . . , N}. A directed graph of
order N or digraph is a pair G = (V , E), whereV , the
vertex set, is a set withN nodes, andE ⊂ V × V , the edge
set, is a set of ordered pair of vertices called edges. Given
B ∈ R

N×N
≥0 , its associatedweighted digraphG(B) is the

graph with V = {1, . . . , N} and edge set defined by the
following relationship:(i, j) ∈ E(B) if and only if bij > 0.
The associated weight of the edge(i, j) is given by the
entrybij . The digraphG(B) is said to beweight-balancedif
∑N

j=1 bij =
∑N

j=1 bji for all i ∈ V . Given a pair of indices
i, j ∈ V of a digraphG = (V , E), j is called anout neighbor
of i if (i, j) ∈ E . We let N out

i (G) denote the set of out
neighbors ofi in G. A digraphG(A) is strongly connected
if there exists a path between any two vertices. The strongly
connectedness ofG(A) is equivalent to requiring thatA
is an irreducible matrix. The Laplacian matrix associated
to a digraphG(A) is defined asL(G)ii =

∑N
j=1 aij , and

L(G)ij = −aij for i 6= j.

B. Partial stability for nonsmooth Lyapunov functions

The notions we introduce here follow [15], [16]. Given
two setsS andT , a set-valued map, denoted byh : S ⇉ T ,
associates to an element ofS a subset ofT . Consider
a discrete-time dynamical system given by the difference
inclusion inRn

(1)x(t+ 1) ∈ H(x(t), w(t)),

whereH : Rn × R
m ⇉ R

n is a set-valued map for some
n,m ∈ N, x is the state,w is the input, andt ≥ 0. We assume
thatH assigns to each point(x,w) ∈ R

n ×R
m a nonempty

set H(x,w) ⊂ R
n. Consider the unforced system (1), i.e.,

w = 0. We divide the the statex in two components: (1) the
y-component used to study the stability of the equilibrium
x∗ = 0, and (2) other (non-controlled)z-component, so that
x = [y⊤, z⊤]⊤. We usex(t) = x(t; t0, x0) to denote the
solution of the system (1) given the initial conditionx0 at
t0. Whenw = 0, we have the following definition.

Definition 1: Let Dϕ be a domain of initial conditionsx0

such that‖y0‖2< ϕ and ‖z0‖2≤ L, whereL ∈ R>0. The
origin of system (1) is said to be

a y-stable if for any ε > 0, t0 ≥ 0, one can find
ϕ(ε, L) > 0 such thatx0 ∈ Dϕ yields‖y(t; t0, x0)‖2<
ε for all t ≥ t0.

b globally asymptoticallyy-stable if it is y-stable, and
an arbitrary solutionx(t) of the system (1) exists for
all t ≥ 0, y0 ∈ Ky, whereKy is an arbitrarily compact
set in y-space, andx(t) is y-bounded and satisfies
lim‖y(t; t0, x0)‖2= 0 as t → +∞.

The smooth version of the next lemma was introduced
in [15], Theorem 2. We present here an adaptation to
nonsmooth Lyapunov functions. The proof is straightforward
when considering the analogous definitions from nonsmooth
analysis and follows the same steps as in [15].

Lemma 1:Suppose that there exists a continuous scalar
function V : R

n → R, and a continuous vector function
W : R

n → R
n for the unforced system (1) inRn with

W (0) = 0. Then, the origin is globally asymptoticallyy-
stable if the following conditions are met

(2a)V (0, z) = 0,

(2b)α1(‖y‖2) ≤ V (x) ≤ α2(‖ϑ‖2),

(2c)sup
g ∈H(x)

V (g)− V (x) ≤ −α3(‖ϑ‖2),

whereϑ = [y⊤,W (x)⊤]⊤, α1 belongs to classK∞, α2, α3

belong to classK.
Next definition is an adaptation ofinput-to-output stability
(e.g., see [17]) when we consider the output of the system (1)
as the controllable statesy.

Definition 2: (y-input-to-state stability):The system (1)
is said to bey-input-to-state stable (for shorty-ISS) if there
exists aKL functionβ and aK functionγ such that for any
initial statey(t0) and any bounded inputw(t), the solution
y(t) for t ≥ 0 satisfies

‖y(t)‖≤ β(‖ϑ0‖, t− t0) + γ
(

sup
t0≤τ≤t

w(τ)
)

Theorem 1:Suppose that there exists a continuous scalar
functionV : Rn → R such that

(3a)V (0, z) = 0,

(3b)α1(‖y‖) ≤ V (x) ≤ α2(‖ϑ‖),

(3c)sup
g ∈H(x)

V (g)− V (x) ≤ −α3(‖y‖), ∀ ‖y‖≥ ρ(‖w‖)

∀(x,w) ∈ R
n ×R

m, whereϑ = [y⊤,W (x)⊤]⊤, α1 belongs
to classK∞, α2, α3, ρ belong to classK, and a continuous
vector functionW : R

n → R
n for the system (1) with

W (0) = 0. Then the system (1) isy-input-to-state stable
with γ = α−1

1 (α2(ρ)).

III. PROBLEM STATEMENT, SOLUTION APPROACH, AND

ALGORITHMS

In this section, we introduce the optimization problem
we are set out to solve, which is followed by the pro-
posed ROBUST GRADIENT FAIRNESS and ROBUST BOX-
CONSTRAINED GRADIENT FAIRNESSalgorithms with guar-
anteed convergence to their corresponding optimizer under
complementary sets of assumptions.



A. Problem statement and solution approach

We consider a network ofN agents connected over a
digraph whose goal is to minimize a generalf : RN → R≥0

under resource constraints. TheBOX-COUPLED FAIRNESS

optimization problem is given by

min
p

f(p)

s.t. 1⊤
Np = 1

⊤
Nu,

p ∈ [p, p]N ,

(4)

where f is the payoff,p = [p1, . . . , pN ]⊤ ∈ R
N is the

resource allocation,ui ∈ R is the input assumed to be
constant that represents the available quantity of resources for
each agent,u = [u1, . . . , uN ]⊤, andp, p ∈ R

N are the lower
and upper limits of the optimization variable, respectively.
We name the last constraint in (4) as thebox constraint. We
simply refer to the problem with the box constraint omitted
as theLINEARLY COUPLED FAIRNESSoptimization problem.
To solve both problems we state the following assumption.

Assumption 1: (Problem assumptions):We assume that
the set of optimal solutions of (4) is nonempty, the payoff
f(p) is twice continuously differentiable, strongly convex
with γI ≤ ∇2

pf(p) ≤ ΓI for γ,Γ ∈ R>0, and bounded
below. Also, an agenti ∈ V should be able to compute∂f

∂pi

using only local information fromN out
i and‖∇pf(p)‖≤ M .

Under the same assumptions as for the last problem and us-
ing the exact penalty method (see, e.g., [18]), we reformulate
the BOX-COUPLED FAIRNESSproblem as follows:

min
p

f̂(p)

s.t. 1⊤
Np = 1

⊤
Nu,

(5)

wheref̂(p) , f(p)+J(p), J(p) , ǫ
∑N

i=1

(

[pi−pi]++[pi−

pi]+

)

, andǫ ∈ R>0. In what follows we use the following

notation. We refer toFu
≤ , {p ∈ R

N | 1
⊤
Np ≤ 1

⊤
Nu},

Fu
≥ , {p ∈ R

N | 1
⊤
Np ≥ 1

⊤
Nu}, Fu , Fu

≤ ∩ Fu
≥, and

Fν
box = {p ∈ R

N | p − ν1N ≤ p ≤ p + ν1N} for
ν ∈ R>0. Under the assumptions we have laid out above, the
next lemma characterizes the optimal solution to theBOX-
COUPLED FAIRNESSoptimization problem. Next lemma is
a result from applying the exact penalty method and the
characterization in [12] to the above problem.

Lemma 2: (Solution of theBOX-COUPLED FAIRNESS

problem):Let Assumption 1, on the payoff characteristics for
the BOX-COUPLED FAIRNESSproblem, hold. Letǫ ∈ R>0

be such that
(6)ǫ > 2 max

p∈Fu

‖∇pf(p)‖∞.

Then, the solution to theBOX-COUPLED FAIRNESSoptimiza-
tion problem satisfies

(7a)ζ∗1N ∈ ∇pf(p) + ∂J(p),

(7b)1
⊤
Np∗ = 1

⊤
Nu,

where ζ∗ ∈ R is the Lagrange multiplier for the equality
constraint of theBOX-COUPLED FAIRNESSproblem.

Next, we propose two distributed discrete-time algorithms
which successfully converge to the solutions of theBOX-
COUPLED FAIRNESS and LINEARLY COUPLED FAIRNESS

problems introduced above under the corresponding as-
sumptions. We will refer to them as theROBUST GRADI-
ENT FAIRNESSandROBUST BOX-CONSTRAINED GRADIENT

FAIRNESS algorithms.

B. Proposed algorithms

In order to solve theLINEARLY COUPLED FAIRNESS

problem dynamically, we introduce the followingROBUST

GRADIENT FAIRNESSalgorithm,

(8a)w+ = w − αL∇pf(p),

(8b)p+ = p+ α(−L2∇pf(p) + Lw − p+ u),

wherew ∈ R
N is an internal estimator state,α ∈ (0, 1) is

the step size, andL is the Laplacian matrix associated to
directed graphG.

Since the cost function of theBOX-COUPLED FAIRNESS

problem is assumed to be nonsmooth but convex, the previ-
ous algorithm can be adapted as the followingROBUST BOX-
CONSTRAINED GRADIENT FAIRNESSalgorithm to solve the
BOX-COUPLED FAIRNESSproblem

(9a)w+ ∈ w + α(ξmax1N − ξ)

(9b)p+ ∈ p+ α(−Lξ + Lw − p+ u),

wherew, α, andL have the same meaning as in the previous
algorithm,ξmax = {ξi ∈ (∂f̂(p))i | i = argmaxl∈V max ξl},
and f̂ has the same meaning as in (5). Notice thatf̂ is
convex, locally Lipschitz, with generalized gradient∂f̂(p) :
R

N ⇉ R
N given by ∂f̂(p) = ∇pf(p) + ∂J(p). Then ξ

above is an element in the generalized gradient off̂ .

IV. STABILITY ANALYSIS

In this section, we show that the equilibrium points
of the ROBUST GRADIENT FAIRNESSand ROBUST BOX-
CONSTRAINED GRADIENT FAIRNESS dynamics coincide
with the optimal solutions of the corresponding problems
they solve, respectively, under the stated assumptions when
G is strongly connected and weight-balanced. Theorem 2 and
Theorem 3 present the stability properties of both dynamics.
All results of this paper will be found in a forthcoming
publication.

Lemma 3: (Equilibria of theROBUST GRADIENT FAIR-
NESS algorithm): Let Assumption 1, on the payoff char-
acteristics for theLINEARLY COUPLED FAIRNESS problem,
hold. Let G be a weight-balanced and strongly connected
graph. Then, theROBUST GRADIENT FAIRNESSalgorithm
has a unique solutionp∗ to

(10a)1
⊤
Np = 1

⊤
Nu,

(10b)(∇pf(p))i = (∇pf(p))j , ∀i, j ∈ {1, . . . , N},
Lemma 4: (Equilibria of the ROBUST BOX-

CONSTRAINED GRADIENT FAIRNESS algorithm): Let
Assumption 1, on the payoff characteristics for the
BOX-COUPLED FAIRNESS problem, hold. Let G be a
weight-balanced and strongly connected graph. A pointp∗



is a unique solution of theROBUST BOX-CONSTRAINED

GRADIENT FAIRNESSalgorithm iff there existsγ∗ ∈ R such
that

(11a)γ∗
1N ∈ ∂f̂(p∗),

(11b)1
⊤
Np∗ = 1

⊤
Nu.

Before presenting our main results, the next lemma char-
acterizes the invariance ofFu

≤ andFu
≥ with respect to the

ROBUST GRADIENT FAIRNESSdynamics. The same is true
for the ROBUST BOX-CONSTRAINED GRADIENT FAIRNESS

dynamics.
Lemma 5: (Invariance of the resource constraint un-

der (8)): Let Assumption 1, on the payoff characteristics
for the LINEARLY COUPLED FAIRNESSproblem, hold. LetG
be a weight-balanced and strongly connected graph. Assume
α ∈ (0, 1) in (8). Then, the setsFu

≤ andFu
≥ are strongly

positively invariant under theROBUST GRADIENT FAIRNESS

dynamics.
Theorem 2: (Sufficient conditions for convergence of the

ROBUST GRADIENT FAIRNESS algorithm): Let Assump-
tion 1, on the payoff characteristics for theBOX-COUPLED

FAIRNESS problem, hold. Assumef is radially unbounded.
Let G be a weight-balanced and strongly connected graph.
For any constant inputu ∈ R

N and any initial state
p(0), w(0), the solutions of the system (8) converge
asymptotically to the equilibrium point (10) ifα ∈

(0,min{1, λ2(L
2+L2

⊤

)
2Γσ2

1
(L2)

}).
Before presenting our main result in Theorem 3, we show
next supporting lemma, where it is shown the solutions
of the ROBUST BOX-CONSTRAINED GRADIENT FAIRNESS

dynamics are bounded.
Lemma 6: (Boundedness of theROBUST BOX-

CONSTRAINED GRADIENT FAIRNESS dynamics): Let
Assumption 1, on the payoff characteristics for the
BOX-COUPLED FAIRNESSproblem, hold. LetG be weight-
balanced and strongly connected. Then, the setFν

box is
strongly positively invariant under theROBUST BOX-
CONSTRAINED GRADIENT FAIRNESS algorithm provided
that ǫ ∈ R satisfies

(12)
ǫ >

1

min(i,j)∈E aij

(

2dout,maxmax
p

‖∇ph(p)‖∞

+ ‖Lw(0)− p(0) + u‖∞
)

,

wheredout,max= maxi∈V

∑N
j=1 aij .

Theorem 3: (partial-ISS of theBOX-COUPLED FAIRNESS

algorithm): Let Assumption 1, on the payoff characteristics
for the BOX-COUPLED FAIRNESSproblem, hold. AssumeG
be a weight-balanced and strongly connected graph. Assume
that theBOX-COUPLED FAIRNESSalgorithm has access to an
approximation of the gradient in the form∇pf(p)+e, where
e ∈ R

N is the error term for the approximation. Assume that
e is uniformly bounded, i.e.,‖e(t)‖2≤ αK for someK ∈
R>0. Then, for any constant inputu ∈ R

N and any initial
statep(0), w(0), the solutions of the system (9) converge
asymptotically to a ball centered at the equilibrium point (11)
with radius dependent onα.

Remark 1:Our motivation to include the error terme in
Theorem 3 is that in many applications the gradient of the
payoff function only can be approximated. For example, in
the following section, we show an application to the virus
spread minimization, where the gradient is approximated by
the well-known Power Iteration.

V. A PPLICATION TO VIRUS SPREAD MINIMIZATION

As an application, we employ theROBUST BOX-
CONSTRAINED GRADIENT FAIRNESSalgorithm on a virus
spread minimization problem. Notice that if we remove the
box constraints, we can similarly use theROBUST GRA-
DIENT FAIRNESS algorithm to solve the same problem. In
this section we introduce theδ-VIRUS MITIGATION andκ-
VIRUS MITIGATION problems, which we solve using the
ROBUST BOX-CONSTRAINED GRADIENT FAIRNESS algo-
rithm together with the exact penalty method as shown in
Section III. Since our distributed algorithm approach requires
the computation of the gradient, and the fact that the gradient
for the δ-VIRUS MITIGATION and κ-VIRUS MITIGATION

problems is not naturally distributed, we approximate it by
using the well-known Power Iteration.

A. Problem statement and solution approach

The SIS (susceptible-infected-susceptible) model for virus
dynamics proposed in [19] is given by

qi(t+ 1) =
(

1−
∏N

j=1
(1− aijqj(t))

)

, (13)

whereqi(t) ∈ R is the probability that nodei is infected at
time t, i ∈ {1, . . . , N} andaij is defined as

aij =

{

κiβij , for j 6= i,
1− ciδi, for j = i.

Here,κi ∈ (0, 1] represents the scaling factor of the nominal
weightβij , βij ∈ [0, 1] is the probability that the virus from
node i infects nodej, or in other words, it represents the
isolation capability placed in the entering branches,ci ∈
[0, 1] represents the district-specific scaling factor, andδi ∈
[0, 1] is the probability of an infected nodei to be recovered.
Using the Weierstrass product inequality, valid foraijqj(t) ∈
[0, 1], we obtain the following upper bound

qi(t+ 1) ≤
∑N

j=1
aijqj(t), ∀i ∈ {1, . . . , N},

where q(t) = [q1(t), . . . , qN (t)]⊤. The previous inequality
reads in vector notation as

q(t+ 1) ≤ A(δ, κ)q(t), (14)

whereA(δ, κ) ∈ R
N×N is defined as

(15)A(δ, κ) =









1− c1δ1 κ1β12 . . . κ1β1N

κ2β21 1− c2δ2 . . . κ2β2N

...
...

. . .
...

κNβN1 κNβN2 . . . 1− cNδN









= IN −D +KG.

Here, A(δ, κ), D = diag(c) diag(δ), K = diag(κ), and
G = A(0,1N) − IN . Let G(A(0,1N )) = G(G) be the



graph associated to the virus dynamics contact network. We
define thetopology matrixof the network as the matrixG.
When there is no confusion, we will denoteG(G) by G.
Next proposition shows that the dominant eigenvalue,λ1(A),
governs the growth/decay rate of infection.

Proposition 1 ([19]): An epidemic described by (13) be-
comes extinct if and only ifλ1(A) < 1. Moreover, when an
epidemic is diminishing, the probability of infection decays
at least exponentially over time.
Inspired by [14], [20], we consider the following two prob-
lems to minimize the effects of virus contagion. Theδ-VIRUS

MITIGATION problem is defined by

min
δ∈[δ,δ]N

λ1(A(δ, κ)),

s.t. 1
⊤
Nδ = 1

⊤
Nuδ,

(16)

where κ is fixed, 1⊤
Nuδ is the total amount of antivirus

available, and the constantsδi, δi ∈ [0, 1]. The κ-VIRUS

MITIGATION problem is given

min
κ∈[κ,κ]N

λ1(A(δ, κ)),

s.t. 1
⊤
Nκ = 1

⊤
Nuκ,

(17)

where δ is fixed, 1⊤
Nuκ is the total amount of isolation

resources, and the constantsκi, κi ∈ (0, 1].
Remark 2:We refer to δ∗ and κ∗ to the solutions of

Problem (16) or Problem (17), respectively. These solutions
minimize the exponential decay/growth rate of (13) subject
to resource constraints. Moreover, if the solutionsδ∗ or κ∗

make the dominant eigenvalueλ1(A(δ
∗, κ)) or λ1(A(δ, κ

∗))
(for fix κ or δ depending on the problem) strictly less than
one, then it is guaranteed that the disease free equilibrium,
q∗ = 0, is globally exponentially stable.
To analyze the solution of theδ-VIRUS MITIGATION and
κ-VIRUS MITIGATION problems, we show in the following
two lemmas thatλ1(A) is a convex function ofδ, and κ,
respectively. Finally, in Lemma 9 we explicitly calculate
the gradient ofλ1(A) in order to use theROBUST BOX-
CONSTRAINED GRADIENT FAIRNESS algorithm using the
exact penalty method presented in Section III.

Lemma 7 ([21]): Let B be nonnegative, andC =
diag (δ1, . . . , δN ). Then, the maximum eigenvalue ofB+C,
λ1(B + C), is a convex function ofC.

Lemma 8: ([22] Convexity ofλ1(KG)): LetG be positive
semidefinite, andK = diag (κ1, . . . , κN ). Assume thatκi >
0 for all i ∈ {1, . . . , N}. Then, λ1 of KG is a convex
function ofK.

Remark 3:Notice that in generaltrace(G) = 0 for our
virus application, which means thatG is indefinite. This fact
makes theκ-VIRUS MITIGATION problem to be non-convex,
even whenG is symmetric. We refer to [22] for further
discussion about the convexity ofλ1(KG). To approximate
the solution of theκ-VIRUS MITIGATION problem, we can
use the inequalityλ1(KG) ≤ (λ1(K

2G2))
1

2 [23]. WhenG
is symmetric,G2 is positive semidefinite, thenλ1(K

2G2)
is convex by Lemma 8. Therefore, we can obtain an upper-
bound of the solution of theκ-VIRUS MITIGATION problem.

The analysis of the error by using this approach is out of
scope of this paper.
Lemma 7 and Lemma 8 show thatλ1(A) is a convex
function with respect to its arguments under some techni-
cal assumptions. Then we can aim to apply theROBUST

BOX-CONSTRAINED GRADIENT FAIRNESSalgorithm on the
resource allocation problem associated to this function. As
shown in Lemma 2, information of the gradient ofλ1(A) is
required in order to evaluate if a solution is optimal and to
implement our algorithm. For that reason, in the following
lemma we provide the analysis to obtain such a gradient.

Lemma 9:Let v, ands be the left and right eigenvectors
of the matrixA(δ, κ) as defined in (15). Then

∂λ1(A(δ, κ))

∂δi
= −ci

visi
v⊤s

(18)

and,

∂λ1(A(δ, κ))

∂κi

=
vi
v⊤s

∑

j 6=i
βijsj (19)

B. The Power Iteration

The power method is a well-known algorithm for approx-
imatingλ1(A) for A ∈ R

N×N . For a detailed description of
this method the reader may consult [24], [25]. In this paper
we restrict our discussion forA being primitive withz(0) >
0. In Remark 4 we explain how to relax the condition of
primitivity to Mezler and irreducible matrices. The algorithm
is given by

(20)z(t+ 1) =
Az(t)

‖Az(t)‖∞
,

wherez(t) ∈ (0, 1] for t ∈ N. Under the assumptions listed
above onA, z(t) → x as t → +∞, wherex is the right
eigenvector associated toλ1(A).

Remark 4: In general, the conditionA to be primitive can
be relaxed to haveA nonnegative and irreducible. For that,
it can be used a shifted versionAc , A+ cI, wherec > 0.

C. Algorithm Implementation and Simulations

Next we show an example that illustrates the response of
the ROBUST BOX-CONSTRAINED GRADIENT FAIRNESSal-
gorithm to solve a particularδ-VIRUS MITIGATION problem.
Before that, we summarize the required assumptions to solve
the δ-VIRUS MITIGATION and the κ-VIRUS MITIGATION

problems by using Theorem 3. First, Lemma 7 shows that
λ1(A) is a convex function respectδ. Our assumptions
require the problem payoff to be strongly convex. However,
it’s been observed in many example problems that this
assumption is more restrictive than necessary. Because of
this, we are currently studying how to relax proofs to
be able to relax these conditions. For the case ofλ1(A),
Example 1 shows that for a particular problem, the algorithm
converges to the desired solution. Second, we require to have
λ1(A) bounded below andA(δ, κ) has to be irreducible all
time. These assumptions are satisfied since the setFν

box is
invariant to our dynamics as shown in Lemma 6. Finally,
the computation of the gradient ofλ1(A) is required by
using local information. To address this, we use the Power



Iteration method, summarized in Section V-B, to approximate
the gradient as shown in Lemma (9). At each time step,
the Power Iteration algorithm runs until a desired stopping
condition is reached. The reader may consult [25] for a
discussion on the stopping criteria.

Example 1 (Optimizing inδ): We illustrate the response
of the ROBUST BOX-CONSTRAINED GRADIENT FAIRNESS

algorithm for the undirected topology matrixG associated
to A(δ, κ) for fix κ. We constructG as a ring withV ∈
{1, . . . , 10}, bidirectional edges given by(i, i+1) = 1/5 for
i ∈ V (assume that ifi = 10, theni+1 = 1) and additional
bidirectional edges given by(1, 5) = (3, 9) = 1/6. We use
u1 = 5.5, uj = 0 for j ∈ V − {1}, c1 = c3 = c6 = 0.85,
cj = 1 for j ∈ V − {1, 3, 6}, δ = .91N , δ = .21N ,
ǫ = 8.47, andα = 0.01. In this example, we approximate the
gradient ofλ1(A) by the Power Iteration. At each iteration
of the ROBUST BOX-CONSTRAINED GRADIENT FAIRNESS

algorithm, we run one iteration of the Power Iteration.
In Figure 1, we show the behavior of theROBUST BOX-
CONSTRAINED GRADIENT FAIRNESSalgorithm for a ran-
dom initial condition withδ(0) ∈ [.2, .9]N , w(0) ∈ [0, 1]N .
The optimal value is given byλ1(A(δ

∗)) = 0.9455. We
introduce an erroneous update on the system state at time
t = 1500, where we forcep(1500) andw(1500) to a random
vector in [0, 1]N . After t = 1500, the algorithm converges
again to the optimal point. Notice thatp(t) ∈ [0, 1]N for
t ≥ 0 sinceFν

box is invariant to our dynamics.
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Fig. 1. Trajectories ofδ(t) and λ1(A(δ(t))) of Example 1 for the
ROBUST BOX-CONSTRAINED GRADIENT FAIRNESSalgorithm. It is used
an erroneous update on the system state att = 1500.

VI. CONCLUSION

We have considered a class of distributed resource al-
location problems. We have proposed two novel discrete-
time algorithms that converge in a practical way to the
solution as long as the chosen stepsize is sufficiently small.
In particular, the proposed algorithms are designed to be
robust to temporary errors in communication or computations
of agents. Our technical approach relies on results from
algebraic graph theory, second-order convex analysis as well
as nonsmooth partial stability. Simulations show that the al-
gorithms converge for a wider set of problems. Motivated by
applications to virus processes, we plan to extend available
proofs that can help us relax the assumptions needed.
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