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Abstract— This paper proposes two novel nonlinear discrete- Literature review.In a distributed resource optimization
time distributed algorithms to solve a class of resource af- problem, the cost function may be linear or nonlinear. The
cation problems. The proposed algorithms allow an intercon  jinaar scenario has been extensively studied in the control

nected group of agents to collectively minimize a global cos literat S h il b d al
function subject to equality and inequality constraints. Uhder Iterature. Some approaches utilize consensus-basea algo

some technical conditions, we show that the algorithms coevge  'ithms [1] and gossip-based interactions [2]. For consensu
to the solution in a practical way as long as the stepsize ches  based algorithms, robust solutions can be always obtaiped b

is sufficiently small. Of particular interest is that the proposed  ysing ideas from [3], where consensus is achieved indepen-
algorithms are designed to be robust so that temporary erros in dently what the initial states are. On the other hand, when

communication or computation do not change their convergece the utility function i i h (H)
to a neighborhood around the equilibrium, and to this end, € utiity function IS nonfinear, some approaches are tase

agents do not require global knowledge of total resources in ON dual decomposition methods, e.g., [4] for unconstrained
the network or any specific procedure for initialization. The  problems, or [5], [6] for constrained ones. Other approache

convergence of the algorithms is established via secondetmr are based on a combination of Subgradients and consen-
convexity theory together with nonsmooth Lyapunov analys. g5 [7], or on the local version of the replicator equatidi [8
To illustrate the applicability of our strategies, we studya virus : .
mitigation problem over computer and human networks. [9], and y(_-:‘t others are based on goss_lp algor't_hms [10], or
saddle-point methods [11], or Laplacian gradient dynam-

ics [12], [13]. However, such approaches are not proven
to be robust since they assume no errors in communication

Distributed resource allocation is a general problem ir computations. In addition, the total amount of resources
which a group of agents decides how to assign a set of sca@eailable to all agents needs to be known in advance in order
resources to solve a common objective while satisfyintp initialize the algorithm.
operational and communication constraints. The problem is Statement of contributionslere, we present and analyze
often formulated via an objective function in the form of atwo novel distributed discrete-time nonlinear algorithtas
weighted sum of individual costs, which models a fair agergolve a class of distributed resource allocation probldms.
contribution towards the reduction of the shared cost. particular, we extend our previous work [14] by providing al

A specific real-world problem leading to such a settindernative discrete-time algorithms with provable conesrce
arises in computer networks, epidemiology, and viral maguarantees to the solution of a class of resource allocation
keting, where a viral outbreak can threat to the securityof i problems. Our approach allows an interconnected group
terconnected infrastructure and the well-being of the gane of agents to collectively minimize a global cost function
public. The implementation of strategies to stop epidemicsubject to equality and inequality constraints. Under some
can be specially challenging when networks are operatéechnical conditions, we show that the algorithms converge
by multiple managers who need to preserve the privacy atd the solution in a practical way as long as the chosen
interests of their local users. These scenarios would beneftepsize is sufficiently small. Of particular interest istth
from the development of distributed anonymous coordimatiothe proposed algorithms are convergent to a neighborhood
algorithms that allow the implementation of best respoirses around the equilibrium even when there are temporary er-
a robust way, where it is not required a specific initiali@aati rors in communication or computation. And thus, agents
and the convergence is not affected by a single erroneods not require global knowledge of total resources in the
update in the system state. For this reason, a distribute@twork or any specific procedure for initialization. We
and robust implementation of these optimal responses ovanalyze the algorithms over weight-balanced and strongly
networks calls for the use of distributed algorithms tha thconnected networks. Finally, we illustrate the appliaabdf
multiple operators can employ for this purpose. Motivated bour algorithms on a virus spreading problem over computer
this problem, we propose distributed and robust algorithmend human networks. In this application we approximate the
for resource allocation, which converge regardless of thgradient of the cost function by means of the well-known
initial condition under some technical assumptions. distributed power iteration algorithm.
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A. Notation and graph-theoretic notions b globally asymptoticallyy-stableif it is y-stable, and

We denote byN the set of natural number&Y, the an arbitrary solution:(t) of the system[{1) exists for
positive orthant ofRY, for some N € N, Iy the identity allt >0,y € Ky, wherek, is an arbitrarily compact
matrix of sizeN x N, diag(ay,...,ay) the N x N matrix set in y-space, ande(t) is y-bounded and satisfies
with entriesa; along the diagonal, antly € RY the column lim||y(t; to, zo)[[2= 0 ast — +oo.

vector whose elements are all equal to one. The spectrubR€ smooth version of the next lemma was introduced

of A is denoted byspec(A), an eigenvalue of a symmetric in [15], Theorem 2. We present here an adaptation to
matrix A € R¥*N is denoted by);(A), where \;(4) > Nnonsmooth Lyapunov functions. The proof is straightforvar

> An(A) € spec(A) and the singular values are when considering the analogous definitions from nonsmooth
denoteds; (A) > ... > on(A). When we use inequalities analysis and follows the same steps as in [15].

for vectors, we refer to componentwise inequalities. We let Lemma 1:Suppose that there exists a continuous scalar
[1]+ = max{0,1}, for | € R. The two-norm ando-norm of function V' : R" — R, and a continuous vector function

a vector are denoted hjj|| and |||, respectively. W : R* — R" for the unforced systeni](1) iR" with
A matrix A = [a;;] € RY; ™ is called nonnegativeif ~ W(0) = 0. Then, the origin is globally asymptotically-

a;; > 0, for all i,j € {1,...,N}. A directed graph of stable if the following conditions are met

order N or digraphis a pairg = (V,&), whereV, the

vertex setis a set with/NV nodes, and C V x V, theedge V(0,2) =0, (2a)

set is a set of ordered pair of vertices called edges. Given a1 (Jlyll2) <V (z) < ao(||9]2), (2b)

B e RngN’ its associatedveighted digraphG(B) is the sup V(g) = V(z) < —asz(||9]]2), (2¢)

graph withY = {1,..., N} and edge set defined by the g €M (x)

following relationship:(¢, j) € £(B) if and only if b;; > 0.
The associated weight of the edgg j) is given by the whered =[y", W (z)"]", a; belongs to clas¥ .., as, a3
entryb;;. The digraphi(B) is said to beveight-balancedf  belong to classC.
Z;-Vzl bij = Z;V:l bj; for all i € V. Given a pair of indices Next definition is an adaptation éhput-to-output stability
i,7 € V of adigraphg = (V, &), j is called anout neighbor  (e.g., see [17]) when we consider the output of the systém (1)
of i if (i,j) € & We let N2''(G) denote the set of out as the controllable states
neighbors ofi in G. A digraphG(A) is strongly connected  Definition 2: (y-input-to-state stability):The system[{1)
if there exists a path between any two vertices. The strongly said to bey-input-to-state stable (for shogtISS) if there
connectedness ofi(A4) is equivalent to requiring thatl  exists ax £ function 8 and ak function such that for any
is an irreducible matrix The Laplacian matrix associated initial statey(t,) and any bounded input(t), the solution
to a digraphG(A) is defined asL(G);; = Z;V:l aij, and  y(t) for t > 0 satisfies
L(G)ij = —aq; fori # j.
B. Partial stability for nonsmooth Lyapunov functions ly@®li< BIYoll,t = to) + V(toiu}ltw(ﬂ)
The notions we introduce here follow [15], [16]. Given Theorem 1:Suppose that there exists a continuous scalar
two setsS andT, a set-valued mapdenoted by : S = T, functionV : R" — R such that
associates to an element ¢f a subset of7. Consider

a discrete-time dynamical system given by the difference V(0,2) =0, (3a)
inclusion inR™ ar([lyl]) < V(z) < aa(||9])), (3b)
ot +1) € H(x(t), w(t)), 6y sup )V(g) = V(z) < —as(llyl), Vllyl= p(llw])(3c)

g €EH(x

where’H : R” x R™ = R" is a set-valued map for some

n,m € N, z is the statew is the input, and > 0. We assume V(z,w) € R* x R™, whered = [y, W(z)T]T, a1 belongs
thatH assigns t(zl each p_o'm”v“’) € R" xR™ anonempty g classk.., as, as, p belong to classC, and a continuous
setH(z,w) C R". Consider the unforced systei (1), i...jactor function : R” — R”™ for the system[{1) with

w = 0. We divide the the state in two components: (1) the W(0) = 0. Then the systen{{1) ig-input-to-state stable
y-component used to study the stability of the equilibriung i, y = al—l(ag(p))_

z* =0, and (2) other (non-controlledycomponent, so that
x=[y",2"]"T. We usex(t) = z(t;tp,79) to denote the

. . e » IIl. PROBLEM STATEMENT, SOLUTION APPROACH AND
solution of the systenT11) given the initial conditia at H

to. Whenw = 0, we have the following definition. ALGORITHMS

Definition 1: Let D, be a domain of initial conditions, In this section, we introduce the optimization problem
such that|[yoll2< ¢ and|[zo[l2< L, whereL € R>o. The e are set out to solve, which is followed by the pro-
origin of system({l) is said to be posed ROBUST GRADIENT FAIRNESSand ROBUST BOX-

a y-stableif for any e > 0, t, > 0, one can find CONSTRAINED GRADIENT FAIRNESSalgorithms with guar-
¢(e, L) > 0 such thatry € D,, yields||y(t; to, z0)|l2<  anteed convergence to their corresponding optimizer under
e for all t > t. complementary sets of assumptions.



A. Problem statement and solution approach Next, we propose two distributed discrete-time algorithms
which successfully converge to the solutions of #ex-
COUPLED FAIRNESS and LINEARLY COUPLED FAIRNESS
problems introduced above under the corresponding as-
sumptions. We will refer to them as ttROBUST GRADF
ENT FAIRNESSandROBUST BOX-CONSTRAINED GRADIENT

We consider a network ofV agents connected over a
digraph whose goal is to minimize a genefalRY — R,
under resource constraints. TIB®X-COUPLED FAIRNESS
optimization problem is given by

mgn f(p) FAIRNESS algorithms.
st 1p =134, 4)  B. Proposed algorithms
pelpp", In order to solve theLINEARLY COUPLED FAIRNESS
where f is the payoff,p = [pi1,....pn]T € RN is the problem dynamically, We_introduce the followirRpBUST
resource allocationy; € R is the input assumed to be GRADIENT FAIRNESSalgorithm,
constant that represents the available quantity of ressuor wT =w — aLV,f(p), (8a)
each agenty = [uy,...,un] ", andp,p € RY are the lower p* = p+ a(—L2V,f(p) + Lw — p+u), (8b)

and upper limits of the optimization variable, respectivel

We name the last constraint il (4) as thex constraintWe wherew € RY is an internal estimator state, € (0, 1) is

simply refer to the problem with the box constraint omittedhe step size, and. is the Laplacian matrix associated to

as theLINEARLY COUPLED FAIRNESSoptimization problem. directed grapty.

To solve both problems we state the following assumption. Since the cost function of thBOX-COUPLED FAIRNESS
Assumption 1: (Problem assumptiong)le assume that problem is assumed to be nonsmooth but convex, the previ-

the set of optimal solutions of](4) is nonempty, the payofbus algorithm can be adapted as the followR@BUST BOX

f(p) is twice continuously differentiable, strongly convexCONSTRAINED GRADIENT FAIRNESSsalgorithm to solve the

with vI < Vf,f(p) < I'I for v,T' € R5p, and bounded BOX-COUPLED FAIRNESSproblem

be]ow. Also, an ggenzte V should be able to computgpf—i wt € w+ alémady — &) (9a)

using only local information frorV“ and ||V, f (p)||< M. * e pta(—LE+ Lw—p+u) (9b)

Under the same assumptions as for the last problem and us- b pa wmpTY,

ing the exact penalty method (see, e.g., [18]), we reforteulawherew, «, andL have the same meaning as in the previous

the BOX-COUPLED FAIRNESSproblem as follows: algorithm, émax = {& € (3f(p)); | i = argmax; .y, max &},
o and f has the same meaning as [d (5). Notice tifats

m;nf(p) (5) convex, locally Lipschitz, with generalized gradienf(p) :

st 15 p = 1%u, RY = RN given by 9f(p) = V,f(p) + 0J(p). Then¢

R N above is an element in the generalized gradient.of
wheref(p) £ f(p)+J(p), 7(p) 2 ¢ 1, ([pi—pil e +[pi—

E‘h), ande € R>o. In Whi‘t follows we use the following In this section, we show that the equilibrium points

notation. We refer taF% £ {p € RN | 13p < 1ju}, of the ROBUST GRADIENT FAIRNESSand ROBUST BOX
FL &2 {peRYN | 1lp > 1 u}, F* & F4L N FL and CONSTRAINED GRADIENT FAIRNESS dynamics coincide
Foow = ip € RY | p—viy < p < P+ vly} for with the optimal solutions of the corresponding problems
v € R~. Under the assumptions we have laid out above, thley solve, respectively, under the stated assumptions whe
next lemma characterizes the optimal solution to Box- G is strongly connected and weight-balanced. Theddem 2 and
COUPLED FAIRNESSOptimization problem. Next lemma is TheoreniB present the stability properties of both dynamics
a result from applying the exact penalty method and thAll results of this paper will be found in a forthcoming
characterization in [12] to the above problem. publication.

Lemma 2: (Solution of theBOX-COUPLED FAIRNESS Lemma 3: (Equilibria of theROBUST GRADIENT FAIR
problem):Let Assumptiofi]L, on the payoff characteristics foNESS algorithm): Let Assumption[Jl, on the payoff char-
the BOX-COUPLED FAIRNESSproblem, hold. Lete € R, acteristics for the.INEARLY COUPLED FAIRNESS problem,

IV. STABILITY ANALYSIS

be such that hold. Let G be a weight-balanced and strongly connected
€ > 2 max [V f(p)l|oc- (6) graph. Then, theROBUST GRADIENT FAIRNESSalgorithm
ez has a unique solutiop* to
Then, the solution to thBOX-COUPLED FAIRNESSOptimiza- - -
tion problem satisfies Iyp =1yu, o (10a)
"1y € Vuf(p) +9J(p), (7a)  Lemma 4: (Equilibria  of the ROBUST BOX
15p* =1}, (7b) CONSTRAINED GRADIENT FAIRNESS algorithm): Let

Assumption [IL, on the payoff characteristics for the
where(* € R is the Lagrange multiplier for the equality BOX-COUPLED FAIRNESS problem, hold. LetG be a
constraint of theBOX-COUPLED FAIRNESSproblem. weight-balanced and strongly connected graph. A ppint



is a unique solution of theROBUST BOX-CONSTRAINED Remark 1:Our motivation to include the error termin

GRADIENT FAIRNESSalgorithm iff there existgy* € R such Theoren{B is that in many applications the gradient of the

that . payoff function only can be approximated. For example, in
Y1y € 9f(p"), (11a) the following section, we show an application to the virus
1p" =1k (11b) spread minimization, where the gradient is approximated by

Before presenting our main results, the next lemma chathe well-known Power Iteration.

acterizes the invariance of% and F¥ with respect to the

ROBUST GRADIENT FAIRNESSdynamics. The same is true

for the ROBUST BOX-CONSTRAINED GRADIENT FAIRNEss ~ AS an application, we employ therOBUST BOX
dynamics. CONSTRAINED GRADIENT FAIRNESSalgorithm on a virus

Lemma 5: (Invariance of the resource constraint unSPread minimization problem. Notice that if we remove the

der @): Let AssumptionJL, on the payoff characteristic?0X constraints, we can similarly use tR®OBUST GRA
for the LINEARLY COUPLED FAIRNESSproblem, hold. Let; ~ D'ENT FA_|RNEss_aIgor|thm to solve the same problem. In
be a weight-balanced and strongly connected graph. Assuthés Seéction we introduce thé-VIRUS MITIGATION and -
a € (0,1) in @). Then, the sets“ and F¥ are strongly V/RUS MITIGATION problems, which we solve using the
positively invariant under thROBUST GRADIENT FAIRNESS ROBUST BOX-CONSTRAINED GRADIENT FAIRNESSalgo-
dynamics. rithm together with the exact penalty method as shown in
Theorem 2: (Sufficient conditions for convergence of theectiorLlll. Since our distributed algorithm approach riezgi
ROBUST GRADIENT FAIRNESS algorithm): Let Assump- the computation of the gradient, and the fact that the gradie
tion [, on the payoff characteristics for tBex-coupLep [0 the 4-VIRUS MITIGATION and £-VIRUS MITIGATION
FAIRNESS problem, hold. Assumé is radially unbounded. prqblems is not naturally dlstr|but¢d, we approximate it by
Let G be a weight-balanced and strongly connected grapHSing the well-known Power Iteration.

For any constant inpuu € RY and any initial state A, Problem statement and solution approach

p(0), w((.))’ the solutions .qf .the sys_terTEI(8) CONVETgE  1he siS (susceptible-infected-susceptible) model farsvir
asymptotlcally2 tothhe equilibrium point[_(IL0) ifx dynamics proposed in [19] is given by

(0, min{1, 225t y). N
Before presentLlng our main result in TheorEm 3, we show qi(t+1)= (1 - H.fl(l - aij‘]j(t)))v (13)
next supporting lemma, where it is shown the solutions . J._. o
of the ROBUST BOX-CONSTRAINED GRADIENT FAIRNESS whereg;(t) € R is the probability that nodeé is infected at

dynamics are bounded. timet, i € {1,...,N} anda;; is defined as
Lemma 6: (Boundedness of theROBUST BOX “ { kiBij, for j # 1,
ij =

V. APPLICATION TO VIRUS SPREAD MINIMIZATION

CONSTRAINED GRADIENT FAIRNESS dynamics): Let 1 — ¢;d;, for j = 1.
Assumption [1L, on the payoff characteristics for th
BOX-COUPLED FAIRNESSproblem, hold. LetG be weight-
balanced and strongly connected. Then, the Bgf is
strongly positively invariant under theROBUST BOXx
CONSTRAINED GRADIENT FAIRNESS algorithm provided
thate € R satisfies

q—lere,m € (0, 1] represents the scaling factor of the nominal
weight 3;;, 8;; € [0, 1] is the probability that the virus from
nodei infects nodej, or in other words, it represents the
isolation capability placed in the entering branches,c
[0, 1] represents the district-specific scaling factor, ané
[0, 1] is the probability of an infected nodeto be recovered.

1 Using the Weierstrass product inequality, valid &Qyq; (t) €
€> —————— (2dout,maxmaX||Vph(p)||oo [0,1], we obtain the following upper bound

MG jyee dij p (12)

+ || Lw(0) — p(0) + u||oo), ai(t+1) < Z;V:l aijq;(t), Vie{l,...,N},

where ¢(t) = [q1(t),...,qn(t)]T. The previous inequality

J— . N ..
Where doumax = maxXiey 3y dij- reads in vector notation as

Theorem 3: (partial-ISS of thBOX-COUPLED FAIRNESS
algorithm): Let Assumptiori]L, on the payoff characteristics q(t+1) < A6, k)q(t), (14)
for the BOX-COUPLED FAIRNESSproblem, hold. Assum¢

NXN j H
be a weight-balanced and strongly connected graph. AssuPHQereA((s’ k) € RY* W is defined as

that theBOX-COUPLED FAIRNESSalgorithm has access to an l—ci61  miBia ... KBy
approximation of the gradient in the form, f (p) +e, where KaBar 1 —caba ...  Kafan
e € RV is the error term for the approximation. Assume that ~ A(d, k) = : : (15)
e is uniformly bounded, i.e.|le(t)|2< oK for someK € ) ) ’ :
. N L. KENBN1 KN BN2 ... 1—cNnON
R~o. Then, for any constant input € R and any initial
=Iny— D+ KG.

state p(0), w(0), the solutions of the systenh](9) converge
asymptotically to a ball centered at the equilibrium pdidl)( Here, A(d,x), D = diag(c)diag(d), K = diag(x), and
with radius dependent on. G = A(0,1n) — Iy. Let G(A(0,1x)) = G(G) be the



graph associated to the virus dynamics contact network. Wene analysis of the error by using this approach is out of
define thetopology matrixof the network as the matri&. scope of this paper.
When there is no confusion, we will deno§G) by G. LemmalT and Lemm&l8 show thag(A4) is a convex
Next proposition shows that the dominant eigenvaluéA),  function with respect to its arguments under some techni-
governs the growth/decay rate of infection. cal assumptions. Then we can aim to apply t®BUST
Proposition 1 ([19]): An epidemic described by (lL3) be- BOX-CONSTRAINED GRADIENT FAIRNESSsalgorithm on the
comes extinct if and only if\; (4) < 1. Moreover, when an resource allocation problem associated to this functiom. A
epidemic is diminishing, the probability of infection dgsa shown in Lemma&l2, information of the gradient bf(A) is
at least exponentially over time. required in order to evaluate if a solution is optimal and to
Inspired by [14], [20], we consider the following two prob-implement our algorithm. For that reason, in the following
lems to minimize the effects of virus contagion. Theirus  lemma we provide the analysis to obtain such a gradient.

MITIGATION problem is defined by Lemma 9:Let v, ands be the left and right eigenvectors
) of the matrix A(4, x) as defined in[{15). Then
min Ay (A(6, ),
s€(8.5]N (16) OM(A(S, %)) ;i
S.t 1]1\—/6 = 1%“53 651 = _Cim (18)
where « is fixed, 1 us is the total amount of antivirus and,
available, and the constants,d; € [0,1]. The sk-VIRUS O (A8, K)) v;
MITIGATION problem is given —on,  oTs Z#i Bijsj (19)
min A\ (A4(4, ), B. The Power Iteration
KE [k, RN (17)

The power method is a well-known algorithm for approx-
imating A\ (A) for A € RV*Y_ For a detailed description of
where § is fixed, 1u, is the total amount of isolation this method the reader may consult [24], [25]. In this paper
resources, and the constanrts®; < (0, 1]. we restrict our discussion fot being primitive withz(0) >

Remark 2:We refer toé* and x* to the solutions of 0. In Remark(# we explain how to relax the condition of
Problem [[I6) or Probleni_(17), respectively. These solstiorprimitivity to Mezler and irreducible matrices. The algbrin
minimize the exponential decay/growth rate [ofl(13) subjeds given by
to resource constraints. Moreover, if the soluti@risor «* A+ 1) Az(t) (20)

make the dominant eigenvalug(A(5*, x)) or Ay (A(8, 5*)) IEEOIS

(for fix « or ¢ depending on the problem) strictly less thanyherez (t) e (0,1] for ¢ € N. Under the assumptions listed
one, the_n it is guaranteed that the disease free equilibriuny,oye on 4, 2(t) = x ast — +oo, wherez is the right
q* =0, is globally exponentially stable. eigenvector associated 1q (A).

To analyze the solution of thé-vIRUS MITIGATION and Remark 4:In general, the conditior to be primitive can
#-VIRUS MITIGATION problems, we show in the following pe relaxed to havel nonnegative and irreducible. For that,

two lemmas thatk: (4) is a convex function ob, and«, it can be used a shifted versioh. £ A + cI, wherec > 0.
respectively. Finally, in Lemm&al9 we explicitly calculate

the gradient of\;(A4) in order to use thekoBusT Box-  C. Algorithm Implementation and Simulations
CONSTRAINED GRADIENT FAIRNESSalgorithm using the  Next we show an example that illustrates the response of

st 14k =1us,

exact penalty method presented in Secfioh Ill. the ROBUST BOX-CONSTRAINED GRADIENT FAIRNESSal-
Lemma 7 ([21]):Let B be nonnegative, and” = gorithm to solve a particulai-vIRUS MITIGATION problem.

diag (61,...,0n). Then, the maximum eigenvalue 8f4+-C,  Before that, we summarize the required assumptions to solve

A1 (B + C), is a convex function ot the J-VIRUS MITIGATION and the k-VIRUS MITIGATION
Lemma 8: ([22] Convexity of; (KG)): Let G be positive problems by using Theoreld 3. First, Lemida 7 shows that

semidefinite, and< = diag (k1,...,xn). Assume thak; >  \;(A) is a convex function respeat. Our assumptions

0 for all « € {1,...,N}. Then, \; of KG is a convex require the problem payoff to be strongly convex. However,

function of K. it's been observed in many example problems that this

Remark 3:Notice that in generatrace(G) = 0 for our assumption is more restrictive than necessary. Because of
virus application, which means théatis indefinite. This fact this, we are currently studying how to relax proofs to
makes the:-VIRUS MITIGATION problem to be non-convex, be able to relax these conditions. For the case\gfd),
even whenG is symmetric. We refer to [22] for further Exampldl shows that for a particular problem, the algorithm
discussion about the convexity af (KG). To approximate converges to the desired solution. Second, we require te hav
the solution of thex-VIRUS MITIGATION problem, we can \;(A4) bounded below andl(d, ) has to be irreducible all
use the inequalit; (KG) < (A (K2G?))z [23]. WhenG  time. These assumptions are satisfied since theFggtis
is symmetric,G? is positive semidefinite, then; (K2G?) invariant to our dynamics as shown in Lemia 6. Finally,
is convex by Lemma&l8. Therefore, we can obtain an uppethe computation of the gradient of;(A) is required by
bound of the solution of the-vIRUS MITIGATION problem. using local information. To address this, we use the Power



Iteration method, summarized in Section V-B, to approxamat
the gradient as shown in Lemmal (9). At each time stepyy
the Power Iteration algorithm runs until a desired stopping
condition is reached. The reader may consult [25] for 612]
discussion on the stopping criteria.

Example 1 (Optimizing id): We illustrate the response
of the ROBUST BOX-CONSTRAINED GRADIENT FAIRNESS (3]
algorithm for the undirected topology matri¥ associated
to A(J, ) for fix x. We constructG' as a ring withV e
{1,...,10}, bidirectional edges given b, :+1) = 1/5 for
1 €V (assume that if = 10, theni 4+ 1 = 1) and additional 5
bidirectional edges given byl,5) = (3,9) = 1/6. We use
u1 = 5.5, u; = 0 fOI'j ey — {1}, c1 = c3 = cg = 0.85,
cj 1forj € V-1{1,36},5 = 91y, § = 21y,
€ = 8.47, anda. = 0.01. In this example, we approximate the
gradient of\;(A) by the Power lteration. At each iteration [7]
of the ROBUST BOX-CONSTRAINED GRADIENT FAIRNESS
algorithm, we run one iteration of the Power Iteration. [8]
In Figure[d, we show the behavior of tlroBUST BOX
CONSTRAINED GRADIENT FAIRNESSalgorithm for a ran-
dom initial condition with§(0) € [.2,.9]%, w(0) € [0,1]V.
The optimal value is given by (A(6*)) = 0.9455. We
introduce an erroneous update on the system state at ti
t = 1500, where we force(1500) andw(1500) to a random
vector in [0, 1]V. After t = 1500, the algorithm converges

(4]

(6]

El

again to the optimal point. Notice thatt) € [0,1]" for [
t > 0 since Fy,, is invariant to our dynamics.
12
Resource(t) (2
0.8
0.6 ff [13]
0.4
0.2 b= | i i | i [14]
200 1000 1500 2000 2500 3000
Evolution of A (A(0))
1.2+, ‘ ‘ ‘ ] [15]
1.1¢ \ S f N
:/ \ 16
1.0F s '; ; i (16]
500 1000 1500 2000 2500 3000 7]
Fig. 1.  Trajectories of§(t) and A1 (A(5(t))) of Example[1 for the 18]
ROBUST BOX-CONSTRAINED GRADIENT FAIRNESSalgorithm. It is used [19]
an erroneous update on the system state=at1500.
[20]

VI. CONCLUSION

We have considered a class of distributed resource al-
: : 21]

location problems. We have proposed two novel discrete-
time algorithms that converge in a practical way to the
solution as long as the chosen stepsize is sufficiently smaff2]
In particular, the proposed algorithms are designed to be
robust to temporary errors in communication or computatior[23]
of agents. Our technical approach relies on results from
algebraic graph theory, second-order convex analysis #s wgy
as nonsmooth partial stability. Simulations show that the a
gorithms converge for a wider set of problems. Motivated b{?°!
applications to virus processes, we plan to extend availabl
proofs that can help us relax the assumptions needed.

@] M. Franceschelli, A. Giua, and C. Seatzu.
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