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Abstract

This paper presents distributed algorithmic solutions that employ opportunistic inter-agent communication to achieve dynamic
average consensus. In our solutions each agent is endowed with a local criterion that enables it to determine whether to
broadcast its state to its neighbors. Our starting point is a continuous-time distributed coordination strategy that, under
continuous-time communication, achieves practical asymptotic tracking of the dynamic average of the time-varying agents’
reference inputs. Then, for this algorithm, depending on the directed or undirected nature of the time-varying interactions
and under suitable connectivity conditions, we propose two different distributed event-triggered communication laws that
prescribe agent communications at discrete time instants in an opportunistic fashion. In both cases, we establish positive
lower bounds on the inter-event times of each agent and characterize their dependence on the algorithm design parameters.
This analysis allows us to rule out the presence of Zeno behavior and characterize the asymptotic correctness of the resulting
implementations. Several simulations illustrate the results.
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1 Introduction

The dynamic average consensus problem seeks a dis-
tributed algorithm that allows a group of agents to
track the average of individual time-varying reference
inputs, one per agent. This problem has applications in
numerous areas that involve distributed sensing and fil-
tering, including distributed tracking [Yang et al., 2007],
multi-robot coordination [Yang et al., 2008], sensor
fusion [Olfati-Saber, 2007, Olfati-Saber and Shamma,
2005], and distributed estimation [Carron et al., 2013].
Our goal here is to develop algorithmic solutions to
the dynamic average consensus problem which rely on
agents locally deciding when to share information with
their neighbors in an opportunistic fashion for greater ef-
ficiency and energy savings. By opportunistic, we mean
that the information transmission to the neighbors
should happen at times when it is needed to preserve the
stability and convergence of the coordination algorithm.

? A preliminary version appears at the IEEE Conference on
Decision and Control as [Kia et al., 2014a]. Corresponding
author: S. S. Kia.

Email addresses: solmaz@uci.edu (Solmaz S. Kia),
cortes@ucsd.edu (Jorge Cortés), soniamd@ucsd.edu
(Sonia Mart́ınez).

Literature review : The literature of cooperative control
has proposed dynamic average consensus algorithms
that are executed either in continuous-time [Bai et al.,
2010, Freeman et al., 2006, Kia et al., 2014b, Olfati-
Saber and Shamma, 2005, Spanos et al., 2005] or in
fixed stepsize discrete-time [Kia et al., 2014b, Zhu and
Mart́ınez, 2010]. Continuous-time algorithms operate
under the assumption of continuous agent-to-agent in-
formation sharing. Although discrete-time algorithms
are more amenable to practical implementation, use
of a fixed communication step-size, which should be
designed to address also rarely occurring worst-case
situations, can be a wasteful use of the network re-
sources. In addition, in these discrete-time algorithms
communication and computation stepsizes are tied to-
gether, resulting in potentially a conservative stepsize
for communication times. This can result in costly im-
plementations, as performing communication usually
requires more energy than computation. Moreover, the
assumption of periodic, synchronous communication is
unrealistic in many scenarios involving cyber-physical
systems, as processors are subject to natural delays
and errors which may deviate them from the perfect
operational conditions the strategies are designed for.
Event-triggered communication offers a way to address
these shortcomings by prescribing in an opportunistic
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way the times for information sharing and allowing in-
dividual agents to determine these autonomously. In
recent years, an increasing body of work that seeks to
trade computation and decision-making for less com-
munication, sensing or actuation effort while guaran-
teeing a desired level of performance has emerged, see
e.g., [Heemels et al., 2012, Mazo and Tabuada, 2011,
Wang and Lemmon, 2011]. Closest to the problem con-
sidered here are the works that study event-triggered
communication laws for static average consensus, see
e.g., [Dimarogonas et al., 2012, Fan et al., 2013, Garcia
et al., 2013, Nowzari and Cortés, 2014, Seyboth et al.,
2013] and references therein.

Statement of contributions: We propose novel dis-
tributed dynamic average consensus algorithms which
employ opportunistic strategies to determine the com-
munication times among neighboring agents. The basic
idea is that agents share their information with neigh-
bors when the uncertainty in the outdated information
is such that the monotonic convergent behavior of the
overall network can no longer be guaranteed. To realize
this concept, depending on the connectivity properties
of the interaction topology, we propose and characterize
the asymptotic correctness of two different distributed
event-triggered communication laws. Our least stringent
connectivity conditions are modeled by a time-varying,
weight-balanced piecewise constant digraph which is
jointly strongly connected over an infinite sequence of
contiguous and uniformly bounded time intervals. In
the second scenario, we consider interaction topolo-
gies modeled by a time-varying, piecewise continuous
undirected connected graph, which allows us to fur-
ther refine our analytical guarantees. By establishing
positive lower bounds on the inter-event times of each
agent for both cases, we also show that the proposed
distributed event-triggered communication laws are free
from Zeno behavior (the undesirable situation where
an infinite number of communication rounds are trig-
gered in a finite amount of time). Finally, we analyze
the dependence of the inter-event times on the algo-
rithm design parameters. This characterization provides
guidelines on the trade-offs between the minimum inter-
event times for communication and the performance
and energy efficiency of the proposed algorithms. We
demonstrate through several comparative simulation
studies the advantages of our proposed event-triggered
communication strategies over schemes that rely on
continuous-time communication as well as discrete-time
communication with fixed stepsize.

2 Notation and terminology

We let R, R≥0, R>0, and Z≥0 denote the set of real,
nonnegative real, positive real, and nonnegative integer,
respectively. The transpose of a matrix A is A>. We
let 1n (resp. 0n) denote the vector of n ones (resp. n
zeros). We let Πn = In − 1

n1n1>n , where In is the n× n
identity matrix. When clear from the context, we do not

specify the matrix dimensions. For u ∈ Rd, ‖u‖ =
√

u>u
is the standard Euclidean norm. For u ∈ R, |u| is its
absolute value. For a time-varying measurable locally
essentially bounded signal u : R≥0 → Rm, we denote by
‖u‖ess the essential supremum norm. For a scalar signal
u, we use |u|ess instead. For vectors u1, . . . ,um, we let
u = (u1, . . . ,um) represent the aggregated vector. In a
networked system, we distinguish the local variables at
each agent by a superscript, e.g., xi is the local state of
agent i. If pi ∈ Rd is a variable of agent i, the aggregate of
a network with N agents is p = (p1, . . . ,pN ) ∈ (Rd)N .
We define the orthonormal transfer matrix T ∈ RN×N

T=[r R], r =
1√
N

1N , r>R=0, R>R = IN−1. (1)

Graph theory : Here, we briefly review some basic con-
cepts from graph theory and linear algebra follow-
ing [Bullo et al., 2009]. A directed graph, or simply a
digraph, is a pair G = (V, E), where V = {1, . . . , N}
is the node set and E ⊆ V × V is the edge set. For an
edge (i, j) ∈ E , i is called an in-neighbor of j and j
is called an out-neighbor of i. We let N i denote the
set of out-neighbors of i ∈ V. A graph is undirected
if (i, j) ∈ E when (j, i) ∈ E . A directed path is a se-
quence of nodes connected by edges. A digraph is called
strongly connected if for every pair of vertices there
is a directed path connecting them. Given digraphs
Gi = (V, Ei), i ∈ {1, . . . ,m}, their union is the graph
∪ni=1Gi = (V, E1 ∪ E2 ∪ · · · ∪ Em).

A weighted digraph is a triplet (V, E ,A), where
G = (V, E) is a digraph and A ∈ RN×N is a weighted
adjacency matrix with the property that aij > 0 if
(i, j) ∈ E and aij = 0, otherwise. A weighted digraph
is undirected if aij = aji for all i, j ∈ V. We refer to
a strongly connected and undirected graph as con-
nected. The weighted out- and in-degrees of a node i

are, respectively, diout =
∑N
j=1 aij and diin =

∑N
j=1 aji.

A digraph is weight-balanced if at each node i ∈ V,
the weighted out- and in-degrees coincide (although
they might be different across different nodes). The
(out-) Laplacian matrix is L = Dout − A, where
Dout = Diag(d1out, · · · , dNout) ∈ RN×N . Note that
L1N = 0. Also, at least one of the eigenvalues of
L, denoted by λ1, . . . , λN , is zero and the rest of
them have nonnegative real parts. We let λ1 = 0 and
<(λi) ≤ <(λj), for i < j, where <(·) denotes the real
part of a complex number. A digraph is weight-balanced
iff 1TNL = 0, iff Sym(L) = 1

2 (L + LT ) is positive
semi-definite. We denote the eigenvalues of Sym(L)

by λ̂1, . . . , λ̂N . For a strongly connected and weight-
balanced digraph, zero is a simple eigenvalue of both L
and Sym(L). In this case, we order the eigenvalues of

Sym(L) as 0 = λ̂1 < λ̂2 ≤ λ̂3 ≤ . . . ≤ λ̂N .

Throughout the paper, we deal with time-varying di-
graphs with fixed node set. A time-varying digraph
R≥0 3 t 7→ G(t) = (V, E(t),A(t)) is piecewise continuous
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(respectively, piecewise constant) if the map t 7→ A(t) is
piecewise continuous (respectively, piecewise constant)
from the right. In such case, we denote by {sk}k∈Z≥0

the
time instants at which this map is discontinuous and
refer to them as switching times. By convention, s0 = 0.
A time-varying digraph R≥0 3 t 7→ G(t) has uniformly
bounded weights if, for all t ∈ R≥0, 0 < a ≤ aij(t) ∈ [a, ā],
with 0 < a ≤ ā, if (j, i) ∈ E(t), and aij = 0 otherwise.
A time-varying digraph R≥0 3 t 7→ G(t) is strongly con-
nected if each G(t) is strongly connected, and is jointly
strongly connected over [t1, t2) if ∪t∈[t1,t2)G(t) is strongly
connected. A piecewise constant time-varying digraph
R≥0 3 t 7→ G(t) is recurrently jointly strongly connected
if the sequence of inter-switching times {sk+1−sk}k∈Z≥0

is uniformly lower bounded and there exists an infi-
nite sequence of contiguous uniformly bounded inter-
vals {[skj , skj+1)}j∈Z≥0

, with sk0 = s0, such that G(t)
is jointly strongly connected over [skj , skj+1), for all
j ∈ Z≥0. Finally, a time-varying digraphR≥0 3 t 7→ G(t)
is weight-balanced if each G(t) is weight-balanced. For
a piecewise constant recurrently jointly strongly con-
nected and weight-balanced digraph with uniformly
bounded weights, we let {sik}k∈Z≥0

⊆ {sk}k∈Z≥0
be the

times when an agent i ∈V acquires a new in-neighbor
and we define

‖L‖=sup{‖Lt‖ | t∈R≥0}, λ̂2 =inf{λ̂2(Lt) | t∈R≥0},
d̄iout =sup{diout(t) | t∈R≥0}, i ∈ V,

where Lt is the Laplacian of G(t). Note that if G has
uniformly bounded weights and is weight-balanced and

strongly connected, then λ̂2 > 0. If G is a time-varying

connected graph, we use the notation λ2 instead of λ̂2.
The following result, taken from [Kia et al., 2014b,
Lemma 4.5], is useful when dealing with recurrently
jointly strongly connected digraphs. When such di-
graphs are weight-balanced with uniformly bounded

weights, there exist λ̂σ > 0 and ρ > 0 such that∥∥e−βR
>LtR(t−t0)

∥∥ ≤ ρ e−βλ̂σ(t−t0), ∀t ≥ t0 ≥ 0, (2)

for any β > 0. If the digraph is additionally strongly

connected, then (2) is satisfied with ρ = 1 and λ̂σ = λ̂2.

3 Network model and problem statement

Consider a network of N agents with single-integrator
dynamics, ẋi = gi, i ∈ V, where xi ∈ R is the agreement
state and gi ∈ R is the driving command of agent i. Our
consideration of simple dynamics is motivated by the
fact that the state of the agents does not necessarily cor-
respond to some physical quantity, but instead to some
logical variable on which agents perform computation
and processing. Each agent i ∈ V has access to a time-
varying reference signal ri : R≥0 → R. Agents transmit
information to other agents through wireless communi-
cation and their interaction topology is modeled by a
time-varying weighted digraph G. An edge (i, j) from i
to j at time t means that agent j can send information
to agent i at t. For convenience, we let x̂i denote the last

sampled state of agent i ∈ V. We let

{t̄ik}k∈Z≥0
= {tik}k∈Z≥0

∪ {sik}k∈Z≥0
⊂ R≥0,

denote the sequence of update times of agent i ∈ V.
Here, {tik}k∈Z≥0

is the set of times at which the state

of the agent is sampled, that is x̂i(t) = xi(tik) for t ∈
[tik, t

i
k+1), while {sik}k∈Z≥0

is the set of switching times
of the underlying communication digraph at which the
agent acquires an in-neighbor. According to this model,
agent i broadcasts x̂i to its in-neighbors at each time
tik if diin(tik) > 0 and also at the times sik. The variable
x̃i(t) = x̂i(t)− xi(t) denotes the mismatch between the
last sampled state and the state of agent i at time t.
When the graph is not fixed, the model above assumes
that individual agents are made aware of the identity of
newly acquired in-neighbors (so that they can communi-
cate to them their last transmitted state) and departed
out-neighbors (so that they can remove their state from
their computations).

Under the network model described above, our goal is
to design a distributed algorithm that allows each agent
to asymptotically track the average of the reference in-

puts 1
N

∑N
j=1r

j(t) across the group. The algorithm de-
sign amounts to specifying, for each agent i ∈ V, a suit-

able distributed driving command gi : RN i → R to-
gether with a mechanism for triggering communication
with its in-neighbors in an opportunistic fashion. By dis-
tributed, we mean that each agent only needs to receive
information from its out-neighbors to evaluate gi and
the communication triggering law. A key requirement
on the communication triggering mechanism is that the
resulting network evolution is free from Zeno behavior,
i.e., does not exhibit an infinite amount of communica-
tion rounds in any finite amount of time.

4 Continuous-time computation with dis-
tributed event-triggered communication

Here, we present our solution to the problem stated in
Section 3. Our starting point is the continuous-time al-
gorithm for dynamic average consensus proposed in our
previous work [Kia et al., 2014b], for each i ∈ V,

v̇i = αβ
∑N

j=1
aij(x

i − xj), (3a)

ẋi = ṙi−α(xi − ri)−β
∑N

j=1
aij(x

i − xj)−vi, (3b)

where, α, β ∈ R>0 are design parameters. Note that the
execution of this algorithm requires continuous agent-
to-agent sharing of the variable x.

Remark 4.1 (Knowledge of derivative of reference sig-
nals): Interestingly, (3) can be executed without explicit
knowledge of the magnitude of the time derivatives of
the reference signals. In fact, with the change of vari-
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ables x̄ = x− r, (3) reads

v̇i = αβ
∑N

j=1
aij(x̄

i + ri − x̄j − rj),

˙̄xi = −αx̄i−β
∑N

j=1
aij(x̄

i + ri − x̄j − rj)−vi,

xi = x̄i + ri, i ∈ V.
Agents operate on their corresponding components of v
and x̄, and interchange with their neighbors the corre-
sponding components of x. We only use the representa-
tion (3) for convenience in our technical analysis later. •

The following result summarizes, for reference, the
asymptotic correctness guarantees of (3).

Theorem 4.2 (Convergence of (3) over weight-balanced
and recurrently jointly strongly connected digraphs [Kia
et al., 2014b]): Assume the agent inputs satisfy
‖ΠN ṙ‖ess = γ < ∞. Let the communication topology be
a weight-balanced and recurrently jointly strongly con-
nected time-varying digraph G with uniformly bounded
weights. Then, for any α, β ∈ R>0, the evolution of the
algorithm (3) over G initialized at zi(0), vi(0) ∈ R with∑N
i=1 v

i(0) = 0 is bounded and satisfies, for i ∈ V,

lim sup
t→∞

∣∣∣xi(t)− 1

N

∑N

j=1
rj(t)

∣∣∣ ≤ ρ γ

βλ̂σ
, (4)

with λ̂σ and ρ satisfying (2).

Given the network model of Section 3, where the trans-
mission of information is limited to discrete instants
of time, we propose here the following implementation
of (3) with discrete-time communication, for each i ∈ V,

v̇i = αβ
∑N

j=1
aij(x̂

i − x̂j), (5a)

ẋi = ṙi−α(xi − ri)−β
∑N

j=1
aij(x̂

i−x̂j)−vi. (5b)

Our task is to provide each agent with a trigger en-
abling it to determine in an opportunistic fashion when
to transmit information to its in-neighbors. The design
of such triggers is challenging because triggers need to
be distributed, so that agents can check them with the
information available to them from their out-neighbors,
they must guarantee the absence of Zeno behavior, and
they have to ensure the network achieves dynamic aver-
age consensus even though agents operate with outdated
information while inputs are changing with time.

4.1 Compact-form algorithm representations

Here, we present two equivalent compact-form represen-
tations of the algorithm (5) for analysis purposes. First,
consider the change of variable

w=v − αΠN r, y=x− r̄, r̄=
1

N

∑N

j=1
rj1N . (6a)

which transforms the algorithm (3) into (compact form)

ẇ = αβLty + αβLtx̃− αΠN ṙ, (7a)

ẏ = −αy − βLty − βLtx̃ + ΠN ṙ −w, (7b)

Note that y is the aggregated tracking error vector. Here,
we have used Ltx̂ = Lt(x + x̃) = Lty + Ltx̃ with x̃ =
x̂− x. We use the orthonormal transfer matrix T in (1)
to obtain our second representation below that separates
out the constant dynamics of the algorithm,

q1 = r>w, q2:N = αR>y + R>w, z = T>y. (8)

We partition the new variable z as (z1, z2:N ), where z1 ∈
R. Then, if the network interaction topology is weight-
balanced, the algorithm (7) can be written as,

q̇1 = 0, (9a)

q̇2:N = −αq2:N , (9b)

ż1 = −αz1 − q1, (9c)

ż2:N =−βR>LtRz2:N−βR>Ltx̃+R>ṙ −q2:N . (9d)

We close this section by describing the relationship be-
tween the initial conditions of the variables for each rep-
resentation. We invoke these relations in our analysis be-
low. Note that q2:N = R>(αy+w) = R>(α(x−r)+v).

Then, given x(0),v(0) ∈ RN with
∑N
i=1 v

i(0) = 0, and

using r>ΠN = 0 and RR> = ΠN = Π2
N ,

q1(0) = r>w(0) = r>v(0) = 0, (10a)

‖q2:N (0)‖ = ‖αΠN (x(0)− r(0)) + v(0)‖, (10b)

z1(0) = r>y(0) = r>(x(0)− r̄(0)), (10c)

‖z2:N (0)‖ = ‖ΠN (x(0)− r̄(0))‖. (10d)

4.2 Communication triggering law for weight-balanced
and recurrently jointly strongly connected digraphs

In this section, for networks with time-varying digraph
interactions, we introduce a distributed event-triggered
mechanism that agents can employ to determine their
sequence of communication times. For each agent, the
execution of this mechanism relies on its local variables.
This naturally results in asynchronous schedules of com-
munication, which poses additional analysis challenges.
Nevertheless, we are able to overcome them in the fol-
lowing result which states that the closed-loop network
execution is free from Zeno behavior and guaranteed to
achieve practical dynamic average consensus.

Theorem 4.3 (Convergence of (5) over recurrently
jointly strongly connected and weight-balanced digraph
with asynchronous distributed event-triggered commu-
nication): Assume that the input of each agent i ∈ V
satisfies |ṙi|ess = κi < ∞, while ‖ΠN ṙ‖ess = γ < ∞.
Let the communication topology be a weight-balanced
and recurrently jointly strongly connected time-varying
digraph {G}{sk} with uniformly bounded weights. For

ε ∈ RN>0, consider an implementation of the algo-
rithm (5) over {G}{sk}, where agents communicate
according to the model described in Section 3 with the
sampling times {tik}k∈Z≥0

of agent i ∈ V, starting at

ti0 = 0, determined by

tik+1 =argmax{t ∈ [tik,∞) | |xi(tik)−xi(t)| ≤ εi}. (11)
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Then, for any α, β > 0, the evolution starting from

xi(0) ∈ R and vi(0) ∈ R with
∑N
i=1v

i(0)=0 satisfies

lim sup
t→∞

∣∣∣xi(t)− 1

N

∑N

j=1
rj(t)

∣∣∣≤ γ+β‖L‖ ‖ε‖
βλ̂σ

ρ, (12)

for i ∈ V with an exponential rate of convergence of

min{α, βλ̂σ}. Here, λ̂σ and ρ satisfy (2). Furthermore,
the inter-execution times of (11) for each agent i ∈ V
are lower bounded by

τ i =
1

α
ln
(

1 +
αεi
ci

)
, (13)

where

ci = κi + (α+ 2βd̄iout)
√
η2 + |r>(x(0)− r̄(0))|2

+ ‖ΠN (α(x(0)− r(0)) + v(0))‖+ αη, (14)

and

η = ρ (γ+β‖L‖ ‖ε‖2)
βλ̂σ

+‖ΠN (x(0)− r̄(0))‖+ρ‖q2:N (0)‖× 1
α−βλ̂σ

((βλ̂σα )
βλ̂σ

α−βλ̂σ − (βλ̂σα )
α

α−βλ̂σ ), if βλ̂σ 6= α,
1

βλ̂σe
, if βλ̂σ = α.

Hence, {t̄k}k∈Z≥0
= ∪Ni=1∪k∈Z≥0

t̄ik has no accumulation
point and the execution of (5) over {G}{sk} is Zeno-free.

PROOF. Given an initial condition, let [0, T ) be the
maximal interval on which there is no accumulation
point in the set of update times {t̄k}k∈Z≥0

. Note that
T > 0, since the number of agents is finite and, for each
i ∈ V, εi > 0 and x̃i(0) = x̂i(0) − xi(0) = 0. The dy-
namics (5), under the event-triggered communication
scheme (11), has a unique solution in the time interval
[0, T ). Our first step is to show that the trajectory stays
bounded in [0, T ). Consider the compact-form repre-

sentation (9) of the algorithm. Given
∑N
i=1 v

i(0) = 0
and (10), for t ∈ R≥0,

q1(t)=0, q2:N (t)=q2:N (0)e−αt, z1(t)=z1(0)e−αt. (15)

Therefore, these variables are bounded. To bound t 7→
z2:N (t), we look into the solution of (9d) by substituting
q2:N (t) = q2:N (0)e−αt and considering (x̃,Rṙ) as ex-
ogenous inputs. In the time interval t ∈ [0, T ) that this
solution exists, one has

z2:N (t) = Φ(t, 0)z2:N (0) +

∫ t

0

Φ(t, τ) e−ατ q2:N (0)dτ

−
∫ t

0

Φ(t, τ)(βR>Lτ x̃(τ)−R>ṙ(τ))dτ,

where Φ(t, τ) = e−βR
>LtR(t−τ). Given the event-

triggered communication law (11), we have ‖x̃‖ ≤ ‖ε‖.

Then, for t ∈ [0, T ) we have

‖z2:N (t)‖ ≤ρe−βλ̂σt‖z2:N (0)‖+ (16)

ρ
γ + β‖L‖ ‖ε‖

βλ̂σ
(1− e−βλ̂σt) + ρ‖q2:N (0)‖×{

1
α−βλ̂σ

(e−βλ̂σt − e−αt), if βλ̂σ 6= α,

te−βλ̂σt, if βλ̂σ = α.

Here, we also used ‖R>ṙ‖ = ‖Πṙ‖ ≤ γ and (2). Taking
the maximum of each term in the righthand side of (16)
and using (10), we have

‖z2:N (t)‖ ≤ η, t ∈ [0, T ), (17)

were the constant η is given in the statement.

Given that the number of the agents is finite, {t̄k}k∈Z≥0

is free of Zeno if both {sk+1 − sk}k∈Z≥0
and {tik+1 −

tik}k∈Z≥0
, i ∈ V, are uniformly lower bounded by a pos-

itive value. Since the former fact holds by assumption,
we next establish the latter. That is, for each agent,
we establish a lower bound on the inter-execution times
of (11) by determining a lower bound on the amount of
time it takes for agent i ∈ V to have |x̂i−xi| evolve from
0 to εi. Note that

‖y(t)‖ = ‖z(t)‖ ≤
√
η2+|r>(x(0)− r̄(0))|2, (18)

for all t ∈ [0, T ), where we have used (10), (15) and (17).
On the other hand, since r>w(t) = 0 for all t ∈ R≥0
by (15), we have ΠNw(t) = w(t). Multiplying the sec-

ond equation in (8) by R and using RR> = ΠN ,
we obtain w(t) = Rq2:N (t) − αRz2:N (t). Using now

R>R = IN−1, we deduce

‖w(t)‖ ≤ ‖q2:N (t)‖+ α‖z2:N (t)‖
≤ ‖αΠN (x(0)− r(0)) + v(0)‖+ αη,

for all t ∈ [0, T ), where we have again used (10), (15)
and (17). Next notice that, for each i ∈ V, using (5)
and (6), we have

d

dt
|x̂i − xi| = − (x̂i − xi)>ẋi

|x̂i − xi|
≤ |ẋi|

= |ṙi − α(xi − ri)− β
∑N

j=1
aij(x̂

i − x̂j)− vi|

= |ṙi−α(xi − 1

N

∑N

j=1
rj)−β

∑N

j=1
aij(ŷ

i−ŷj)− wi|

≤ κi+α|x̂i − xi|+α|ŷi|+β
∑N

j=1
aij(|ŷi|+|ŷj |)+|wi|.

Then, given that |yi| ≤ ‖y‖ and |wi| ≤ ‖w‖, and using
the bounds established above on ‖y‖ and ‖w‖, we obtain

d

dt
|x̂i − xi| ≤ α|x̂i − xi|+ ci, (19)

where ci is given in (14). Next, using the Comparison
Lemma, cf. Khalil [2002], and x̂i = xi(tik), we deduce

|x̂i − xi(t)| ≤ ci

α
(eα(t−t

i
k) − 1), t ≥ tik. (20)
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Therefore, the time it takes |x̂i − xi| to reach εi is lower
bounded by τ i > 0 as given in (13). This fact also implies
that T =∞. To see this, we reason by contradiction, i.e.,
suppose T <∞. Then, the sequence of times {t̄k}k∈Z≥0

has an accumulation point at T . Because there is a finite
number of agents, this implies that there is an agent
i ∈ V for which {t̄ik}k∈Z≥0

has an accumulation point
at T . This implies that i transmits infinitely often in the
time interval [T −∆, T ) for any ∆ ∈ (0, T ]. Given that
the switching times of the digraph are uniformly lower
bounded, this contradicts the fact that the inter-event
times of (11) are lower bounded by τ i > 0 on [0, T ).
Finally, the bound (18) holds for all t ∈ R≥0, because

|xi − 1

N

∑N

j=1
rj | ≤ ‖x− r̄‖ = ‖y‖ = ‖z‖, i ∈ V. (21)

From (15), limt→∞ z1(t) = 0 with an exponential con-
vergence rate α. From (16), lim supt→∞ ‖z2:N (t)‖ ≤
(γ + β‖L‖‖ε‖)/(βλ̂2) with an exponential rate of con-

vergence min{α, βλ̂2}. Combining these facts with (21)
yields (12), and this concludes the proof. 2

Not surprisingly, the ultimate convergence error
bound (12) is worse than the bound (4) obtained when
agents communicate continuously. The trigger (11)
does not use the full agent state and hence can be seen
as an output feedback event-triggered controller, see
e.g., [Donkers and Heemels, 2012], for which guaran-
teeing the existence of lower-bounded inter-execution
times is in general difficult.

Remark 4.4 (Inter-event times as a function of the de-
sign parameters): The lower bound τ i in (13) along with
knowledge of the lower bound on the switching times of
the topology allows to compute bounds on the maximum
number of communication rounds (and associated en-
ergy spent) by each agent i ∈ V (and hence the network)
during a given time interval. This lower bound depends
on the various ingredients as follows: τ i is an increas-
ing function of εi and a decreasing function of α and ci.
Through the latter variable, the bound also depends on
the graph topology and the design parameter β. Given
the definition of ci, one can deduce that the faster an in-
put of an agent is changing (larger κi) or the farther the
agent initially starts from the average of the inputs, the
more often that agent would need to trigger communica-
tion. The connection between network performance and
communication overhead can also be noted here. Increas-
ing β or decreasing εi to improve the bound (12) results
in smaller inter-event times. Given that the convergence

rate of (5) under (11) is min{α, βλ̂σ}, decreasing α to
increase the inter-event times slows down convergence.•

4.3 Communication triggering law for time-varying
connected undirected graphs

Here, we design a distributed event-triggered communi-
cation law for (5) over networks with time-varying con-
nected undirected graph interaction topologies. While

the results of the previous section are valid for these
topologies, here we show that the structural properties
of the Laplacian matrix in the undirected case allows
the alternative event-triggered law to have longer inter-
event times with similar tracking performance.

Proposition 4.5 (Convergence of (5) over time-varying
connected undirected graphs with asynchronous dis-
tributed event-triggered communication): Assume that
the input of each agent i ∈ V satisfies |ṙi|ess = κi < ∞,
while ‖ΠN ṙ‖ess = γ <∞. Let the communication topol-
ogy be a connected, piecewise continuous time-varying
undirected graph {G}sk with uniformly bounded weights.
For ε ∈ RN>0, consider an implementation of the al-
gorithm (5) over {G}{sk}, where agents communicate
according to the model described in Section 3 with the
sampling times {tik}k∈Z≥0

of agent i ∈ V, starting at

ti0 = 0, determined by

tik+1 = argmax{t ∈ [tik,∞) | |x̂i(t)− xi(t)|2 (22)

≤ 1

4diout(t)

∑N

j=1
aij(t)|x̂i(t)− x̂j(t)|2+

ε2i
4diout(t)

}.

Then, for any α, β ∈ R>0, the evolution starting from

xi(0) ∈ R and vi(0) ∈ R with
∑N
i=1 v

i(0) = 0 satisfies

lim sup
t→∞

∣∣∣xi(t)− 1

N

∑N

j=1
rj(t)

∣∣∣ ≤ γ

βλ2
+ (23)√( γ

βλ2

)2
+
‖ε‖2
2λ2

,

for i ∈ V. Furthermore, the inter-execution times of
agent i ∈ V are lower bounded by

τ i =
1

α
ln
(

1 +
αεi

2ci
√
d̄iout

)
, (24)

where ci is given in (14), with η substituted by

ζ = max
{
‖ΠN (x(0)− r̄(0))‖, α‖ΠN (x(0)−r(0))+v(0)‖

2 +

γ
βλ2

+
√

(‖αΠN (x(0)−r(0))+v(0)‖
2 + γ

βλ2
)2 + ‖ε‖2

2λ2

}
.

Hence, {t̄k}k∈Z≥0
= ∪Ni=1∪k∈Z≥0

t̄ik has no accumulation
point and the execution of (5) over {G}{sk} is Zeno-free.

PROOF. Given an initial condition, let [0, T ) be
the maximal interval on which there is no accumu-
lation point in the set of event times {t̄k}k∈Z≥0

=

∪Ni=1∪k∈Z≥0
t̄ik. The expressions in (15) are equally valid

in this case. To bound t 7→ z2:N (t), consider

V (z2:N ) =
1

2
z>2:Nz2:N .

The derivative of V (z2:N ) along the trajectories of (9d)
can be upper bounded, for t ∈ [0, T ), as

V̇ ≤ ‖z2:N‖‖q2:N (0)‖e−αt − 1

2
βλ2z

>
2:Nz2:N−

1

2
β(z>2:NR>LtRz2:N + 2z>2:NR>Ltx̃) + γ‖z2:N‖.
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For convenience, let s=−z>2:NR>LtRz2:N−2z>2:NR>Ltx̃.

Using RR> = ΠN , LtΠN = ΠNLt = Lt, and (8), we
obtain s = −x>Ltx − 2x>Ltx̃. Given that the com-
munication graph is connected for all t, we can show
(see Kia et al. [2014b] for details)

s ≤ 1

2

∑N

i=1

(
4diout(t)|x̂i−xi|2−

∑N

j=1
aij(t)|x̂i−x̂j |2

)
,

which, together with (22) implies that s ≤ 1
2‖ε‖

2 for
t ∈ [0, T ) under the event-triggered communication
law (22). Therefore, for θ ∈ (0, 1), we have

V̇≤−βλ2(1−θ)
2

z>2:Nz2:N+
βλ2

2

( 2

βλ2
‖z2:N‖‖q2:N (0)‖e−αt

− θz>2:Nz2:N +
1

2λ2
‖ε‖2 +

2γ

βλ2
‖z2:N‖

)
≤ −βλ2

2
(1− θ)z>2:Nz2:N +

βλ2
2
r, (25)

where r = 2
βλ2
‖z2:N‖ ‖q2:N (0)‖−θz>2:Nz2:N + 1

2λ2
‖ε‖2+

2γ
βλ2
‖z2:N‖. Notice that r < 0 for

‖z2:N‖ ≥
‖q2:N (0)‖
βλ2θ

+
γ

βλ2θ

+

√(‖q2:N (0)‖
βλ2θ

+
γ

βλ2θ

)2
+
‖ε‖2
2λ2θ

= ζ̂.

Hence, for t ∈ [0, T ), as long as ‖z2:N (t)‖ ≥ ζ̂, one has

V̇ ≤− 1

2
βλ2(1− θ)z>2:Nz2:N .

Combining this inequality with the definition of V , and
considering the limiting case θ → 1, we deduce that, for
any z2:N (0) ∈ RN−1 and t ∈ [0, T ),

‖z2:N (t)‖ ≤ max{‖z2:N (0)‖, ζ̂} = ζ. (26)

Next, following the same arguments as in the proof of
Theorem 4.3, one can establish a lower bound on the
inter-execution times of any agent i ∈ V. To do this,
we determine a lower bound on the time it takes i to
have |x̂i − xi| evolve from 0 to εi/(2

√
d̄iout) (note the

conservativeness in this step as we disregard the first
term on the righthand side of (22)). The result of this
analysis yields (20), but with the value of ci given in the
statement (i.e., the expression in (14) with η substituted
by ζ as defined in (26)). Therefore, the time it takes |x̂i−
xi| to reach εi/(2

√
d̄iout) is lower bounded by τ i > 0 as

given in (24). This fact also implies T =∞. Finally, (21)
together with (15) and (26), imply that for i ∈ V,

|xi(t)− 1

N

∑N

j=1
rj(t)|≤

√
ζ2+|r>(x(0)− r̄(0))|2,

for t ∈ R≥0. Moreover, since T =∞, from (25), we have

V̇ ≤− 1

2
βλ2(1− θ)z>2:Nz2:N +

βλ2
2
r̄(t),

for t ∈ R≥0, where r̄(t) = 2
βλ

2
‖z2:N‖‖q2:N (0)‖e−αt −

θz>2:Nz2:N + 1
2λ

2
‖ε‖2 + 2γ

βλ
2
‖z2:N‖. Note that r̄(t) < 0 for

‖z2:N‖ ≥
‖q2:N (0)‖e−αt

βλ2θ
+

γ

βλ2θ

+

√(‖q2:N (0)‖e−αt
βλ2θ

+
γ

βλ2θ

)2
+
‖ε‖2
2λ2θ

= ζ̄(t).

Therefore, for t∈R≥0, as long as ‖z2:N (t)‖ ≥ ζ̄(t),

V̇ ≤− 1

2
βλ2(1− θ)z>2:Nz2:N .

As a result,

lim sup
t→∞

‖z2:N (t)‖ ≤ γ

βλ2
+

√( γ

βλ2

)2
+
‖ε‖2
2λ2

.

Here, we used θ → 1. On the other hand, limt→∞ z1(t) =
0. Combining these facts with (21) yields (23), conclud-
ing the proof. 2

We should point out that, the guaranteed lower
bound (24) on the inter-event-times is more conser-
vative than strictly necessary. This is because in our
development, in order to decouple the analysis of the
lower bound on the inter-event times of each agent from
its out-neighbors’, we have neglected the effect of the

term 1
4diout(t)

∑N
j=1 aij(t)|x̂i(t)− x̂j(t)|2 in (22). The sim-

ulations of Section 5 show the implementation of (22)
resulting in inter-event times longer than the ones of
the event-triggered law (11).

5 Simulations

In this section, we illustrate the performance of the
coordination algorithm (5) under the event-triggered
communication laws (11) and (22) over a recurrently
jointly strongly connected digraph (cf. Fig. 1), a ring
graph (cf. Fig. 2) and a time-varying connected graph
(cf. Fig. 3). Figure 1 shows a small degradation between
the tracking performance of the algorithm (5) with the
event-triggered communication law (11) and the algo-
rithm (3) with continuous-time communication. In the
event-triggered implementation, the number of times
that agents {1, 2, 3, 4, 5} communicate in the time inter-
val [0, 20] is (41, 49, 44, 31, 40), respectively. The large
error observed in the time interval [5, 15) is expected as
in this time period every two seconds only two agents
are communicating with each other. Naturally, these
two agents tend to converge to the average of their in-
puts and the rest of the agents, being oblivious to the
inputs of the other agents, follow their own input.

Figure 2 compares the algorithm (5) with event-
triggered communication (22) and the Euler discretiza-
tions of the algorithm (3) and the proportional-integral
(PI) dynamic average consensus algorithm proposed
in [Freeman et al., 2006]. We set the parameters of
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Fig. 1. Executions of (5) with the event-triggered commu-
nication law described in Section 3 whose sampling rule
is (11) and of (3) with continuous-time communication.
The network is a weight-balanced time-varying digraph of
5 agents with unit weights, where for t ∈ [0, 5) it is a fixed
ring digraph, for t ∈ [5, 15) every 2 seconds it is a sin-
gle connected pair of nodes and then for t ∈ [15,∞) it is
a ring digraph again. The inputs are u1(t) = 0.5 sin(0.8t),
u2(t) = 0.5 sin(0.7t) + 0.5 cos(0.6t), u3(t) = sin(0.2t) + 1,
u4(t)=atan(0.5t), u5(t)=0.1 cos(2t). The top plot shows the
tracking error and the bottom one shows the communication
times of each agent. Black dashed (resp. gray solid) lines cor-
respond to the event-triggered strategy with the sampling
law (11) with εi = 0.1 (resp. continuous-time communica-
tion (3)). In both cases, α= 1 and β= 4. For each agent, ×
indicates a sampling (and broadcast) time and + indicates
a time when the agent acquires a new in-neighbor.

the PI algorithm so that its ultimate tracking error is
similar to that of (3). For the discretizations, we use
the largest possible fixed stepsize δ = 0.039 for the PI
algorithm (beyond this value the algorithm diverges)
and we use the stepsize δ = 0.12 for the algorithm (3)
(from [Kia et al., 2014b], convergence is guaranteed if
δ ∈ (0,min{α−1, β−1(dout

max)−1}), which for this exam-
ple results in δ ∈ (0, 0.125)). The number of times that
agents {1, 2, 3, 4, 5} communicate in the time interval
[0, 20] is (39, 40, 42, 40, 39), respectively, when imple-
menting event-triggered communication (22). This is
significantly less than the communication used by each
agent in the Euler discretizations of (3) (20/0.12 ' 166
rounds) and the PI algorithm (20/0.039 ' 512 rounds).

Figure 3 shows the execution of (5) with the event-
triggered communication laws (11) and (22) over
a time-varying connected graph. For each agent
i ∈ {1, 2, 3, 4, 5}, we choose εi for each law so that
the summand in the right-hand side of the trigger (εi
for (11), εi/(2

√
d̄iout) for (22)) amounts to the same

quantity. The plots show similar tracking performance
for both algorithms, with the law (22) inducing less
than half communication than (11). In fact, the number
of times that agents {1, 2, 3, 4, 5} communicate in the
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Fig. 2. Comparison between the algorithm (5) employing the
event-triggered communication law described in Section 3
with sampling rule (22) and the Euler discretizations of the
algorithm (3) and the proportional-integral (PI) dynamic
average consensus algorithm proposed in [Freeman et al.,
2006]. For the first two, we set α = 1 and β = 4. For the
latter, we set γ = 5, LP = L and LI = 4L. The network
is a connected ring graph of 5 agents with unit weights and
the inputs are the same of Figure 1. In the top plot, black
(resp. gray) lines correspond to the event-triggered law (22)

with εi/(2
√

diout) = 0.1 (resp. the Euler discretization of
the algorithm (3) with fixed stepsize δ = 0.12). The middle
plot shows the response of the Euler discretization of the PI
algorithm with fixed stepsize δ = 0.039. The horizontal lines
in both the top and middle plots show the ±0.05 error bound
for reference. The bottom plot shows the communication
times of each agent using the event-triggered strategy.

time interval [0, 12] is (43, 56, 72, 57, 55) under (11) and
(21, 30, 33, 26, 23) under (22).

6 Conclusions

We have studied the multi-agent dynamic average con-
sensus problem over networks where inter-agent commu-
nication takes place at discrete time instants in an oppor-
tunistic fashion. Our starting point has been our previ-
ously developed continuous-time dynamic average con-
sensus algorithm which is known to converge exponen-
tially to a small neighborhood of the network’s inputs av-
erage. We have proposed two different distributed event-
triggered laws that agents can employ to trigger com-
munication with neighbors, depending on whether the
interaction topology is described by a weight-balanced
and recurrently jointly strongly connected digraph or a
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Fig. 3. Executions of (5) with the sampling rule (11)
and (22) with the event-triggered communication law
described in Section 3. The network is a time-varying
graph of 5 agents corresponding to a connected ring
graph with unit weights where one edge breaks every 3
seconds. The inputs are u1(t) = 0.5 sin(t) + 1/(t + 2) + 2,
u2(t)=0.5 sin(t)+1/(t+2)2+4, u3(t)=0.5 sin(t)+1/(t+2)3+5,
u4(t)=0.5 sin(t) + e−t + 4, u5(t)=0.5 sin(t) + atan(t)− 1.5.
The top plot shows the tracking error with the gray solid
(resp. black dashed) lines correspond to the law (11) with

εi = 0.1 (resp. (22) with εi/(2
√

diout) = 0.1). In both cases,
α = β = 1. The bottom plot shows the communication
times of each agent with o (resp. ×) markers corresponding
to the law (11) (resp. (22)). For both cases, + shows the
broadcasts associated to the acquisition of new in-neighbors.

time-varying connected undirected graph. In both cases,
we have established the correctness of the algorithm and
showed that a positive lower bound on the inter-event
times of each agent exists, ruling out the presence of Zeno
behavior. Future work will be devoted to further relaxing
the connectivity requirements on the interaction topol-
ogy (tying them in to the evolution of the dynamic inputs
available to the agents), the improvement of the prac-
tical convergence guarantees using time-varying thresh-
olds in the trigger design, the use of agent abstractions in
the development of self-triggered communication laws,
and the synthesis of other distributed triggers that indi-
vidual agents can evaluate autonomously and lead to a
more efficient use of the limited network resources.
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