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SUMMARY

This manuscript develops a dual decomposition algorithm for the distributed control of reactive

power and charging/discharging rates in microgrids with distributed solar generation and storage

capacities. Our setting considers physical constraints inherent to storage systems and voltage

regulation constraints with the objective of minimizing a cost function that encompasses two

aspects: the total cost of the active power consumed by the microgrid and its associated transmission

losses over a finite time horizon. We provide a complete analysis of the convergence of the

proposed algorithm and introduce a novel approach for the distributed approximation of the voltage

prediction over the power grid. Simulations demonstrate the performance of the dual decomposition

algorithm on a particular microgrid case. Copyright © 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In a world with an increasing energy demand, solar energy stands as an important

alternative that can partly replace the more limited fossil fuels or the riskier nuclear

energy sources. However, as with other renewables, the high variability of solar irradiance

makes its penetration into the energy mix very challenging. In order to solve problems

related to voltage stability and variable load satisfaction, several solutions are being

contemplated. Additional backup generation plants could help compensate fluctuations, but

their deployment would incur significantly higher costs for both the utilities and the users.

Large-scale storage systems are proposed to shift the energy generated during low-demand

hours or that corresponding to high-solar generation times to those of high demand. Smart

inverters placed at the PV themselves can be leveraged to inject reactive power for voltage

regulation and optimization of the network performance. In particular, since PV systems

and batteries can be locally owned and distributed throughout the network, distributed

optimization algorithms can be used to achieve the power network objectives in a faster

and more robust way. These objectives can be, to some extent, expressed as the well known

Optimal Power Flow (OPF) problem.

The OPF problem [1] is a non-convex, hard optimization problem that has received wide

attention in the literature. Most of the works on the OPF propose centralized solutions

that consider voltage as a decision variable [2, 3]. Recently, the papers [3, 4, 5] circumvent

the nonconvexity of the OPF through a relaxation that ensures a zero-duality gap under

some general conditions. The work [6, 7] studies an OPF setting with storage integration

in which battery systems are added to some nodes in a grid. The paper [6] addresses an

OPF problem where voltages and battery charging/discharging rates are taken as decision

variables, simplified by assumptions such as small-angles and infinite charging/discharging

capacities. Electricity prices are assumed to vary over time, and the objective function is the

cost of the energy provided by the utility. The paper [7] presents a more general setting in
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which the assumptions of [6] are avoided and exploits the aforementioned zero-duality-gap

approach.

The reactive power control problem, which consists of providing for losses without

producing excess heating or incurring voltage drops, has been addressed in a significant

number of works. In the 1980s, banks of capacitors and transformer taps were used for

reactive power compensation. In [8] a problem of optimal sizing for capacitors is solved

using a relaxation of the power flow equations over radial networks. An optimal reactive

power generation algorithm is introduced in [9], in order to minimize active power losses

and improve voltage regulation. More recently, research has focused on the control of smart

inverters which allow changes in the generated reactive power. In [10], a convexification of

the OPF problem is presented for grids that fulfill some assumptions on the input voltage

and the impedance in the transmission lines. The objective is to minimize transmission losses

in the grid by varying the injected reactive power at all generators in a distributed way. This

work does not consider voltage regulation constrains, which are addressed in [11]. Although

the convexification idea of [11] remains identical to that of [10], a different communication

structure is employed.

Here, we propose an algorithm to compute both the optimal reactive power generation

and storage control strategies for a microgrid over a given time horizon. This computation

is intended for use in a model-predictive control scheme that can incorporate forecasts

on generation and load. In order to present a distributed algorithm based on the dual

decomposition method, we employ a convexification approach that exploits high voltages at

the connection point of the microgrid. The type of microgrid we consider is endowed with

generation and/or storage capacity at certain nodes. We consider a discrete-time horizon,

which, at each instant of time, has an associated electricity cost per kWh, a forecasted

active generation, and node-wise load. The algorithm utilizes measurements and predictions

of voltage in the microgrid, which have implicit information on the power injected at the

nodes, in order to choose the optimal reactive power that must be injected by each generator,
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and the optimal charging/discharging rate of the storage at each node. The goal is to

minimize a cost function that weighs in the grid transmission losses with the overall cost

of the active power provided by the utility during the time horizon. Finally, the solution

provided by the algorithm is meant to respect voltage regulation constraints. The present

paper extends the work presented in [12]. The algorithm convergence analysis is performed

by characterizing the behavior of an upper bound algorithm which can be studied via

Lyapunov theory. In particular, we conclude that trajectories converge to the unique value

of reactive power injection and charging/discharging rate for each node of the microgrid.

Finally, we describe a novel way of approximately predicting voltage in order to implement

the proposed algorithm.

This work is organized as follows. Section 2 presents the microgrid model and the

optimization problem we aim to solve. Section 3 describes the dual decomposition algorithm

to solve the optimization problem. Section 4 introduces a solution to voltage prediction

required by the algorithm. Simulations are presented in Section 5 and Section 6 presents

conclusions.

Short List of Notations.

T : Length of the optimization horizon

τ = {1, . . . , T}: Optimization horizon (set of time slots)

G: Set of nodes with generation

M: Set of nodes with load only

pload,A(t): Vector of active power of the loads for all nodes in the set A ⊆ V, t ∈ τ

pin,G(t): Active power generated at all nodes in G, t ∈ τ

qload,A(t): Reactive power load for all nodes in A ⊆ V, t ∈ τ

qin,G(t): Reactive power generated at all nodes in G, t ∈ τ

Copyright © 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)

Prepared using rncauth.cls DOI: 10.1002/rnc



5

v(t): Control for batteries at all nodes in G, for t ∈ τ

βl: Battery capacity for the lth node , divided by length of each time slot in τ

c(t): Active power cost per kWh at time t ∈ τ

u(t): Voltage at each node in V, t ∈ τ

Umax, Umin: Bounds on the voltage magnitude for nodes in G

ι(t): Injected current at each node in V, t ∈ τ

s(t): Injected complex power at each node in V, t ∈ τ

NG(l): Neighbors of the node l ∈ G in the communication network

V lch, V
l

dis: Bounds on the charged/discharged energy in the battery in node l at time t ∈ τ

λ(t), λ(t): Lagrange multipliers for the voltage constraints, t ∈ τ

η(t), η(t): Lagrange multipliers for charged/discharged energy constraints, t ∈ τ

µ(t), µ(t): Lagrange multipliers for constraints on the battery capacities, t ∈ τ

1.1. Preliminary notation

In what follows, R will denote the set of real numbers, R>0 the set of real-positive numbers,

N the set of natural numbers, and C the set of complex numbers. The complex exponential

function is denoted as ejx, for x ∈ R. The notation ‖x‖, for x ∈ Cn denotes the Euclidean

norm of the vector x. The notation ‖X‖, for X ∈ Cm×n, denotes the induced Euclidean

norm of X, while ‖X‖C ∈ R
m×n
≥0 is understood as an array whose entries are the magnitude

of each entry of the variable X ∈ Cm×n (for X scalar, vector or matrix). The operator

∠X denotes the phase angle of all the complex entries of X. We let el ∈ Rn be a vector

whose l + 1 entry is equal to one, for l ∈ {0, . . . , n− 1}, while all other entries are zero,

and 1 ∈ Rn be a vector which entries are all equal to one. Dimension of el and 1 depends

on the context. The notation 0m×n ∈ Rm×n represents a matrix whose entries are zero.

Given the finite set A, |A| denotes its cardinality. For n ∈ N, In denotes the identity

Copyright © 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)

Prepared using rncauth.cls DOI: 10.1002/rnc



6

matrix in Rn×n. Consider a set τ = {1, . . . , T}, and let x ∈ C|A|T , with entries xl(t) ∈ C, for

all l ∈ A, t ∈ τ ; that is, x = [x1(1) . . . , x|A|(1), . . . , x1(T ), . . . , x|A|(T )]⊤. Then, x(t) ∈ C|A|

denotes the vector x(t) = [x1(t), . . . , x|A|(t)]
⊤, for each t ∈ τ . Similarly, xl ∈ C⊤ denotes the

vector xl = [xl(1), . . . , xl(T )]⊤, for each l ∈ A. For a complex square matrix A, we denote

its spectrum as spec(A) and its spectral radius as ρ(A). For the matrix A, Aij represents

its (i, j) entry. If A is block partitioned, (A)ij represents its (i, j) block. For x ∈ Cn, d(x)

denotes the diagonal matrix such that d(x)ii = xi, for i ∈ {1, . . . , n}, while for a complex

square matrix A, d(A) is a diagonal matrix such that d(A)ii = Aii. Let C be a complex array

in Cm×n, we denote the null space of C as null(C) , {x ∈ Cn | Cx = 0}. The row space of C,

defined as the set of all linear combinations of the rows of C, is denoted as row(C). Finally,

Ĉ denotes the conjugate transpose of C. Let B ⊆ Rn be a convex set. Then, for x ∈ Rn,

dist(x,B) , infy∈B ‖x− y‖. Given functions f : Rm → R and g : Rm → Rn, we denote the

“small-o” notation g(x) = o (f(x)) if lim‖x‖→∞ g(x)f(x)−1 = 0. For a vector x ∈ Rn, x � 0

indicates that all entries of x are nonnegative.

1.2. Notions of graph theory

Let G = (V, E , Y ) be an undirected weighted graph with a set V = {0, . . . , N − 1} of N

vertices, a set of edges E and a symmetric weight matrix Y ∈ CN×N . Each edge in E

is expressed as (h, l), for h, l ∈ V. Consider some labeling of the set E with the set of

indices {1, . . . , |E|}. In addition, let us assign an arbitrary direction to each edge (h, l) ∈ E .

The incidence matrix A of G is a matrix in {0,±1}|E|×N , which depends on the arbitrary

direction associated with each edge of G, such that:

Adl =







































−1, if εd ∈ E is an outgoing edge of l ∈ V,

1, if εd ∈ E is an incoming edge of l ∈ V,

0, otherwise.
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Consider a diagonal matrix C ∈ C|E|×|E| such that Cii is the weight of εi = (h, l) ∈ E given by

Yhl. Then, the Laplacian of the undirected graph associated with G is given by L = A⊤CA.

Consider the graph G. A path P(l, h), for nodes l, h ∈ V, is defined as a sequence of nodes

{n1, . . . , nℓ} such that n1 = l, nℓ = h and (ni, ni+1) is an edge of G, for all i ∈ {1, . . . , ℓ− 1}.

2. PROBLEM STATEMENT

Consider a microgrid which is connected to the grid at a single point. The microgrid is

modeled as an undirected weighted graph G = (V, E , Y ), V , {0, . . . , N − 1}, E ⊆ V × V,

Y ∈ CN×N , where nodes in V represent buses and edges in E represent the interconnection

lines. Weights are given by the matrix Y and correspond to the line admittances of such

interconnection lines. We consider a microgrid with generation and storage capacities. This

microgrid has three different types of nodes: i) a single connection point to the grid,

represented by node 0, which acts as a slack node, with fixed voltage and unlimited power

generation, ii) a subset of nodes G with generation and storage capacity, and iii) a set

M = V \ ({0} ∪ G) of nodes with neither generation nor storage capacity. All nodes in

V \ {0} have a load that must be satisfied.

Let us consider a discrete, finite-time window τ , with T time slots, i.e., τ , {1, . . . , T}.

Each time slot t has an electricity cost c(t) associated with it, which is the price per

kWh, given by a map c : τ → R≥0, and depends on the overall demand satisfied by the

utility. The value of c(t) for each t ∈ τ is assumed to be known to nodes of the grid, since

utility companies make it publicly available. Similarly, for each time slot t ∈ τ there is an

amount of active power that each generator can provide during the whole time slot t, called

pin,l(t) > 0, for each l ∈ G. We assume that this value cannot be controlled, as it is the case

with renewable generation, but we can estimate it using forecasting techniques. In order to

make the problem slightly more general, the load at each node may also depend on the time
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slot t ∈ τ . For each l ∈ V \ {0}, let pload,l(t) + jqload,l(t), pload,l(t) ≥ 0, be power that must

be supplied to a load placed at the node, for all t ∈ τ .

The problem we would like to solve consists in finding the optimal policy for the reactive

power injection, and for the storage charging/discharging rates, that optimizes the microgrid

operation defined by the combined objective of minimizing active power generation cost and

distribution losses. Before stating the problem more formally, we next describe the model

we use to represent a microgrid and the elements involved in it.

2.1. Mathematical model of a microgrid

Let ul(t) ∈ C be the voltage at node l ∈ V, at time t ∈ τ . Let ιl(t) ∈ C be the current flowing

through node l ∈ V. Let A be the incidence matrix associated with G, based on some given

ordering on E . For node 0, let u0(t) be fixed for all t ∈ τ and described as u0(t) = U0e
jφ.

Let sl(t) = ul(t)ι̂l(t) be the complex apparent power drawn or supplied to node l at time

t. Recall that sl(t) = Pl(t) + jQl(t), where Pl(t), Ql(t) are the active and reactive power at

node l ∈ V, at time t ∈ τ .

Next, we introduce some compact-form notation. Define u(t) , [u0, u
⊤
G(t), u⊤

L (t)]⊤ ∈

CN×N as the voltage vector for all nodes in the set V, at time t ∈ τ , where uG(t) is the

vector of all voltages at nodes in G, and uL(t) is the vector of all voltages in the set M.

Likewise, ι(t) , [ι0(t), ι⊤G(t), ι⊤L (t)]⊤, s(t) , [s0(t), s⊤
G(t)s⊤

L (t)]⊤, with s(t) = P (t) + jQ(t),

P (t) , [P0(t), P⊤
G (t), P⊤

L (t)]⊤, and Q(t) , [q0(t), Q⊤
G(t), Q⊤

L (t)]⊤.

The convention for the active power sign is that if Pl(t) < 0, power is injected to the lth

node, while Pl(t) > 0 means that power is drawn from the lth node, for all l ∈ V, t ∈ τ . As

an example, for a node with load only, it must hold that Pl(t) ≤ 0 for all t ∈ τ . Likewise, for

a node l with only generation, but neither storage nor load, Pl(t) ≥ 0 for all t ∈ τ . Given the

type of nodes we consider in the microgrid, we have that PG(t) = pin,G(t) − pload,G(t) − v(t),

where v(t) is a vector whose lth component vl(t) is the amount of power that is being

supplied to the battery at such node, l ∈ {1, . . . , |G|}. Similarly, PL(t) = −pload,L(t), for
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all t ∈ τ . Finally, we have that QG(t) = qin,G(t) − qload,G(t) and QL(t) = −qload,L(t), for

all t ∈ τ . The vector qin,G(t) ∈ R|G| represents the reactive power that is supplied by each

generator in G at time t ∈ τ .

Then, using the Kirchoff’s current and voltage laws, the relation between voltage and

current is given by:

A⊤I(t) + ι(t) = 0

Au(t) + ZI(t) = 0, (1)

where I(t) ∈ C|E| is a vector with the values of current at each edge in E and time t ∈ τ ,

and Z is the diagonal matrix in C|E|×|E| whose elements are the line impedances in the

microgrid.

In the following, we will make the following assumptions on the microgrid parameters.

These assumptions have already been used in [10, 11] and are accurate for actual operation

conditions in real microgrids.

Assumption 2.1 (Large input voltage at the microgrid)

The value of U0 is very large as compared to the currents provided by the inverters and

batteries, or supplied to the loads.

Assumption 2.2 (Transmission lines’ reactance/resistance ratio)

The microgrid has transmission lines with the same reactance/resistance ratio. Therefore,

for all edges ℓ ∈ E , the impedance zℓ can be written as zℓ = |zℓ|e
jθ.

2.2. Mathematical model of a battery

We model a battery with the following dynamics:

xl(t) = xl(t− 1) +
1

βl
vl(t), ∀l ∈ G, ∀t ∈ τ, (2)
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where xl(t) ∈ [0, 1] is the battery state, βl corresponds to the battery capacity, divided

by the length of the time slot. Recall that vl(t) denotes the power injected to or drained

from the battery during the time slot t ∈ τ . Clearly, the battery has physical constraints,

formulated as vl ∈ [V ldis, V
l

ch], where V ldis < 0, −V ldis is the maximum amount of power the

battery can discharge during a time slot t ∈ τ , and V lch > 0 is the maximum amount the

battery can charge. Note that this model assumes that the charger efficiency is one. Assume

that the initial state for the battery at node l ∈ G is xl(0). Then, for each t ∈ τ , the battery

charge is given by:

xl(t) = xl(0) +
1

βl

t
∑

ℓ=1

vl(ℓ), ∀l ∈ G, ∀t ∈ τ.

In compact form, denote by v(t) the vector of battery charge/discharge rates at time t, for

all nodes in the set G.

2.3. Communication network

Generators and storage systems will coordinate operations by means of a communication

network. The communication topology is based on the microgrid topology and the location

of the generation/storage nodes in the microgrid.

Definition 2.1 (Communication network)

The communication network is given by the undirected graph GG = (G ∪ {0}, EG),

where EG ⊆ G ∪ {0} × G ∪ {0} is defined as EG , {(l, h) ∈ G ∪ {0} × G ∪ {0} | P(h, l) ∩ (G ∪

{0}) = {h, l}}. The set of neighbors NG(l) of l ∈ G ∪ {0} in the communication network is

given by NG(l) , {h ∈ G ∪ {0} | (l, h) ∈ EG}.

2.4. The microgrid control problem

Based on the microgrid and battery models we have presented above, actuation over the

microgrid will be established through the decision variables qin,l(t), which represents the
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reactive power supplied by generation systems, and vl(t), which represents the active power

provided by the batteries, for all l ∈ G, while the input voltage u0, the energy cost c(t),

the loads pload,l(t) and qload,l(t) for l ∈ V \ {0}, and the forecasted active power generation

pin,l(t), for l ∈ G, are parameters of the problem, for all t ∈ τ .

Our objective is to compute optimal reactive power generation and storage control profiles

for the time horizon τ . This must be done in such a way that the voltage at each node in G is

maintained within a desirable range and the storage control respects all physical constraints

related to the batteries, while a cost is minimized. The cost we consider encompasses two

possibly conflicting objectives: i) minimize the cost of active power from the grid and

ii) minimize the transmission losses in the transmission lines present in the microgrid.

Minimizing transmission losses is a significant objective in Optimal Power Flow and it

has been considered in several works [3, 7, 10, 11]. Thus, the cost function is given by:

J(u) =
∑

t∈τ

(Jloss(u(t)) + δJpower(u(t))),

where Jloss(u(t)) represents the loss in the transmission lines of the microgrid at time

slot t, and Jpower(u(t)) is the overall cost of the active power provided by the utility at

time slot t. The trade-off between these possibly conflicting objectives is parameterized

by the nonnegative constant δ > 0, which is used to modify the relative importance of

Jpower(u(t)) with respect to Jloss(u(t)) in the optimization. The loss in the transmission

lines can be expressed as Jloss(u(t)) = û⊤(t)Lu(t), where L = A⊤Z−1
magA, Zmag = ‖Z‖C [11],

and the power cost is given by Jpower(u(t)) = −c(t) Re(s0(t)) = −c(t) Re(ι̂0(t)u0(t)). The

negative sign follows the introduced convention for the active power sign. Since ι(t) can be

approximated by Assumption 2.2 on the common transmission lines’ reactance/resistance

ratio as ι(t) = e−jθLu(t), then Jpower(u(t)) = − Re{ejθû⊤(t)Le0e⊤
0 u(t)}c(t).

The following results give us a convenient way of approaching the problem, by writing

u(t) as a linear function of the decision variables.
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Lemma 2.1 (Existence of matrix X [10])

There exists a unique symmetric, positive semidefinite matrix X ∈ RN×N , which can be

written as:

X =













0 0 0

0 W F

0 F⊤ R













,

such that XL = IN − 1(e0)⊤ and Xe0 = 0, where W ∈ R|G|×|G|, R ∈ R|M|×|M|, and F ∈

R|G|×|M|.

The physical meaning of the matrix X is widely discussed in [10], [11]. One of the

properties of X is that the product (eh − el)
⊤X(eh − el) corresponds to the effective

impedance from node h ∈ V to node l ∈ V. The following result follows directly from

Lemmas 3 and 4 in [11].

Lemma 2.2 (Matrix G)

There exists a unique symmetric matrix G, such that:









0 0

0 W









G = I|G|+1 − 1(e0)⊤, G1 = 0.

Moreover, the matrix G has a sparsity induced by the communication network graph, this

is, Gij , 0 if and only if j ∈ NG(i). The matrix W is a block of the matrix X described in

Lemma 2.1.

From the result above, it is immediately noted that the matrix W is invertible. We can

also see that its inverse matrix corresponds to a block in the matrix G, which means that

it also has a sparsity induced by the communication network graph.

The following result provides a linearization of the relation between voltages and powers

on the microgrid.
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Lemma 2.3 (Microgrid voltage approximation [11])

Consider (1), along with sl(t) = ul(t)ι̂l(t). Then, the microgrid voltages satisfy:













u0(t)

uG(t)

uL(t)













= ejφ













U01 +
ejθ

U0













0 0 0

0 W F

0 F⊤ R

























0

ŝG(t))

ŝL(t)

























+ o

(

1

U0

)

. (3)

Notice that by Assumption 2.1 on the large magnitude of the input voltage, the relaxation

given by Lemma 2.3 provides an accurate approximation, as the term o
(

1
U0

)

vanishes for

large values of U0.

Having established some relaxations on the nonlinear equations describing the microgrid

physics, we describe the microgrid control problem as follows:

min
qin,G,v

∑

t∈τ

(Jloss(u(t)) + δJpower(u(t)))

s.t.



























































Umin ≤ ‖ul(t)‖C ≤ Umax, l ∈ G, t ∈ τ

V ldis ≤ vl(t) ≤ V lch, l ∈ G, t ∈ τ

0 ≤ xl(0) + 1
βl

∑T
s=1 vl(s) ≤ 1, l ∈ G, t ∈ τ

Equation (3) holds.

(4)

Clearly, the lower bound constraint on the voltage magnitude introduces a non-convex

constraint to the problem. In order to follow the convexification idea in [11], we define

wG(t), as a vector in R|G|, whose components are the squares of the magnitudes of the

complex voltages ul(t), normalized by U2
0 , i.e., wl(t) , ‖ul(t)‖

2
C
U−2

0 , for l ∈ G. After some

manipulation, from (3), we obtain:

wG(t) =1 +
2

U2
0

(

cos θ
(

WPG(t) + FPL(t)
)

+ sin θ
(

WQG(t) + FQL(t)
)

)

+ o

(

1

U2
0

)

.

(5)
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Thus, we can write the constraints on the voltage magnitude as:

Wmin =
U2

min

U2
0

≤ wl(t) ≤
U2

max

U2
0

= Wmax,

for all l ∈ G, t ∈ τ . Clearly, as Umin, Umax have in practice a similar order-of-magnitude than

that of U0, it holds that U−2
0 U2

min, U−2
0 U2

max are close to one. For large values of U0, (5) is

affine in the decision variables qin,G(t), v(t), hence the constraint above is convex.

3. DISTRIBUTED REACTIVE POWER AND STORAGE CONTROL ALGORITHM

In order to solve the microgrid control problem in a distributed way, we propose

an extension of the dual decomposition approach presented in [11]. Here we optimize not

only the reactive power injection, but also on the battery charge/discharge, considering

the physical constraints of the battery control. The fact that we also consider a different

cost function modifies the algorithm dynamics. The dual decomposition algorithm consists

of performing a gradient ascent on the Lagrangian with respect to the dual variables of

the problem, while an unconstrained optimization with respect to the primal variables,

parameterized by the estimated dual variables is executed.

The Lagrangian for the optimization problem is given by:

L(qin,G,v, ψ) = J(qG, v) +
T
∑

t=1

λ⊤(t)(Wmin − wG(t)) +
T
∑

t=1

λ
⊤

(t)(wG(t) −Wmax)

+
T
∑

t=1

η⊤(t)d(∆V )−1(Vdis − v(t)) +
T
∑

t=1

η⊤(t)d(∆V )−1(v(t) − Vch)

−
T
∑

t=1

µ⊤(t)

(

x(0) + d(β−1)
t
∑

h=1

v(h)

)

+
T
∑

t=1

µ⊤(t)

(

x(0) + d(β−1)
t
∑

h=1

v(h) − 1

)

,
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where λ(t), λ(t), η(t), η(t), µ(t), µ(t) � 0, for all t ∈ τ , are Lagrange multipliers, and

d(β−1) ∈ R|G|×|G| is a diagonal matrix such that d(β−1)ll = 1
βl

, for all l ∈ {1, . . . , |G|}. We

introduce d(∆V ) ∈ R|G|×|G| as a diagonal matrix that works as a regularization parameter,

such that d(∆V )ll , V
l

ch − V ldis, for all l ∈ {1, . . . , |G|}.

Let us define as a compact representation of the dual variables: λ ,

[λ⊤(1), . . . , λ⊤(T )]⊤ ∈ R
|G|T
≥0 , η , [η⊤(1), . . . , η⊤(T )]⊤ ∈ R

|G|T
≥0 , µ , [µ⊤(1), . . . , µ⊤(T )]⊤ ∈

R
|G|T
≥0 , (resp. λ, η, µ), ψ(t) , [λ

⊤
(t), λ⊤(t), η⊤(t), η⊤(t), µ⊤(t), µ⊤(t)]⊤, and a variable

ψ , [λ
⊤
, λ⊤, η⊤, η⊤, µ⊤, µ⊤]⊤ ∈ Rr

≥0, where r , 6T |G|. The dual decomposition algorithm

is given by:

(qkin,G, v
k) = argminqin,G,v(L(qin,G, v, ψ

k)), (6)

ψk+1 =
[

ψk + γ∇ψL(qkin,G, v
k, ψk)

]

+
, (7)

where ∇ψL is the gradient of L with respect to the dual variable ψ, and [·]+ is the projection

operator onto the positive orthant. The parameter γ is a small enough positive scalar to be

characterized later.

Since the Lagrangian is a quadratic function of (qin,G, v), a minimizer for L(qin,G, v, ψ
k)

can be found directly by solving ∇qin,G,vL(qin,G, v, ψ
k) = 0. Some algebraic manipulations

lead to:

qkin,G(t) = qload,G(t) +W−1Fqload,L(t) − sin θ[λ
k
(t) − λk(t)] (8)

vk(t) = − pload,G(t) − pin,G(t) −W−1Fpload,L(t) + cos θ[λ
k
(t) − λk(t)] (9)

−
U2

0

2
W−1

(

d(∆V )−1(ηk(t) − ηk(t)) +
T
∑

h=t

d(β−1)(µk(h) − µk(h)) + δc(t)1

)

,
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for all t ∈ τ . Formulas (8), (9) are obtained as follows. First, the derivative of L is computed

with respect to the variables qin,G(t) and v(t), for all t. To this end, a chain rule is used

by which L is differentiated with respect to u(t) and wG(t), and in turn, u(t) and wG(t)

are differentiated with respect to qin,(t) and v(t). Next, terms of o
(

1
U2

0

)

are neglected. The

remaining linear equations are set equal to zero and a solution in qin,G(t) and v(t), for all

t ∈ τ , is found. This leads to expressions (8), (9).

Since the Lagrangian is linear in the dual variables, the derivative with respect to each of

them is merely the expression representing the constraint associated with that dual variable.

Thus, the gradient ascent algorithm for the dual variables becomes:

λ
k+1

(t) =
[

λ
k
(t) + γ(wkG(t) −Wmax)

]

+
,

λk+1(t) =
[

λk(t) + γ(Wmin − wkG(t))
]

+
,

ηk+1(t) =
[

ηk(t) + γd(∆V )−1(vk(t) − Vch)
]

+
,

ηk+1(t) =
[

ηk(t) + γd(∆V )−1(Vdis − vk(t))
]

+
, (10)

µk+1(t) =

[

µk(t) + γ

(

x(0) +
t
∑

h=1

d(β−1)vk(h) − 1

)]

+

,

µk+1(t) =

[

µk(t) − γ

(

x(0) +
t
∑

h=1

d(β−1)vk(h)

)]

+

,

for all t ∈ τ , with a common parameter γ. Following similar computations as in [11], one

can obtain the following result:

Lemma 3.1 (Distributed algorithm)

The expressions in (8), (9) can be approximated by:

qkin,G(t) = Im









e−jθ[ 0 d(uk−1
G (t)) ]G









uk−1
0 (t)

uk−1
G (t)

















+ qk−1
in,G(t) + o

(

1

U2
0

)

(11)

− sin θ[λ
k
(t) − λk(t)],
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vk(t) = Re









e−jθ

[

0 d(uk−1
G (t))

]

G









uk−1
0 (t)

uk−1
G (t)

















+ vk−1(t) + cos θ(λ
k
(t) − λk(t))

(12)

−
U2

0

2
W−1

(

d(∆V )−1(ηk(t) − ηk(t)) +
T
∑

h=t

d(β−1)(µk(h) − µk(h)) + δc(t)1

)

,

+ o

(

1

U2
0

)

, (13)

for all t ∈ τ .

The result above provides an update rule that can be executed by each of the nodes

where some type of decision can be made, which in turn is distributed according to the

sparsity of G. The proposed updating rule described by (10),(11) and (12) is referred to as

microgrid control algorithm and is summarized in Algorithm 1.

The following result establishes that the microgrid control algorithm converges

asymptotically to the optimal solution of the problem defined in (4), provided the parameter

γ is small enough.

Theorem 3.1 (Algorithm convergence)

Let assumptions 2.1, 2.2 on the input voltage magnitude and the transmission lines’

impedance angle hold. Assume that the microgrid control problem in (4) is feasible.

Then, for γ < 2
ρ(M) , where M is described in Definition A.3, the execution of the

microgrid control algorithm (Algorithm 1) by each node l ∈ G, leads to qkin,G(t) →

q⋆in,G(t), vk(t) → v⋆(t), for all t ∈ τ , where (q⋆in,G, v⋆) is the unique optimizer of the

microgrid control problem.

The proof of this result can be found in Appendix B.
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Algorithm 1: The microgrid control algorithm. Execution for node l ∈ G

Input: wk−1
l (t), ηk−1

l (t), ηk−1
l

(t), µk−1
l (t), µk−1

l
(t), qk−1

l (t), vk−1
l (t) (also λ

k−1

l (t),

λk−1
l (t), if l ∈ G), for all t ∈ τ

1 for t ∈ {1, . . . , T} do

2 λ
k

l (t) =
[

λ
k−1

l (t) + γ(wk−1
l (t) −Wmax)

]

+

3 λkl (t) =
[

λk−1
l (t) + γ(Wmin − wk−1

l (t))
]

+

4 ηkl (t) =
[

ηk−1
l (t) + γ 1

∆Vl
(vk−1
l (t) − V lch)

]

+

5 ηk
l
(t) =

[

ηk−1
l

(t) + γ 1
∆Vl

(V ldis − vk−1
l (t))

]

+

6 µkl (t) =
[

µk−1
l (t) + γ

(

xl(0) + αl

βl

∑t
h=1 v

k−1
l (h) − 1

)]

+

7 µk
l
(t) =

[

µk−1
l

(t) + γ
(

−xl(0) − αl

βl

∑t
h=1 v

k−1
l (h)

)]

+

8 end

9 Gather ηkh(t), ηk
h
(t), µkh(t), µk

h
(t), for all t ∈ τ , for all h ∈ NS(l) \ {0}

10 Gather uk−1
h (t) for all t ∈ τ , for all h ∈ NS(l) (for all h ∈ NS(l) ∪ NG(l) if l ∈ G)

11 for t ∈ {1, . . . , T} do

12 vkl (t) = vk−1
l (t) + cos θ(λ

k

l (t) − λkl (t)) +
∑

h∈NG(l) Glh

(

‖uk−1
l (t)‖C‖uk−1

h (t)‖C

cos(∠uk−1
h (t) − ∠uk−1

l (t) − θ)
)

+
U2

0

2

∑

h∈NG(l)\{0} Glh

(

− 1
∆Vl

(ηkh(t) − ηk
h
(t)) −

1
βh

∑T
b=t(µ

k
h(b) − µk

h
(b)) − δc(t)

)

qkin,l(t) = qk−1
in,l − sin θ(λ

k

l (t) − λkl (t)) +
∑

h∈NG(l) Glh

(

‖uk−1
l (t)‖C‖uk−1

h (t)‖C

sin(∠uk−1
h (t) − ∠uk−1

l (t) − θ)
)

13 end

4. VOLTAGE PREDICTION

In order to compute qin,G(t), v(t), for t ∈ τ , the microgrid control algorithm requires

voltage information for all t ∈ τ . However, this information is not available for two reasons:

i) voltages u(t) depend on the power injections at all the nodes of the microgrid at time

t ∈ τ , i.e., they depend on future values of the decision variables, and ii) although for time

t = 1, it is theoretically possible to inject the power given by decision variables vk(1) and

qkin,G(1) into the system, these variables are only asymptotically feasible. Then, it may be

either harmful or impossible to inject such power values into the actual microgrid. Thus, it

is necessary to use a model to predict values of u(t), for t ∈ τ . Recall that a microgrid is

modeled by the nonlinear memoryless system of equations formulated in (1). Finding the

solution for voltages u(t) given P (t), Q(t) and u0 is not only a computationally expensive
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procedure, but it is also not distributed. We formulate two alternatives to address this

problem.

4.1. A multilayer control approach

A first possibility is to define an additional layer for the control, which contains a model

of the microgrid, and is such that it can exchange information with all nodes in G. Thus,

the control structure has two layers: the upper layer with a ‘super agent’ that knows the

microgrid model, and the lower layer, with the node controllers. At each iteration, nodes

in G will provide the super agent in the upper layer the value of qkin,G and vk. The agent

uses these values to compute uk by solving the power flow equations in (1). Then, the

agent provides the node controllers with uk according to their sparsity in the sense of the

network topology of Definition 2.1. Then, the dual decomposition algorithm is executed

again. By means of this approach, part of the computations are carried out in a centralized

way. Even though part of the computations are parallelized, i.e., the control computations,

the centralized computations performed by the super agent destroy the scalability and

robustness properties that justify the use of a distributed algorithm.

4.2. Distributed approximation

An alternative is the voltage prediction algorithm: a novel idea which is based

on the voltage expression given in (3). It consists of executing several sub-iterations

at each iteration k of the control computation, in order to approximate the voltage

uk for the computation of qk+1
in,G and vk+1. Figure 1 shows the interaction between

the microgrid control algorithm and the voltage prediction algorithm. Let us

assume that all the loads in nodes that belong to M are constant, for all t ∈ τ , i.e., sL(t) =

sL, for all t ∈ τ . Let us consider u0 , [U0e
jφ, u⊤

0,G, u
⊤
0,L]⊤ ∈ RN and s0 , [S0, s

⊤
0,G, s

⊤
L ]⊤ ∈

RN , with s0,L = pL + jqL, such that the pair u0, s0 solves the power flow equations that

model the microgrid. Assume that each node l ∈ G knows u0,l and s0,l, where u0,l and s0,l
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denote the lth components of u0 and s0 respectively, which means that the node l requires

entirely local information.

Using the expression in (3), we have that:

∆ut = ejφ
(

ejθ

U0
W∆ŝt

)

,

where ∆ut , uG(t) − uG,0, and ∆ŝt , ŝG(t) − ŝG,0, for all t ∈ {1, . . . , T}. Then, we obtain:

Re(∆ut) = W

(

cos(θ + φ)

U0
Re(∆ŝt) −

sin(θ + φ)

U0
Im(∆ŝt)

)

,

Im(∆ut) = W

(

sin(θ + φ)

U0
Re(∆ŝt) +

cos(θ + φ)

U0
Im(∆ŝt)

)

.

Notice that the lth component of ∆ŝt is known to node l ∈ G for all t ∈ τ . Since W is

invertible, it is possible to solve ∆ut, using the Jacobi overrelaxation algorithm, as follows:

uℓ+1
e,t = (1 − h)uℓe,t − hd(W e)−1

(

(W e − d(W e))uℓe,t − sℓe,t

)

, (14)

where W e
, I2 ⊗W−1 and:

ue,t =









Re(∆ut)

Im(∆ut)









,

se,t =









cos(θ+φ)
U0

Re(∆ŝt) − sin(θ+φ)
U0

Im(∆ŝt)

sin(θ+φ)
U0

Re(∆ŝt) + cos(θ+φ)
U0

Im(∆ŝt)









.

By construction of W , it also holds that the diagonal elements of W e are strictly positive.

Then the matrix d(W e)−1 is well defined. Given that W−1 is symmetric and positive

definite, W e is also symmetric and positive definite. Then, it holds that if h < 2/|G|, the

Jacobi overrelaxation converges from any initial condition and also presents a linear rate
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of convergence. Since W−1 is distributed in the sense of the communication network in

Definition 2.1, the computation of u can be made using only local information. Algorithm 2

Algorithm 2: The voltage prediction algorithm. Execution for node l ∈ G

Input: vkl (t), qkin,l(t) (if l ∈ G), for all t ∈ τ .

1 for t = {1, . . . , T} do

2 δ0
t,Re(l) = 0

3 δ0
t,Im(l) = 0

4 sl,t = pin,l(t) − pload,l(t) − vkl (t) + j(qkin,l(t) − qload,l(t))

5 bt,Re = cos(θ+φ)
U0

Re(sl,t − sl,0) − sin(θ+φ)
U0

Im(sl,t − sl,0)

6 bt,Im = sin(θ+φ)
U0

Re(sl,t − sl,0) + cos(θ+φ)
U0

Im(sl,t − sl,0)

7 end

8 for ℓ ∈ {1, . . . , ℓmax − 1} do

9 for t = {1, . . . , T} do

10 δℓ+1
t,Re(l) = (1 − h)δℓt,Re(l) − h

GS,ll

(

∑

r∈NS(l)\{0,l} GS,lrδ
ℓ
t,Re(r) − bt,Re

)

11 δℓ+1
t,Im(l) = (1 − h)δℓt,Im(l) − h

GS,ll

(

∑

r∈NS(l)\{0,l} GS,lrδ
ℓ
t,Im(r) − bt,Im

)

12 end

13 end

14 for t = {1, . . . , T} do

15 ukl (t) ≈ δℓmax

t,Re (l) + jδℓmax

t,Im(l) + ul,0
16 end

summarizes the prediction procedure for each node l ∈ G.

[Figure 1 about here.]

Notice that a fast execution of this algorithm (until some error tolerance is reached) at the

end of each iteration of the dual decomposition algorithm can give an approximation of

uG(t), t ∈ τ , for the next iteration.

Let us recall that the load and the active power generation at all nodes are system

parameters that come from forecasting processes. In the particular case of load forecasting,

persistence models are widely used. A persistence model assumes that the best forecast for

a variable in the near future is the current value of that variable. It leads to an estimate of

a future step for loads in nodes l ∈ M computed as follows:

sL(t+ 1) = sL(t).
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A propagation of this estimation over the whole time horizon τ leads to a load estimation in

which sL(t) = sL for all t ∈ τ , which is the setting under which our distributed prediction

model works. Thus, even though the assumption that the load of nodes in M does not vary

with time seems to be restrictive, it is not introducing any additional assumptions than

those that are already posed in real applications.

5. SIMULATION RESULTS AND DISCUSSION

We implement the microgrid control algorithm on a single-phase approximation of

the IEEE 37 standard model, with the same location of generators as in [11]. In addition,

we add 4 nodes that have only storage capacity and no generation. The connection to the

grid is made through node 0. The microgrid scheme is shown on Figure 2.

[Figure 2 about here.]

The complete list of the microgrid parameters, as well as the

commented simulation code we have used, can be found at

http://fausto.dynamic.ucsd.edu/andres/project reactive.html. Simulations have

been run by coupling the dual decomposition algorithm with the voltage prediction

algorithm, following the structure given in Figure 1. We consider fixed loads for the load

nodes, and a 5-step prediction horizon, i.e., τ = {1, . . . , 5}. Moreover, we establish a desirable

voltage regulation range of [0.95, 1.05] p.u., this is relative to the voltage of the connection

point, established as 4.8kV . The parameter γ is chosen to be 0.0728, which is 0.8/‖M‖∞,

satisfying the condition in Theorem 3.1. We use for the voltage prediction algorithm

a parameter h = 0.9889. Note that we take advantage of the knowledge of the microgrid

topology to derive a larger parameter which, even though does not satisfy the upper

bound 2/|G|, allows for a spectral radius of I − hW e less than one, leading to stability. We

truncate the voltage approximation after 100 iterations of the fast scale execution.

[Figure 3 about here.]
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[Figure 4 about here.]

[Figure 5 about here.]

Figure 3 shows the evolution of the decision variables for the whole time horizon, for

node 4. Dashed lines represent the optimal values for the decision variables (presenting some

overlap). It can be seen that the algorithm leads the decision variables to their optimizers.

Notice that there is a remarkable difference between the amount of iterations that it takes

the variable qin,G to converge and those for the variable v. There are two main observed

reasons for this difference: the first one is that the amount of local constraints related

to the variable v is very large as compared to those affecting qin,G. The second reason is

that the geometry of the feasible set given by the local constraints on v activates some

multipliers that in their optimal state should be zero. In particular, we observe a very fast

and large growth in the η multipliers. Once the satisfaction of the µ constraints guarantee

the satisfaction of the η constraints, the components of η start to decrease. However, the

nonlinear dynamics for the multipliers do not allow for a fast decrease rate. It can be seen in

Figures 4, 5 that the η, µ multipliers grow very fast, however, the multipliers η eventually

start a very slow decrease to end up reaching the optimal value 0. This slow decrease

leads to very large number of iterations for convergence, which may affect the possibility

of using the algorithm in applications with short discretization steps. Recall that for each

iteration of the controller-predictor loop, the predictor executes 100 iterations, all of them

requiring communication between neighboring nodes. This number has been chosen in order

to guarantee that the first two significant figures of the approximation reach those of the

real value for all voltages. This is not a very conservative number, since a lower accuracy

in the approximation may severely affect the optimization result. Since the parameter γ is

near the limit for stability, the speed of convergence cannot be significantly improved. We

have tested the speed of execution of several iterations of the algorithm in a computer with

processor 2.8GHz Intel Core i7, and 8GB 1333 MHz RAM, and on average, each iteration
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takes 0.0364 seconds. Of course, the computations for all nodes have been performed in a

sequential manner, while they are meant to be performed in a parallel way. Nevertheless,

the simulation for 60 × 103 iterations that is shown in the case study required more than

36 minutes to run.

6. CONCLUSIONS AND FUTURE WORK

This work presents a distributed algorithm for the computation of predictive control

sequences of reactive power and storage in microgrids. The algorithm uses forecasted

parameters such as the electricity cost in time and the solar-power generation, in order to

compute the reactive power that must be injected by generators and the charging/charging

rate that storage devices must follow in order to minimize electricity cost and also

transmission losses. The design is based on a previous convexification approach which relaxes

the power flow equations onto a linear relation between power and voltage in a microgrid,

under some assumptions on impedances in the transmission lines and the magnitude of the

input voltage. New constraints on voltage regulation, and operational constraints on the

storage systems are considered. Then, a dual-decomposition-based dynamics is presented

and thoroughly analyzed, concluding that the dynamics globally converge to the unique

optimizer of the problem. Finally, we present two ways of computing the voltage values that

are required in order to obtain future values of the decision variables, i.e., reactive power

generation and storage control, including a novel distributed prediction model. Simulations

illustrate the algorithm performance.

Future work will focus on designing dynamics with faster convergence, which could

be practically implementable for short-time prediction horizons and relatively small

discretization steps, in basic computation devices such as Programmable Logic Controllers

(PLCs) and Remote Terminal Units (RTUs).
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APPENDIX

A. AUXILIARY RESULTS FOR THE PROOF OF THEOREM 3.1

Lemma A.1 (Optimizers and fixed points of the algorithm)

The vector ψ⋆ is an optimizer of the dual of the microgrid control problem, and

(q⋆in,G, v
⋆) is an optimizer of the microgrid control problem if and only if (ψ⋆, q⋆in,G, v

⋆)

is a fixed point of the microgrid control algorithm.

Proof

It is easy to show that if (ψ⋆, q⋆in,G, v
⋆) is a fixed point of the dynamics in (10), then

(ψ⋆, q⋆in,G, v
⋆) satisfies the KKT conditions for the microgrid control problem in (4).

Since the cost J is continuously differentiable and the constraints are affine functions, the

KKT conditions are sufficient and necessary, hence (ψ⋆, q⋆in,G, v
⋆) is an optimizer of the

primal-dual problem. Next, let us consider any (ψ⋆, q⋆in,G, v
⋆), which is an optimizer of the

microgrid control problem in (4). The KKT conditions must hold at this point. Using

the complementary slackness condition onto (10), we can see that if ψk = ψ⋆, then ψk+1 =

ψ⋆. Further, it is easy to see from the expressions in (8), (9) that qk+1
in,G = qkin,G = q⋆in,G, and

vk+1 = vk = v⋆, meaning that (ψ⋆, q⋆in,G, v
⋆) is a fixed point for the algorithm. �

Definition A.1 (Kronecker product [13])

Consider matrices A ∈ Rm×n, with entries aij , B ∈ Rp×q, with entries bij . The Kronecker

product C = A⊗B returns the block matrix in Rmp×nq such that the blocks are (C)kl =

aklB, for k ∈ {1, . . . ,m}, l ∈ {1, . . . , n}.

Definition A.2 (Khatri-Rao product [13])

Consider matrices A ∈ Rm×n, with entries aij , B ∈ Rp×q, with entries bij . Let A be block

partitioned in blocks (A)kl ∈ Rmk×nl , and B in blocks (B)kl ∈ Rpk×ql , for k ∈ {1, . . . ,K1},

l ∈ {1, . . . ,K2}. The Khatri-Rao product A ∗B is defined as (A ∗B)kl = (A)kl ⊗ (B)kl.
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Definition A.3 (Matrix M)

Define the matrix M as M ,M1 ∗M2 ∈ Rr×r, where M1 ∈ Rr1×r1 , r1 , 6T , is block-

partitioned into 6 × 6 T -square blocks, (M1)kl ∈ RT×T , for all k, l ∈ {1, . . . , 6}, and M2 ∈

Rr2×r2 , with r2 , 6|G|, is block-partitioned into 6 × 6 square blocks of size G. Let M1 be

defined as M1 ,M
1
1 ∗M2

1 , where M1
1 , 16(16)⊤ is partitioned in 2 × 2 blocks, i.e., with 3

block-rows and 3 block-columns, and M2
1 is the block matrix:

M2
1 =

















IT IT U

IT IT U

L L C

















, (15)

U ∈ RT is an upper triangular matrix with Uij = 1 for all i ≤ j, i.e., its diagonal

entries are also one, L ∈ RT is a lower triangular matrix with Lij = 1 for

all i ≥ j, C = LU. The matrix M2 is defined as M2 ,M
1
2 ∗M2

2 , where M1
2 ,

[ 1 −1 −1 1 −1 1 ]⊤[ 1 −1 −1 1 −1 1 ] is partitioned into 2 × 2 blocks, i.e.,

with 3 block-rows and 3 block columns, and M2
2 is the block matrix:

M2
2 ,

















2
U2

0

W cos θd(∆V )−1 cos θd(β−1)

cos θd(∆V )−1 U2

0

2 d(∆V )−1W−1d(∆V )−1 U2

0

2 d(∆V )−1W−1d(β−1)

cos θd(β−1)
U2

0

2 d(β−1)W−1d(∆V )−1 U2

0

2 d(β−1)W−1d(β−1)

















. (16)

Lemma A.2 (Positive semidefiniteness of the Khatri-Rao product [13])

Let A, B be compatibly partitioned positive semidefinite symmetric matrices, with square

diagonal blocks. Then A ∗B is positive semidefinite.

Lemma A.3 (Properties of the matrix M)

For the matrix M in Definition A.3. The following holds:

• M is positive semidefinite,
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• null(M) has dimension 4|G|T ,

• row(M) has dimension 2|G|T ,

• there is a complete basis for null(M) given by:

E ,









































I|G|T 0 0 0

I|G|T 0 0 0

0 I|G|T 0 U ⊗ (d(∆V )d(β−1))

0 I|G|T 0 −U ⊗ (d(∆V )d(β−1))

0 0 I|G|T −I|G|T

0 0 I|G|T I|G|T









































.

In the expression above, with some abuse of notation we have omitted for simplicity

the dimension of the zero matrix blocks.

Proof

In order to show that M is positive semidefinite, we will show that M j
i in Definition A.3

is positive semidefinite, for i, j ∈ {1, 2}, and we use Lemma A.2 to conclude the result.

Note that M1
1 and M1

2 are trivially positive semidefinite. Likewise, notice that M2
1 can be

written as M2
1 = [ IT IT U ]⊤[ IT IT U ]. It immediately implies that M2

1 is positive

semidefinite.

In order to show the positive semidefiniteness of M2
2 , we use the Schur complement test.

This consists on checking the positive semidefiniteness on one of the Schur complements of

the matrix, defined on a block partition of it [14]. Consider the partition of M2
2 as follows:

M2
2 =

















2
U2

0

W cos θd(∆V )−1 cos θ(d(β−1))

cos θd(∆V )−1 U2

0

2 d(∆V )−1W−1d(∆V )−1 U2

0

2 d(∆V )−1W−1(d(β−1))

cos θ(d(β−1))
U2

0

2 (d(β−1))W−1d(∆V )−1 U2

0

2 (d(β−1))W−1(d(β−1))

















. (17)
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We compute the Schur complement of 2
U2

0

W in (17). By definition, the Schur complement

is:







U2

0

2 d(∆V )−1W−1d(∆V )−1 U2

0

2 d(∆V )−1W−1d(β−1)

U2

0

2 d(β−1)W−1d(∆V )−1 U2

0

2 d(β−1)W−1d(β−1)







−
U2

0

2







cos θd(∆V )−1

cos θd(β−1)






W−1

[

cos θd(∆V )−1 cos θd(β−1)

]

=

(1 − cos2 θ)
U2

0

2







d(∆V )−1W−1d(∆V )−1 d(∆V )−1W−1d(β−1)

d(β−1)W−1d(∆V )−1 d(β−1)W−1d(β−1)






.

Since 1 − cos2 θ is nonnegative, and the matrix above can be expressed as the product of the

matrix [ d(∆V )−1W−1/2 d(β−1)W−1/2 ]⊤ times its transpose, we conclude that M2
2 is

positive semidefinite. Since M j
i are positive semidefinite, for i, j ∈ {1, 2}, the result follows

from Lemma A.2.

Now, let us prove the second, third and fourth bullets.

First let us show that rank(M) ≥ 2|G|T . This follows by the construction of M . Consider

a block partition of M in a 6 × 6 block matrix such that the block columns have r × |G|T

size. Further, denote the block columns of M as (M)j , for j ∈ {1, . . . , 6}. Likewise, denote

the block columns of E as (E)j , j ∈ {1, . . . , 4}. The block columns (M)1 and (M)3 can be

written out as follows:

(M)1 =









































IT ⊗ ( 2
U2

0

W )

−IT ⊗ ( 2
U2

0

W )

−IT ⊗ (cos θd(∆V )−1)

IT ⊗ (cos θd(∆V )−1)

−L ⊗ (cos θd(β−1))

L ⊗ (cos θd(β−1))









































, (M)3 =









































−IT ⊗ (cos θd(∆V )−1)

IT ⊗ (cos θd(∆V )−1)

IT ⊗ (
U2

0

2 d(∆V )−1W−1d(∆V )−1)

−IT ⊗ (
U2

0

2 d(∆V )−1W−1d(∆V )−1)

L ⊗ (cos θ
U2

0

2 d(β−1)W−1d(∆V )−1)

−L ⊗ (cos θ
U2

0

2 d(β−1)W−1d(∆V )−1)









































,

(18)
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Since W−1 has rank |G|, then, IT ⊗ U2

0

2 W
−1 has rank |G|T . This means that (M)3 has rank

|G|T . Next, notice that (IT ⊗ (
U2

0

2 d(∆V )−1W−1d(∆V )−1))(IT ⊗ 2
U2

0

cos(θ)d(∆V )W ) =

IT ⊗ (cos θd(∆V )−1). Since Iτ ⊗ (
U2

0

2 d(∆V )−1W−1d(∆V )−1) is invertible from (18)

we can conclude that in order for (M)1 to be linearly dependent of (M)3, (IT ⊗

(cos θd(∆V )−1))(IT ⊗ 2
U2

0

cos(θ)d(∆V )W ) must be equal to Iτ ⊗ ( 2
U2

0

W ). However, it is

equal to IT ⊗ (cos2(θ) 2
U2

0

W ), which means that for θ , 0, there is no matrix X such that

(M)3X = (M)1. Finally, since W is invertible, the rank of (M)1 is equal to |G|T . Then, it

follows that rank(M) ≥ 2|G|T .

Now we show that the dimension of null(M) is at least 4|G|T . The reader can verify that

the (M)j = −(M)j+1, for j ∈ {1, 3, 5}. Therefore it follows that M(E)j = 0, j ∈ {1, . . . , 3},

which means that (E)1, (E)2 and (E)3 are formed by eigenvectors associated with

zero eigenvalues. It can also be verified that (M)3(U ⊗ (d(∆V )d(β−1))) = −(M)5, and

−(M)3(U ⊗ (d(∆V )d(β−1))) = (M)6. Hence, M(E)4 = 0, which means that all columns

of (E)4 are eigenvectors of M associated with zero eigenvalues. It is also easy to verify by

sparsity of E, that E has full column rank, which means that we have found 4|G|T linearly

independent eigenvectors of M with eigenvalue zero. Then, null(M) has a dimension greater

or equal than 4|G|T . This, along with the fact that rank(M) = 6|G|T , ends the proof, since

it implies that the sum of rank(M) and the dimension of null(M) is greater or equal than

r. �

B. PROOF OF THEOREM 3.1

By Lemma 3.1, we have that Algorithm 1 for each node l ∈ G is equivalent to the dynamics

described by (8), (9), and (10). Therefore, the following analysis is performed directly

on these expressions. Let (q⋆in,G, v⋆, ψ⋆) be a fixed point for the algorithm. Existence is

guaranteed by assuming that the problem is feasible.
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Now, let us show convergence to a fixed point. Let us define variables y , qin,G −

q⋆in,G, z , v − v⋆, λ , λ− λ⋆, λ , λ− λ
⋆
, η , η − η⋆, η , η − η⋆, µ , µ− µ⋆, µ , µ− µ⋆.

Further, define ψ , ψ − ψ⋆ ∈ Rr. Notice that ψ , [λ
⊤
, λ⊤,η⊤,η⊤,µ⊤,µ⊤]⊤. After some

computations, we obtain that:

yk(t) = −
(

λ
k
(t) − λk(t)

)

sin θ, (19)

zk(t) = cos θ[λ
k
(t) − λk(t)] −

U2
0

2
W−1d(∆V )−1[ηk(t) − ηk(t)]

−
U2

0

2
W−1

T
∑

h=t

d(β−1)[µk(h) − µk(h)]. (20)

Applying the proposed change of variables on the system described by (10), we

obtain a dynamics that can be expressed as ψk+1 = [f1(ψk, yk, zk, ψ⋆, q⋆in,G, v
⋆)]+ −

[f2(ψ⋆, q⋆in,G, v
⋆)]+, for linear maps f1 : R2(r+2|G|T ) → Rr, f2 : R2(r+2|G|T ) → Rr. Notice

that yk and zk are simply linear functions of ψk, which do not depend on past values of y, z,

hence we can write the dynamics for ψ as ψk+1 = [f1(ψk, g1(ψk), g2(ψk), ψ⋆, q⋆in,G, v
⋆)]+ −

[f2(ψ⋆, q⋆in,G, v
⋆)]+, where g1 : Rr → R|G|T is given by the right-hand side of (19), and

g2 : Rr → R|G|T is given by the right-hand side of (20). Then, consider V (ψ) , ‖ψ‖2 as

a Lyapunov candidate function that can help us show that all the solutions of the dual

decomposition algorithm converge to ψ⋆. Moreover, following the same analysis, we show

that the fixed point is unique, and by Lemma A.1 we conclude that the optimizer of the

problem is unique.

Notice that from the change of variables we introduced above, we have that:

λ
k+1

(t) =
[

λ
k
(t) + γ(wkG(t) −Wmax)

]

+
−
[

λ
⋆
(t) + γ(w⋆G(t) −Wmax)

]

+
,
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for all t ∈ τ . From the non-expansive property of the operator [·]+, i.e., ‖[a]+ − [b]+‖ ≤

‖a− b‖, we obtain:

‖λ
k+1

(t)‖ ≤

∥

∥

∥

∥

∥

λ
k
(t) + γ

(

wkG(t) − w⋆G(t)
)

∥

∥

∥

∥

∥

,

for all t ∈ τ . Further, we replace wkG(t) and w⋆G(t) according to the expression in (5) in order

to obtain:

‖λ
k+1

(t)‖ ≤

∥

∥

∥

∥

∥

λ
k
(t) + γ

(

2

U2
0

(

sin θW (qkin,G(t) − q⋆in,G(t)) − cos θW (vk(t) − v⋆(t))
)

)∥

∥

∥

∥

∥

.

Next, we replace yk(t) = qkin,G(t) − q⋆in,G(t) and zk(t) = vk(t) − v⋆(t), by the expression

in (19), (20), derive the following equation:

‖λ
k+1

(t)‖ ≤

∥

∥

∥

∥

∥

λ
k
(t) + γ

(

−
2

U2
0

W (λ
k
(t) − λk(t))

+ cos θ

(

d(∆V )−1(ηk(t) − ηk(t)) +
T
∑

h=t

d(β−1)(µk(h) − µk(h))

))∥

∥

∥

∥

∥

, (21)

for all t ∈ τ . This procedure can be repeated for λk+1(t), ηk+1(t),ηk+1(t), µk+1(t) and

µk+1(t), for all t ∈ τ , obtaining:

‖λk+1(t)‖ ≤

∥

∥

∥

∥

∥

λk(t) − γ

(

−
2

U2
0

W (λ
k
(t) − λk(t))

+ cos θ

(

d(∆V )−1(ηk(t) − ηk(t)) +
T
∑

h=t

d(β−1)(µk(h) − µk(h))

))∥

∥

∥

∥

∥

,
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‖ηk+1(t)‖ ≤

∥

∥

∥

∥

∥

ηk(t) + γd(∆V )−1

(

cos θ(λ
k
(t) − λk(t))

−
U2

0

2
W−1

(

d(∆V )−1(ηk(t) − ηk(t)) +
T
∑

h=t

d(β−1)(µk(h) − µk(h))

))∥

∥

∥

∥

∥

,

(22)

‖ηk+1(t)‖ ≤

∥

∥

∥

∥

∥

ηk(t) − γd(∆V )−1

(

cos θ(λ
k
(t) − λk(t))

−
U2

0

2
W−1

(

d(∆V )−1(ηk(t) − ηk(t)) +
T
∑

h=t

d(β−1)(µk(h) − µk(h))

))∥

∥

∥

∥

∥

,

‖µk+1(t)‖ ≤

∥

∥

∥

∥

∥

µk(t) + γ

(

cos θ
T
∑

h=1

(λ
k
(h) − λk(h))

−
U2

0

2
d(β−1)W−1

T
∑

h=1

(

d(∆V )−1(ηk(h) − ηk(h)) +
T
∑

s=h

d(β−1)(µk(s) − µk(s))

))∥

∥

∥

∥

∥

,

(23)

‖µk+1(t)‖ ≤

∥

∥

∥

∥

∥

µk(t) − γ

(

cos θ
T
∑

h=1

(λ
k
(h) − λk(h))

−
U2

0

2
d(β−1)W−1

T
∑

h=1

(

d(∆V )−1(ηk(h) − ηk(h)) +
T
∑

s=h

d(β−1)(µk(s) − µk(s))

))∥

∥

∥

∥

∥

,

for all t ∈ τ . From (21) through (23) we can write ‖ψk+1‖2 ≤ ‖(Ir − γM)ψk‖2, for M as

defined in Lemma A.3. It is straightforward to see that the eigenvalues of I − γM are related

to the eigenvalues of M as λi(Ir − γM) = 1 − γλi(M), where λi(M) is an eigenvalue of

M , with identical eigenvectors, for i ∈ {1, . . . , r}. Then, by Lemma A.3, Ir − γM has r/2

eigenvalues 1, with eigenvectors in null(M). Since M is positive semidefinite, the remaining

r/2 eigenvalues lie in the interval [1 − γρ(M), 1). Hence, with 0 < γ < 2
ρ(M) , the spectral

radius ρ(Ir − γM) = 1, but λmax,2△ max{λ ∈ spec(Ir − γM) | λ , 1} is strictly less than

one.

Recall that any vector ψk ∈ Rr can be written as unique linear combination ψk =

ψkrow + ψk0 , where ψkrow ∈ row(M), ψk0 ∈ null(M) and ψkrow · ψk0 = 0. Therefore, we obtain
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‖ψk+1‖2 ≤ ‖(Ir − γM)(ψkrow + ψk0)‖2. Since M is symmetric, null(M) and row(M) are

invariant under the operator M , hence (Ir − γM)ψkrow lies in row(M), and (Ir − γM)ψk0 =

ψk0 ∈ null(M). By orthogonality of (Ir − γM)ψkrow and ψk0 , it holds that ‖(Ir − γM)(ψkrow +

ψk0)‖2 = ‖(Ir − γM)ψkrow‖2 + ‖ψk0‖2. With this result, we have that ‖ψk+1‖2 − ‖ψk‖2 ≤

‖(Ir − γM)ψkrow‖2 + ‖ψk0‖2 − ‖ψk‖2 = ‖(Ir − γM)ψkrow‖2 − ‖ψkrow‖2. It is well known that

the bound ‖(Ir − γM)ψkrow‖2 ≤ λ2
max,2‖ψkrow‖2 holds [15]. Then, we have that V (ψk+1) −

V (ψk) = ‖ψk+1‖2 − ‖ψk‖2 ≤ −(1 − λ2
max,2)‖ψkrow‖2. Using LaSalle’s invariance principle,

we have that any solution of the microgrid control algorithm converges to the largest

invariant set contained in null(M) ∩ {x ∈ Rr | ‖x‖ ≤ ‖ψ0
0‖}.

Next, we show that for any ψ = ψ⋆ + ψ such that ψ ∈ null(M), it holds that qin,G = q⋆in,G,

and v = v⋆. Notice that if ψk ∈ null(M), it can be written as ψk = Eκk, κk ∈ Rd, where

d = 4|G|T , and E is defined in Lemma A.3. Let us partition the vector κk according to

the block partition of E, as κk = [(κk1)⊤, (κk2)⊤, (κk3)⊤, (κk4)⊤]⊤, where we concisely denote

κ
k
1 = [κk1(1)⊤, . . . , κk1(T )⊤]⊤, κk2 = [κk2(1)⊤, . . . , κk2(T )⊤]⊤, κk3 = [κk3(1)⊤, . . . , κk3(T )⊤]⊤, and

κ
k
4 = [κk4(1)⊤, . . . , κk4(T )⊤]⊤, with κk1(t), κk2(t), κk3(t), κk4(t) ∈ R|G|, for all t ∈ τ .

Given the structure of E, it is easy to verify that λ
k
(t) = λk(t) = κk1(t), ηk(t) = κk2(t) +

∑T
h=t d(∆V )d(β−1)κk4(h), ηk(t) = κk2(t) −

∑T
h=t d(∆V )d(β−1)κk4(h), µk(t) = κk3(t) − κk4(t)

and µk(t) = κk3(t) + κk4(t), for all t ∈ τ . We plug these values in (8) and (9) to obtain:

qkin,G(t) = qload,G(t) +W−1Fqload,L(t) − sin θ[λ
⋆
(t) + κk1(t) − (λ⋆(t) + κk1(t))]

= q⋆in,G(t),
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vk(t) = − pload,G(t) − pin,G(t) −W−1Fpload,L(t)

+ cos θ(λ
⋆
(t) + κk1(t) − (λ⋆(t) + κk1(t)))

−
U2

0

2
W−1

(

d(∆V )−1
(

η⋆(t) + κk2(t) +
T
∑

h=t

d(∆V )d(β−1)κk4(h)
)

− d(∆V )−1
(

η⋆(t) + κk2(t) −
T
∑

h=t

d(∆V )d(β−1)κk4(h)
)

+
T
∑

h=t

d(β−1)
(

µ⋆(h) + κk3(t) + κk4(t) − (µ⋆(h) + κk3(t) − κk4(t))
)

+ δc(t)1

)

=v⋆(t),

for all t ∈ τ . Then, since ψk − ψ⋆ → null(M) as k → +∞, it follows that vk → v⋆, qkin,G →

q⋆in,G as k → +∞.
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Figure 1. Control computation using voltage prediction.
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Figure 2. IEEE 37 standard scheme. Squares denote PV generation nodes. Circles denote storage-
only nodes.
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Figure 3. a) Evolution of v4, b) evolution of q4, as a function of the iteration number K, respectively,
for each t ∈ τ . Dashed lines show the optimal values.
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Figure 4. a) Evolution of η
4
, b) evolution of η4 as a function of the iteration number K, respectively,

for each t ∈ τ .
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Figure 5. a) Evolution of µ
4
, b) evolution of µ4 as a function of the iteration number K, respectively,

for each t ∈ τ .
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