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Abstract— This paper proposes an algorithm to approx-
imately solve a spatial-load balancing problem for agents,
subject to differential constraints, deployed in non-convex
environments. A probabilistic roadmap is used to approxi-
mate regions via connected sets of vertices, which describe
agents’ configurations and optimal paths joining them. At
each iteration, agents’ positions and assigned graph nodes
are updated to minimize the cost function. Two graph-node

partitions are considered. In the first one, Ṽ , all graph vertices

are allocated to one agent or another. The second one, Ṽ lower,
is a lower approximation that only allocates some of the graph
vertices to the agents and has the advantage of requiring less

communication than required for Ṽ . Algorithm convergence can

be guaranteed for Ṽ to a neighborhood of the continuous-space
counterpart, and to its solution as sampling dispersion tends to

zero. The convergence of the algorithm using Ṽ lower and trade-

offs between Ṽ lower and Ṽ are established in simulation for a
Euclidean metric case and Dubins’ vehicle dynamics.

I. INTRODUCTION

This paper presents a scalable solution to the area-

constrained multi-agent spatial load balancing problem in

non-convex environments and for agents subject to differ-

ential constraints. The solution involves a group of agents

dividing the load of acquiring information or of servic-

ing tasks spread over an area in a fair way. Efficient

task assignment, which should respect the cost associated

with motion, requires accounting for the agents’ differen-

tial constraints. Environment non-convexities and differential

constraints make the description of the coverage regions

challenging, therefore an approximate solution is obtained

that reduces the communication required among agents.

The gradient-based descent Lloyd algorithm, [1], is the

basis of many multi-agent coverage strategies. A limited

sample of work building on this approach includes limited

sensor footprints [2], heterogeneous agents (different sensing

radii) [3], [4], non-holonomic agents [5], [6], [7], and power

constraints [8]. The area-constrained problem is studied

in [9], [10], [11], where weights added to the cost functional

force the partition to have the desired area.

Closely related to this paper is the research on multi-agent

coverage in non-convex environments. In [12] a diffeomor-

phism is used to transform the non-convex environment into

an almost convex one, where only a finite number of points

have been subtracted. The coverage problem is then solved in

the transformed environment and a solution is obtained via
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the inverse transformation. The diffeomorphism limits this

algorithm to two-dimensional environments. Environments

with polygon obstacles are considered in [13], [14]. A solu-

tion to the multi-agent coverage problem for non-point robots

in non-convex environments can be found in [4]. A Voronoi

partition and potential field is used in [15] to find a solution

to the coverage problem in non-convex environments with

unknown obstacles. The authors of [16], [17], [18] build

a gridded environment map and then determine which grid

points belong to each agents’ generalized Voronoi cells. This

grid-based approach is limited to low dimensional spaces and

differential constraints are difficult to handle in this manner.

The algorithm presented in this paper builds a probabilistic

roadmap star (PRM*) graph, G, to recover the cost of an

agent subject to differential constraints moving between any

two configurations in a known non-convex environment. The

nodes of G are assigned to the agents by means of a partition

Ṽ , then the nodes are employed to estimate the area covered

by each agent. At each iteration each agent’s subset of nodes

is updated; then agents move to a neighboring node in the

graph with the lowest cost functional value. In order to

keep the algorithm’s computations as scalable as possible,

a lower approximation of the cost (e.g. one which only

partially considers obstacles) is exploited, which leads to an

assignment of nodes, Ṽ lower, corresponding to a subset of

the total number of nodes and for which the area constraint

is further relaxed. Algorithm convergence can be guaranteed

for Ṽ to a neighborhood of the continuous-space counterpart,

and to its solution as sampling dispersion tends to zero. The

convergence of the algorithm using Ṽ lower and Ṽ to specific

configurations is shown in simulation for a Euclidean metric

case and Dubins’ vehicle dynamics. A description is given

on how to recover Ṽ using the lower approximation which

establishes trade-offs between the use of Ṽ lower and Ṽ in

reaching an acceptable solution of the problem.

II. PRELIMINARIES

Let X ⊆ R
d be the d-dimensional configuration space

of an agent and the obstacle space be Xobs. The free-space,

Q = X \ Xobs, is the set of all collision free agent config-

urations. In general, Q is non-convex and simply connected

by dynamic paths. A partition of Q, W = {W1, . . . ,Wn},
is a collection of n regions, Wi ⊂ Q, i ∈ {1, . . . , n}, whose

interiors are disjoint and union covers Q, ∪ni=1Wi = Q.

The spatial load balancing problem aims to find the

optimal locations for n agents, P = {p1, . . . , pn} (pi ∈ Q),

and weights, ω = {ω1, . . . , ωn} (ωi ∈ R>0). Let the optimal

cost to move from configuration q1 ∈ Q to q2 ∈ Q when
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subject to the differential constraint, ṗi = f(pi, ui) with

control input ui, be J(q1, q2) ≥ 0. A probability density

function, φ(q), defined over Q, φ : Q→ R≥0, describes the

likelihood of an event occurring at a configuration in Q.

A. Problem Statement

Given a1, . . . , an ∈ R>0, such that
∑n

i=1 ai =
∫
Q
φ(q)dq,

the n agents solve the following problem subject to the area

and dynamic constraints,

Problem 1.

min H(P,W) =
n∑

i=1

∫

Wi

J(pi, q)φ(q)dq

s.t. pi ∈ Q, i ∈ {1, . . . , n}

ṗi = f(pi, ui)

ai =

∫

Wi

φ(q)dq.

For convex environments, the results in [9] state that, given

a set of positions, P , there exists a weight assignment, ω, that

makes a generalized additively-weighted Voronoi partition,

V(P, ω; J), feasible and that this Voronoi partition is the

best among the partitionsW that satisfy the area constraints.

Here, V(P, ω; J) = {V1, ..., Vn} is defined as

Vi = {q ∈ Q | J(pi, q)− ωi ≤ J(pj , q)− ωj , ∀ j 6= i}.

It can be shown that the above results do not change for

non-convex environments by using the general Leibniz rule,

∂

∂ωi

n∑

j=1

∫

Vj(ω)

(J(pj , q)− ωj)φ(q)dq = −

∫

Vi(ω)

φ(q)dq,

+

n∑

j=1

∫

∂Vj(ω)

∂q

∂ωi
nj((J(pj , q)− ωj)φ(q))dq,

for differentiation over any set [19]. Specifically, the Leibniz

rule is used in [9] to prove the weight-to-areas map is gradi-

ent, which is used to prove that there exist weights that allow

the generalized Voronoi partition satisfy the constraints.

In convex environments, given a fixed partition, the best

agent positions are the centroids of their coverage regions

However, in non-convex environments more than one agent

position may minimize the cost function. These minimizers

are generalized centroids, P ∗, and (P ∗,V(P ∗, ω∗; J)) de-

notes a solution that satisfies the above results. Note that

if for some agent i there exists an agent j such that the

weights satisfy ωj − ωi > J(pi, pj), then Vi = ∅. By using

an optimal probabilistic roadmap of Q, this paper recovers

an approximate solution to the above Problem 1.

B. Optimal Probabilistic Roadmap Building

This section briefly describes how to construct an asymp-

totically optimal probabilistic roadmap (PRM*), denoted as

G, which allows the agents to recover the approximately

optimal path cost between two configurations in the graph as

the sum of edge costs. This assumes a known environment.

The details of the construction can be found in [20]. The

graph G is composed of a set of nodes NG and a set of

edges EG. Each node q ∈ NG is a configuration from Q.

Each edge, e ∈ EG, is an ordered pair, e = (q1, q2), which

corresponds to an optimal path in Q, satisfies the differential

constraints, is collision free, and has a cost Je(q1, q2). The

cost J(q1, q2) is assumed to be additive; given an optimal

path from q1 to q2, and a node q′ in that path, it holds that,

J(q1, q2) = J(q1, q
′)+J(q′, q2). The out neighbors of q are

N out
G (q) = {qj ∈ NG | (q, qj) ∈ EG}.
Each iteration of the construction of G begins by taking

a uniformly sampled random configuration from the free-

space, qrand ∈ Q. Next, all graph vertices that are within a

ball centered at qrand with radius, r = γG(log(m)/m)1/d,
are determined and denoted Qnear. Here, γG is a fixed

parameter, m is the number of vertices currently in NG,

and d is the dimension of Q. If Qnear is empty then the

graph vertex that is closest to qrand is added to Qnear. The

least-cost paths from qrand to qnear ∈ Qnear are determined

as outgoing edges of qrand. If the direction matters, as with

differential constraints, the least-cost path from qnear to qrand

is determined as incoming edges of qrand. Each collision-free

path is added to EG. The application of spatial load balancing

requires that G be strongly connected; a necessary condition

is that all q ∈ NG that do not have both an outgoing and

incoming edge be removed. A sufficient condition is to only

allow edge pairs, (q1, q2) ∈ EG if and only if (q2, q1) ∈ EG.

The free-space Q is discretized by G while maintaining

an asymptotically optimal roadmap of the environment. Each

q ∈ NG has an area, α(q), which is calculated as follows.

Let NX = NG ∪Nobs, where Nobs is a set of configurations

inside Xobs, then determine the standard Voronoi partition of

X using NX . The α(q) for each q ∈ NG is the area of its

associated cell in this partition. A description of the external

boundary of X is needed. For the remainder of the paper,

nodes refer to the vertices in the graph, q ∈ NG, and not the

n agents that move in the environment.

III. GRAPH-BASED SPATIAL LOAD BALANCING

This section details the GRAPH-BASED SPATIAL LOAD

BALANCING (GSLB) algorithm that finds an approximate

solution to Problem 1. As a preprocessing step, a PRM*, G,

is constructed in the non-convex environment Q. The cost

to travel between two configurations (q1, q2), J(q1, q2), is

approximated by the sum of edge costs of the best path

in G from q1 to q2. Define a partition of NG as W̃ =
{W̃i}ni=1, such that ∪ni=1W̃i = NG and W̃i∩W̃j = ∅. Given

a1, . . . , an ∈ R>0, such that
∑n

i=1 ai =
∑

q∈NG
φ(q)α(q),

the agents solve the following graph-based problem,

Problem 2.

min H̃(P, W̃) =

n∑

i=1

∑

q∈W̃i

J(pi, q)φ(q)α(q)

s.t. pi ∈ NG, i ∈ {1, . . . , n}

ai =
∑

q∈W̃i

φ(q)α(q).
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Algorithm 1 (P ∗, V̂(P ∗, ω∗; J))← GSLB(P0, ω0, Q)

G← PRM∗(Q);
(P, ω)← Initialize(P0, ω0);
for all {Agent i}ni=1 do

while P 6= P+ do

P = P+

while ‖ω − ω+‖ < error do

ω = ω+;
V̂i(P, ω; J)← VoronoiPartition(P, ω,G);
ω+
i ← UpdateWeights(P, ω, V̂i, G);

ω+ ← TransmitAndReceive(ω+
i );

end while

p+i ← UpdateAgentPosition(Pi, V̂i, G);
P+ ← TransmitAndReceive(p+i );

end while

end for

return (P, V̂(P, ω; J));

Each agent has a copy of G, and it is assumed that the

agents know the other agents’ positions P , and the weights

ω by communicating with each other to interchange this

information. As in [21], this assumption can be relaxed so

it is only necessary to know a subset of the other positions

and weights; this will be discussed further in Section VI.

Algorithm 1 briefly outlines the GRAPH-BASED SPATIAL

LOAD BALANCING algorithm that leads to an approximate

solution of Problem 2. Let V̂ refer to an approximate

generalized Voronoi partition in terms of graph nodes. First,

the agents determine a partition, see subsection III-A for

definition and details. Then, the weights are updated to reflect

the error in the area-constraint, the details of which are in

Section III-B. These two steps are alternated until the area-

constraints are satisfied to within a specified error, which can

be reduced by increasing the number of nodes in G. Next,

the agents move to a neighboring node that will decrease H̃,

see Section III-C. The steps are repeated until none of the

agents are able to update their positions, P = P+.

A. Approximate Geodesic Voronoi Tesselation

Using G, define one option for V̂ as the approximate

generalized Voronoi partition, Ṽ = {Ṽ1, . . . , Ṽn},

Ṽi = {q ∈ NG | J(pi, q)− ωi ≤ J(pj , q)− ωj , ∀ j 6= i}.
(1)

Due to the random selection of q when building G, the

probability that, in (1), q ∈ Ṽi and q ∈ Ṽj is nearly zero.

To calculate the approximation of its own Voronoi region,

Ṽi, agent i does a Dijkstra graph search, [22], starting from

its current configuration, pi, and keeps a queue of the vertices

it needs to check. To start, pi is added to Ṽi, and all the

outgoing neighboring nodes of pi are added to the queue.

One node, qcheck, is taken from the queue and checked to

see if it belongs in Ṽi using (1). The outgoing neighbors of

qcheck are added to the queue only if qcheck ∈ Ṽi. Agent i has

found Ṽi when there are no more nodes in the queue.

1) Lower Approximation for Ṽ: The above requires agent

i either have full communication with all other agents in

order to receive the required J(pj , q) information or agent i
do a Dijkstra graph search from each pj to recover J(pj , q).
These options are communicationally and computationally

intensive, respectively. The following subsection details an

option for V̂ that is a lower approximation of Ṽi, which

does not require knowledge of every J(pj , q). However, it

assumes that there exists a lower bounding cost that is easier

to compute compared to a Dijkstra graph search. The lower

approximation results in a partition of a subset ofNG. Define

the lower approximation of the generalized Voronoi partition

as Ṽ lower = {Ṽ lower
1 , . . . , Ṽ lower

n }, such that

Ṽ lower
i = {q ∈ NG | J(pi, q)−ωi ≤ J0(pj , q)−ωj, ∀ j 6= i},

(2)

where J0(pi, q) ≤ J(pi, q). Let Ũ = NG \ ∪ni=1Ṽ
lower
i , then

Ũ can be used to recover Ṽ .

Remark 1. Agent i can reduce the number of q ∈ NG

whose J(pj , q) are needed to determine Ṽi. By definition,

any q ∈ Ṽ lower
i is also in Ṽi, therefore, the corresponding

J(pj , q) are not needed. Secondly, using Theorem 1 from

Section IV-A, once agent i finds a q 6∈ Ṽi the children of q
are also not in Ṽi. Also, the parent of q is on the boundary

of Ṽi. Thus, J(pj , q) is not needed for the descendants of

q. In other words, agent i only needs to know J(pj , q) for

q ∈ Ṽi \ Ṽ lower
i and q that are one hop out neighbors of the

boundary of Ṽi. Section IV-C discusses when to recover Ṽ .

B. Updating the Agent Weights

Define the error between the current and specified area as

g̃(ω) =

( ∑

q∈V̂1

φ(q)α(q) − a1, . . . ,
∑

q∈V̂n

φ(q)α(q) − an

)
.

Next, each agent updates ω to reduce the area error.

From [23], the Jacobian update is used to minimize g̃(ω).
Approximate the partial derivatives of g̃,

∂g̃

∂ωi
(ω) ≈

∑
q∈V̂ i

i
φ(q)α(q) −

∑
q∈V̂i

φ(q)α(q)

∆ωi
, (3)

where V̂ i
i is the Voronoi cell for agent i with ω =

{ω1, . . . , ωi + ∆ωi, . . . , ωn}, note that ∆ωi > 0 needs to

be small enough to guarantee convergence but also large

enough that V̂ i
i 6= V̂i. The V̂ i

i can be computed with a single

Dijkstra graph search so that agent i can easily compute (3).

The approximation of the Jacobian update is

ω+
i = ωi − γ

(
∂g̃

∂ωi
(ω)

)−1

g̃i(ω),

which converges for a small enough ∆ωi > 0 and γ > 0.

The GRAPH-BASED SPATIAL LOAD BALANCING algo-

rithm loops through determining V̂ and then updating ω until

the area constraint is satisfied to within a specified error.

The sum-of-areas constraint and each ai constraint cannot
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be satisfied when Ṽ lower does not contain all q ∈ NG. In this

case the area constraint, ã = {ã1, · · · , ãn}, is further relaxed

and varies with each algorithm iteration,

ãi =
∑

q∈Ṽ lower

φ(q)α(q)
ai∑

q∈Ṽ φ(q)α(q)
.

The
∑

q∈Ṽ lower φ(q)α(q) requires knowledge from all agents.

C. Updating the Agent Positions

After V̂i and ω have been determined, agent i decides

where to move. Ideally, each agent moves to a generalized

centroid of V̂i, which is computationally intensive. Instead,

agent i moves in the direction of a generalized centroid by

moving to a neighboring node of pi such that

p+i ∈ argmin
p∈N out

G
(pi)

∑

q∈V̂i

J(p, q)φ(q)α(q).

IV. ANALYSIS

This section contains analytical results for the GRAPH-

BASED SPATIAL LOAD BALANCING algorithm. First, prop-

erties for V̂ are examined, then the distributed nature of

the GRAPH-BASED SPATIAL LOAD BALANCING algorithm

is discussed as well as its convergence properties. Due to

space limitations, the proofs have been removed but can be

found in a longer version online.

A. Properties of V̂

For Ṽ lower to satisfy the area constraints, the weights must

remain within the bound presented in Lemma 1.

Lemma 1. Given Ṽ lower
i as in (2), if ωj − ωi > J0(pj , pi)

then Ṽ lower
i = ∅.

The additive property of Je allows the agents to only

check a connected subset of nodes, q ∈ NG, to find the

approximated regions Ṽi and Ṽ lower
i .

Theorem 1. Let J be an additive cost and let there exist an

optimal path from pi to q passing through q′. Then, if q′ is

not part of Ṽi (Ṽ lower
i ), then q is not part of Ṽi (Ṽ lower

i ).

B. Distributed Algorithm Properties

The information that agent i needs to implement the

proposed algorithm is limited to those other j whose approx-

imated regions are connected to the approximated region of i
via boundary nodes. Depending on the underlying cost, this

property can be exploited to derive a distributed algorithm

that allows agent i to find these j. With respect to Euclidean

distance, following the procedure of [24], each agent grows

a communication-radius ball finding these other agents j
until the computation of Vi is complete. Alternatively, limited

ranges, as in [21], can reduce the information needed from

other agents at the expense of a loss in coverage capacity.

C. Convergence

Recall that convergence in the continuous space is briefly

discussed in Section II-A. In the discrete case, there exists

manyW such that W̃i = Wi ∩NG. As the number of nodes

in NG goes to infinity, W̃ will converge to a W . Due to

integration properties, and because H is continuous,

|H(P,W)− H̃(P, W̃)| ≤ ǫ, (4)

is true for a sufficiently small sample dispersion.

The GRAPH-BASED SPATIAL LOAD BALANCING algo-

rithm cannot converge to the exact partition and centroids

of the continuous problem, but an approximate solution is

guaranteed to be found, see Lemma 2.

Lemma 2. The GRAPH-BASED SPATIAL LOAD BALANC-

ING is guaranteed to converge to an approximate so-

lution (P ∗, Ṽ(P ∗)) and occurs once ‖H(P ∗,V(P )) −
H(P ∗,V(P ∗))‖ ≤ 2ǫ.

There ways to guarantee that the GRAPH-BASED SPATIAL

LOAD BALANCING algorithm using Ṽ lower converges to

(P ∗, Ṽ(P ∗, ω∗; J)). Option one is to determine Ṽ from Ṽ lower

at each iteration as in Remark 1. The second option is to let

the Ṽ lower algorithm run until it converges, then determine Ṽ
until convergence to (P ∗, Ṽ(P ∗, ω∗; J)) is reached. Option

two is potentially less communicationally intensive. Indeed,

simulations show that only a few additional iterations are

needed to reach convergence and there are fewer nodes

in Ũ that need to be checked in order to determine Ṽ.

A third option is to pursue an event-based triggering idea

similar to the triggering condition of [25]. The trigger, based

on the area of Ũ ,
∫
q∈Ũ

φ(q)α(q) =
∫
q∈NG

φ(q)α(q) −∑n
i=1

∑
q∈Ṽ lower

i
φ(q)α(q), always guarantees the cost is de-

creasing monotonically; hence convergence is reached by

using both Ṽ lower and Ṽ . We leave the investigation of the

benefits of this approach for future work.

V. SIMULATIONS

Two different agent types are simulated. Agents without

differential constraints have edge cost, Je, equal to Euclidean

distance. Dubins’ vehicles have an edge cost equal to the

distance traveled between the two nodes. Problem 2 with

an equal area constraint and a uniform probability density

function, φ(q) = 1 ∀ q ∈ NG is solved.

Define the lowest cost path from pi to q as,

σ = {(pi, q1), (q1, q2), · · · , (qs, q)},

where each ordered pair is in EG, with cost

J(pi, q) = Je(pi, q1) + Je(q1, q2) + · · ·+ Je(qs, q).

A. Euclidean Agents

These results explore the differences between the GRAPH-

BASED SPATIAL LOAD BALANCING algorithm using Ṽ and

Ṽ lower as the partition of G. Where Ṽ lower uses J0(pi, q) =
‖pi − q‖. Each agent is initialized with ωi = 5.

Both algorithm versions converge to a solution

(P ∗, V̂(P ∗, ω∗)), shown in Fig. 1. Each of the six V̂i
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Fig. 1: The final Ṽ (left) and Ṽ lower (right).
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Fig. 2: The H̃, for the Ṽ (△) and Ṽ lower (◦) algorithm,

of the agents’ positions (blue), next positions (green), and

generalized centroid (red).

are a different color, blue, yellow, cyan, red, green, magenta,

respectively. The initial agent positions are marked as � and

the final generalized centroidal positions are △. The path

taken by an agent is marked with ∗. The two algorithms

find similar, but not quite the same partition, due to the

approximation of Ṽ lower when determining the next positions

of the agents. Also note that, there are gaps between any

two neighboring Ṽ lower cells due to the J0 approximation.

Fig. 2 is the evolution of H̃ from Problem 2. The solid blue

lines represent H̃ at the current agent positions, the dashed

green lines are the values of the agent’s best neighboring

position, and the red dotted lines are the H̃ at the generalized

centroid. As expected, in the Ṽ case (△) H̃ decreases at

each iteration confirming the convergence result. While the

Ṽ lower case (◦) also converges, the H̃ increases because of

the increase in total area covered by Ṽ lower.

Fig. 3 contains the average number of communications

an agent needs to perform at each iteration of the algo-

rithm to recover Ṽi. Note that, as the algorithm converges,

fewer communications are needed because Ṽ lower becomes a

better approximation of Ṽ. The final Ṽ lower partition covers

Average Number of Communications - Euclidean
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Fig. 3: Communications of J(pj , q) needed by an agent.
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Fig. 4: The final Ṽ (left) and Ṽ lower (right).

89.69% of NG (the initial partition only covered 57.47%
of NG). Instead of recovering Ṽ at each iteration, if the

agents converge to (P ∗, Ṽ lower(P ∗, ω∗; J)) then implement

the communication procedures from Remark 1 the agents

can get a partition that covers the entire set NG without

the communication overhead. A total of 186 communications

of J(pj , q) are needed to recover Ṽ . The agents can either

stop here or continue the algorithm with the communication

until it re-converges, which took ten iterations and the agents

traveled an average distance of 1.29.

The Euclidean GRAPH-BASED SPATIAL LOAD BALANC-

ING simulation required a total of 23, 776 communications

(individual values of pj , J(pj , q) and ωj for all j) for Ṽ
and only 3, 390 communications (individual values of pj ,∑

q∈Ṽ lower
j

φ(q)α(q), and ωj for all j) for Ṽ lower.

B. Dubins’ Vehicle

This subsection looks at the results for six Dubins’ vehicle

agents. The dynamics for the Dubins’ vehicle are

ẋ(t) = v cos(θ), ẏ(t) = v sin(θ), θ̇(t) = u, |u| ≤
v

ρ
,

where v is the speed of the vehicle and ρ is the minimum

turning radius, both are assumed to be constant. The optimal

trajectory, assuming no obstacles, between two configura-

tions for these dynamic constraints is discussed in [26] and

has cost J0(q1, q2). Each agent is initialized with ωi = 5.

The final Ṽ and Ṽ lower partitions for the Dubins’ vehicle

simulations are in Fig. 4 with each color represents a differ-

ent agents’ cell (blue, green, magenta, cyan, red, yellow). The

agents’ paths are shown in black. The agents’ final positions

(△) in the Ṽ algorithm are close to those from the Ṽ lower

algorithm, which means the partitions are also close.

Fig. 5 is the evolution of H̃ from Problem 2. The solid blue

lines represent H̃ at the current agent positions, the dashed

green lines are the values of the agent’s best neighboring

position, and the red dotted lines are the H̃ at the generalized

centroid. As expected, in the Ṽ case (△), H̃ decreases at each

iteration. While the Ṽ lower case (◦) converges, H̃ is allowed

to increase because of the increase in area covered by Ṽ lower.

Fig. 6 shows the average number of communications a

Dubins’ vehicle agent needs to receive to recover Ṽ from

Ṽ lower. The Ṽ lower Dubins’ vehicle algorithm initially finds

a partition that covers 79.80% of NG but the final Ṽ lower

partition covers 93.95% of NG. If the agents converge to

(P ∗, Ṽ lower(P ∗, ω∗; J)) then do 58 J(pj , q) communications,
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Fig. 5: The H̃, for the Ṽ (△) and Ṽ lower (◦) algorithm, of

the Dubins’ vehicle agents’ positions (blue), next positions

(green), and generalized centroids (red).
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Fig. 6: Communications of J(pj , q) needed by an agent.

the agents recover a partition that covers the set NG. The

agents either stop here or continue the algorithm with com-

munication until re-convergence. The agents re-converge in

four iterations and move an average distance of 1.61.

The Dubins’ vehicle GRAPH-BASED SPATIAL LOAD BAL-

ANCING simulation required a total of 11, 722 communica-

tions (individual values of pj , J(pj , q) and ωj for all j) for

Ṽ and only 2, 910 communications (individual values of pj ,∑
q∈Ṽ lower

j
φ(q)α(q) and ωj for all j) for Ṽ lower.

VI. CONCLUSION AND FUTURE WORK

An algorithm for obtaining an approximate solution to

the spatial load balancing problem for agents with differ-

ential constraints in non-convex environments is presented.

A probabilistic roadmap is used to define two approximate

generalized Voronoi partitions, Ṽ or Ṽ lower. The convergence

of the algorithm is discussed and confirmed via simulation.

With extra communication between the agents, Ṽ can be

constructed from Ṽ lower.

The algorithm is adaptable to most multi-agent coverage

problems. Future work includes analysis and simulations for

distributed frameworks and limited ranges. Areas for explo-

ration include deployment of manipulators and environments

with unknown obstacles.
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