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Abstract— Traffic congestion is a major source of delays in
modern road networks. Motivated by this, in this paper we
propose two distributed algorithms to reduce delays: a dynamic
lane reversal algorithm and a rerouting algorithm. When there
is a large density of vehicles on one side of a road and a small
density on the other, time can be saved by reallocating lanes
from the less dense side to the more dense side, which motivates
dynamic lane reversal. When a road has greater density than
nearby roads, time can be saved by redirecting flow into the
least congested roads, this motivates dynamic rerouting. Given
a communication system between infrastructure and vehicles on
the road, the local state of the network can be approximated and
utilized by the algorithms to minimize travel time. Equilibrium
conditions for the system are analyzed, convergence of the lane
reversal algorithm to a critical point is proved, and overall
performance is examined in simulation.

I. INTRODUCTION

Motivation. Congestion is a major source of traffic delays
in modern road networks, and the problem is growing.
Significant imbalances of traffic density in a given road
network can arise due to many events, such as when there
is a large flow of vehicles towards an industrial center in
the morning, a large event ends and there is a mass of
flow out from large event, or there is an accident which
creates heavy congestion on one side of a road, for example.
Modern infrastructure endowed with new information tech-
nology requires no additional space or construction, and can
substantially reduce overall traffic delays. Motivated by this,
here we investigate the implementation and benefits of lane
reversal and traffic rerouting distributed algorithms that can
improve traffic flow.

In particular, recent advances in design, performance, and
cost of autonomous vehicles (see [5]) has fueled a growing
interest in Autonomous Intersection Management (AIM),
an efficient policy for coordinating autonomous vehicles
using an intersection manager (IM) to safely pass through
an intersection [9]. With the help of the AIM policy and
vehicle-to-infrastructure communications, an approximation
of the state of traffic can be constructed. The IM can then
implement more dynamic procedures to reverse one or more
lanes or communicate a new route to some vehicles if traffic
delays will be reduced. The future presence of autonomous
vehicles is also important in implementing the actual lane
reversal and vehicle rerouting, as physically moving a barrier
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to reverse a lane is a slow process that can take hours, [1],
yet merely indicating a lane’s direction or a new route for a
vehicle is likely to cause driver confusion and increase risk of
accident. With advances in vehicle autonomy, lane reversal
and rerouting are less restricted by physical safety consider-
ations and can be achieved through simple communication
from the traffic signal to the vehicle.

Literature review. Many recent papers have furthured Au-
tonomous Intersection Management. Batch processing of
reservations in AIM to enforce liveness is proposed in [3].
An auction-based scheme under AIM is analyzed in [6].
Local information is shared and utilized to minimize delay
time under Greenshield’s traffic model in [20]. Some effort
has also recently been put towards solving vehicle routing
problems in modern context. A provably safe distributed
solution for coordinating vehicles outside an intersection
is provided in [16]. Work has also been done analyzing
traffic evolution over networks. Classical traffic models are
examined in a network setting in [19]. Passivity is used
to generalize the network flow control problem in [18]. A
solution to the problem of assigning freight loads to available
carriers given unbalanced network conditions is found in [2].

Much of the literature concerning lane reversal discusses
evacuation procedures in order to respond effectively to
natural disasters, [7], [17]. These papers propose the solution
of lane reversal to accommodate emergency evacuation in a
non-dynamic way. Some works discuss procedures and statis-
tics for location-specific cases where lane reversal would be
beneficial, [22], [21]. More recently, some have attempted to
further improve results through dynamic lane reversal. The
solution presented in [11] requires a centralized computer to
find an allocation strategy, with a minimum timestep of one
hour. In [13], the authors formulate a model and present a
centralized solution which does not use network dynamics.
In [10], dynamic lane reversal is implemented on a single
road and tested in simulation.

Statement of contributions. In this paper we extend the cell
transmission model to characterize the evolution of vehicle
density in a road network and the effect of both lane reversal
and rerouting on these dynamics. We establish objective
functions with the goal of minimizing total vehicle time spent
on the road, and propose two algorithms. Using lane reversal,
we propose a distributed algorithm to efficiently calculate
and implement an appropriate lane allocation and prove
convergence of the algorithm to a more efficient solution.
We analyze the long term behavior of the system of a road
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network with balanced lanes, and establish its convergence
to an equilibrium under certain regularity conditions of its
sources, sinks, and traffic on intersections. Then, we propose
a distributed rerouting algorithm to more efficiently achieve
this long-term equilibrium. We show through simulations
performance gains using lane reversal and rerouting on
various initial conditions.

Notation and Nomenclature. We let R denote the set of real
numbers, R≥0 denote the set of positive real numbers, and
Z denote the set of integers. Similarly, Rn (resp. Rn≥0,Zn)
denotes the product space of n copies of R (resp. R≥0,Z).
The vector of ones with length n is denoted by 1n. A directed
graph G consists of a set of vertices V and a set of directed
edges E, G = (V,E), such that E ⊂ V × V . Vertex a is
an out-neighbor of vertex b if (b, a) ∈ E. Similarly, a is an
in-neighbor of b if (a, b) ∈ E. Vertex a is a neighbor of b
if b is an out-neighbor or in-neighbor of a. The set of out-
neighbors (resp. in-neighbors) of a is denoted N out

a (resp.
N in
a ). We say that matrix A = {aij} is A ∈ sparse(G), for

G = (V,E), if aij = 0 when (i, j) /∈ E. Given a vertex set
V , Vr denotes the set of cells contained on road r.

II. PROBLEM STATEMENT

We consider traffic evolving over a road network. Each road
consists of one or two sides for each direction of traffic flow
and which have a given number of lanes. In addition, each
side is divided into cells of length L, which are used to
describe the evolution of traffic density, see Figure 1.

We define a directed graph GC = (C,EC) of cells i ∈ C,
such that (j, h) ∈ EC if traffic can flow from cell j to cell h.
A road is defined as the set of connected cells bounded on
each side by a source, sink, or an intersection manager (IM).
A source (resp. a sink) is a special cell in which traffic only
flows out (resp. flows in,) while an IM is an intelligent traffic
management system at an intersection of roads. We denote by
R the set of all roads and Nr the set of neighbors of road r,
where two roads are neighbors if they share an intersection.
We denote S as the set of all road sides, p,−p ∈ S are the
two sides of a road, n = |C|, and s = |S|. The intersection
graph GZ = (Z,EZ) consists of the vertex set Z containing
all IMs and edges (z1, z2) ∈ Z if there is exactly one road
connecting intersections z1 and z2 ∈ Z. A cell which flows
into a sink is denoted by i ∈ B, and a cell which receives
flow from a source is denoted by B.

Cells

Fig. 1: Road divided into cells

A. Traffic Model

The following traffic model is based on the Lighthill-
Whitham-Richards Partial Differential Equation, [12] and
[15], to describe the evolution of traffic density on each road
side, ρ : R≥0 × R→ R≥0,

∂tρ+ ∂xQ(ρ) = 0. (1)

This equation maintains conservation of mass, and the flow
function Q(ρ) is given by

Q(ρ) =

{
vfρ, ρ ≤ ρc,
vfρc
ρjam−ρc (ρjam − ρ), ρ > ρc,

(2)

where vf is the free flow speed of the vehicles, ρjam is the
density at which a traffic jam occurs, and ρc is the critical
density value where maximum flow occurs, see Figure 2.
This model is based on experimental data and is commonly
used to model traffic flow, particularly because it captures
the wave behavior of traffic.
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Fig. 2: Vehicle flow model

The Cell Transmission Model [8] is a discretization of (1)
using time step ∆t and spatial step ∆x, where is assumed
that all cells have length L = ∆x. For a cell i with exactly
one in-neighbor i−1 and one out-neighbor i+1, the density
of the cell is updated according to

ρi(t+ 1) = ρi(t)+

∆t

L(`p + up)
(q(ρi−1(t), ρi(t))− q(ρi(t), ρi+1(t))),

where i is contained on side p of road r, `p is the number of
default lanes of side p, ρi(t) is the density (vehicles/lane-km)
of vehicles on i at time t, and up(t) ∈ {1− `p, . . . , `−p−1}
is the number of additional lanes on side p. The constraint
up + u−p = `p + `−p must hold to keep the total number of
lanes in a road constant, where u−p ∈ {`−p−1, . . . , `p−1}
is the number of additional lanes on side −p. We have

q(ρi−1(t), ρi(t)) = qi−1,i(t) = min{qi−1(t),qi(t)}, (3)

is the flow rate (vehicles/hr) from i− 1 to i. The piecewise
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functions qi−1(t) and qi(t) are defined as

qi−1(t) =

{
vf (`p + up(t))ρi−1(t), ρi−1(t) ≤ ρc,
vf (`p + up(t))ρc, ρi−1(t) > ρc,

qi(t) =

{
vf (`p + up(t))ρc, ρi(t) ≤ ρc,
vfρc
ρjam−ρc (`p + up(t))(ρjam − ρi(t)), ρi(t) > ρc.

Intuitively, the flow from i−1 to i is restricted when ρi−1(t)
is small or ρi(t) is large [4].

Cells can also be connected to sources or sinks of various
strengths, these make up the boundary to the system. In this
paper, we define the flow from a source b to cell i ∈ C on
side p ∈ S to be

qb,i(t) =

{
αb(t)vf (`p + up(t))ρc, ρi(t) ≤ ρc,
αb(t)vfρc
ρjam−ρc (`p + up(t))(ρjam − ρi(t)), ρi(t) > ρc,

where αb(t) ∈ [0, 1] is the strength of source b at time t. In
turn, the flow from i in p ∈ S to sink c is described by:

qi,c(t) =

{
βc(t)vf (`p + up(t))ρi(t), ρi(t) ≤ ρc,
βc(t)vf (`p + up(t))ρc, ρi(t) > ρc,

where βc(t) ∈ [0, 1] is the strength of sink c at time t.

To model a network of roads at intersections, the flow out
of a cell must equal the sum of flows into other cells. We
define a matrix K = {kij} ∈ Rn×n where kij contains the
fraction of vehicles which move from cell i to cell j. For
now, we assume K is constant. If j is the only out-neighbor
of i in GC then kij = 1, but if j is one of multiple out-
neighbors, then kij < 1. The flow out of any cell i, based
on conservation of mass, is given by

qout
i (t) =

∑
j∈N out

i

kijqi,j(t), (4)

where ρ ∈ Rn is the vector of cell densities which are
not sources or sinks and N out

i is the set of out-neighbors
of i in GC. In this model, intersections are assumed to be
small compared to the length of each cell, so the time spent
in the intersection is negligible. The role of an efficient
Autonomous Intersection Management policy is important
to this assumption.

We similarly define

qin
i (t) =

∑
h∈N in

i

khiqh,i(t), (5)

where N in
i is the set of in-neighbors of i in GC.

The evolution of any cell in the network is given by

ρi(t+ 1) = ρi(t) +
∆t

L(`p + up)
(qin
i (t)− qout

i (t)), i ∈ C.
(6)

Ultimately, the system can be written as

ρ(t+ 1) = Aσ(ρ(t))ρ(t) + bσ(ρ(t)), (7)

where σ(ρ(t)) ∈ σ is the mode determined by the density
of the state, σ is the set of modes, and Aσ(ρ(t)), bσ(ρ(t))

are constructed using all equations from (3) to (6). In
the literature, this is known as the Switching Mode Model
(SMM) [14].

For lane reversal, the control input u ∈ Z|R| controls the
number of lanes per road which directly affects that road’s
density, see Figures 3 and 4.

Fig. 3: Before lane reversal

Fig. 4: After lane reversal

Based on conservation of mass, we update the density of
each cell i on a road side p after lane reversal as follows:

ρ+
i = ρi ·

`p + up

`p + u+
p
,

where ρi is the density of i, up is the control before the
discrete update to u+

p , which results in an update ρ+
i . In

this paper we assume that the change in road density is
instantaneous, based on an assumption that vehicles respond
quickly to a lane opening or closing. The clearing time tc,
the time it takes for all vehicles to vacate a lane being
reversed, is also assumed to be zero. Lane clearing can
realistically be performed in 15 seconds or less under most
traffic conditions in which a lane clearing occurs, so this
assumption is reasonable, [10].

B. Problem Formulation

To characterize performance of the system, we define the
objective function as the time spent of each vehicle in the
system GC summed over every vehicle, or

W (u) =

N∑
w=1

(
t`w − tew

)
,
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where t`w is the time in which vehicle w leaves G through
a sink, tew is the time in which vehicle w enters G through
a source, and N is the total number of vehicles that spent
time within the system. The total time spent is inversely
proportional to the total flowrate, so total time can be
approximated as

W (u) ≈ N

qavg
∑
p∈S `p

,

≈
tf∑
t=0

(
N∑

i∈C(qin
i (t) + qout

i (t))/2

)
,

where qavg is the average flow rate in G.

We define our first control input as the directional lane
allocation of each road u ∈ Z|R|, where up = 1 corresponds
to reversing one lane from the default lanes in the direction
of −p to the direction of p in the road r ∈ R. The goal is
to minimize W (u) while satisfying two physical constraints,
one which maintains the total number of lanes of a roadway
(the sum of lanes in both directions is constant), and the
other which requires a positive integer number of lanes. This
is stated as

Problem 1:

maximize
u∈R|R|

W (u) =

tf∑
t=0

(∑
i∈C

(qin
i (t) + qout

i (t))

)
subject to up ∈ {−`p + 1, . . . , `−p − 1},

u−p ∈ {−`−p + 1, . . . , `p − 1},
up + u−p = `p + `−p,∀ p,−p ∈ S.

A point u∗ is a critical point for Problem 1 if u∗ satisfies the
above constraints and if W (u∗) ≥W (u) for all u s.t. ∀ p ∈
S, u satisfies the above constraints and u∗ζ = uζ , ∀ ζ 6= p.

If vehicles can be redirected through intersections, then
K = {kij} ∈ Rn×n is our control variable, where kij is
the proportion of vehicles flowing from cell i to cell j. Each
non-zero value is lower bounded by a value kmin in order to
maintain connectedness of the graph. Assuming a uniform
critical density value in some network, we know maximum
flow can be obtained when ρi = ρc, ∀ i ∈ C, so to simplify
we only look at the current time step and write this new
problem as

Problem 2:

minimize
K∈Rn×n

W̃ (K) =
∑
i∈C
|ρi(t+ 1)− ρc|

subject to (K1n)i = 1, ∀ i /∈ B,
(K1n)i = 0, ∀ i ∈ B,
K ∈ sparse(GC),

kij ∈ [kmin, 1],∀ (i, j) ∈ E.

The best solution to Problem 2 will drive the state towards
its highest long-term flow.

C. Approximation of the State by IMs

Here, we will use the assumptions employed in [10] for an
IM to approximate the state of the traffic on the roads at the
intersection. Vehicles have unique identifiers and transmit a
message within D ≈ 300 meters to the IM for a reservation
request to cross intersections more efficiently. The IM at
intersection z ∈ Z maintains a counter variable zp for road
side p, adding one to zp when it receives a notification
message from a vehicle on road side p and subtracting
one from zp whenever a vehicle from road side p with
a confirmed reservation is expected to leave the road and
enter the intersection. The state of road side p at time t is
calculated as

ρp(t) =
zp(t)

(`p + up) min{L,D}
. (8)

If L > D then assume that the state of the entire road
is equal to the state in the local section. Note, with more
sensing than just at intersections, the state of the roads can be
more accurately approximated, so smaller cells can be used.
This approximation is used in both algorithms to determine
whether or not travel efficiency can be improved.

III. LANE REVERSAL POLICY

In this section we provide a distributed Lane Reversal Algo-
rithm together with its stability properties. The performance
of the algorithm is also analyzed in Section V.

A. Lane Reversal Algorithm

Problem 1 is a non-convex, non-smooth optimization prob-
lem with integer constraints. To simplify it, we ignore the
time horizon and optimize at each time step. We assume
that there is an IM z1 and z2 at both ends of each road, and
that z1 is assigned its control. This IM requires estimates
of the road states from its neighboring IMs and from the
neighbors of z2 to construct the complete local state. These
estimates are calculated by counting vehicles in and out of
each road as explained in Section II-C and in Equation (8).

We define Cp = {a ∈ C | a is a cell of p} for p ∈ S,
and similarly Cr = Cp ∪ C−p, where p,−p are the road
sides of r ∈ R. Suppose that T (t′) ∈ {1, . . . , T} represents
a clock ticking from 1 to T at each IM synchronously,
where T is the maximum number of ticks for which the
algorithm will run and ∆t′ < ∆t is a smaller discrete
time step. Each IM updates its assigned roads on specific
ticks, which are given by a schedule Λ(r) ∈ {1, . . . , T},
computed during an initialization phase. As an example,
in the road network in Figure 5 each road with the same
number Λ can update simultaneously. By means of the flag
function “to update,” computations are reduced to cases
when changes in the neighboring conditions can lead to non-
trivial updates. When the turn of an IM to update takes place
(line 5), then, in order to find the best control policy for some
road r with sides p,−p ∈ S while keeping other roads fixed,
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Wr(u + ωr∆r) is maximized over ωr ∈ Ωr in the LANE
REVERSAL ALGORITHM. Here, Wr =

∑
a∈Cr∪Nr

(qin
a +

qout
a ), Ωr = {−`p + 1, . . . , `−p − 1}, u contains the set

of current controls, and ∆r ∈ Zn has zeros everywhere
except 1 for each component i ∈ Cp and −1 for each
component j ∈ C−p. Since in real road networks most roads
have 4 or less lanes, an exhaustive search is computationally
inexpensive in this domain. If a trivial update takes place,
then a new update for neighboring roads is not necessary.
This is encoded by setting the to update function equal
to zero, otherwise this function is set equal to one. State
estimates are updated and information on updated controls,
states and the to update function is communicated to
neighbors. The algorithm runs until time tf .

3 3

3

3 3

3

1

1

11

1

1

2 2 2

222

4 4 4

444

Fig. 5: Schedule of road network

Algorithm 1: Lane Reversal Algorithm of IM z

1 Initialize time t′ = 0, schedule Λ(r), ∀ r ∈ R;
2 Initialize to update(r) = 1, ∀ r ∈ R;
3 for all r ∈ R with sides p,−p controlled by z and t′ do
4 Update up′ , u−p′ , to update(r′), and ρi′ if

messages were received from neighbors;
5 if to update = 1 and Λ(r) = T (t′) then
6 ω∗r ← argminωr∈Ωr

Wr(u+ ωr∆r);
7 u+

ν ← uν , ∀ ν ∈ R \ {p,−p};
8 u+

p ← up + ω∗r ;
9 u+

−p ← up − ω∗r ;
10 if u+

p = up then
11 to update(r)← 0;
12 else
13 to update(λ)← 1, ∀λ ∈ Nr;
14 to update(r)← 0;
15 end
16 Initiate lane swap, set ρ+

i = ρi · `r+ur

`r+u+
r
, ∀ i ∈ Cp

and ρ+
j = ρj · `r−u

+
r

`r−ur
, ∀ j ∈ C−p;

17 Transmit u+
p , u+

−p, to update(λ)∀λ ∈ Nr,
ρ+
i ∀ i ∈ Cp, and ρ+

i ∀ i ∈ C−p values to
neighbors of r;

18 end
19 t′ ← t′ + ∆t′;
20 end

B. Stability Analysis of Lane Reversal

We first establish an upper bound on the objective function:

Lemma 3.1: Under the constraints given in Problem 1, the
objective function satisfies

W (u) ≤ 2vfρc`n,

at each time step, assuming that `p = `, ∀ p ∈ S. This upper
bound is achieved when roads are lane-balanced (for any
path on the network, the number of lanes remains constant)
and ρi = ρc,∀ i ∈ C. Intuitively, this is the state when flow
through each lane is maximized over the whole network, and
there is no congestion formed through lane merging. �

The proof for this lemma is omitted, as it is simply calculated
by maximizing each cell’s flow.

Lemma 3.2: The LANE REVERSAL ALGORITHM converges
in finite time to a critical point u∗ of Problem 1 under the
listed constraints.

Proof: The update u+ is implemented in the LANE
REVERSAL ALGORITHM by evaluating Wr(u) and choosing
ωr which maximizes this value. Note that the algorithm
constrains u+

p s.t. u+
p ∈ {1 − `p, . . . , `−p − 1}. Since a

local maximizer of Wr(u) also maximizes W (u) and the
algorithm maintains a schedule which is compatible with the
separability of W (no two road neighbors update simultane-
ously), it is guaranteed that W (u+) ≥ W (u). In this way,
W is a monotonically non-decreasing function through the
algorithm. Using a discrete-time Lyapunov stability argument
with W , asymptotic convergence to a point u∗ satisfying the
constraints of Problem 1 for which W can not be improved
by modifying u∗ entry-wise can be guaranteed. Due to the
finite discrete state space, convergence occurs in finite time.

IV. VEHICLE REROUTING POLICY

In this section, we provide a stability analysis for the road
density evolving under the dynamics (3) to (6), under the
assumption of balanced sources and sinks. This motivates
the distributed rerouting algorithm, which is simulated in
Section V. In this section, we assume that there is no lane
reversal occuring, and that the number of lanes on each road
are equal, so `p + up = `p′ + up′ = `, ∀ p, p′ ∈ S.

A. Stability Analysis of Weight-Balanced Traffic Networks

Because maximum flow is achieved when ρi = ρc, ∀ i ∈
C, we are interested in finding conditions that guarantee
that system achieves this state naturally. We find one such
sufficient condition here.

We define α = [α1, . . . , αn]>, where αi ∈ [0, 1] is the
strength of the source connected to cell i (αi = 0 if no
source is connected to cell i). Similarly, β = [β1, . . . , βn]>

where βi ∈ [0, 1] is the strength of the sink connected to
cell i (βi = 0 if no sink is connected to cell i). We use two
assumptions:

Assumption 4.1 (Critical Density Value): The critical den-
sity value is ρc ∈ (0,

ρjam

2 ].
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Assumption 4.2 (Weight Balanced): The graph GC is weight
balanced with respect to the boundary conditions, or equiv-
alently, K>1n + α = 1n and K1n + β = 1n.

Assumption 4.3 (Existence of Sources and Sinks): There
exists a source and sink with nonzero strength somewhere
in GC.

Note that the first assumption may over-constrain the prob-
lem, depending on α and β and the specific example.
However, under these conditions, the following result holds.

Theorem 4.4 (Stability to critical density values):
Given Assumptions 4.1 on the value of ρc, 4.2 on
the weight-balanced graph, 4.3 on the existence of
sources and sinks, dynamics of Equations (3) through
(6) and a connected graph GC, any initial state with
ρi(0) ∈ [0, ρjam], ∀ i ∈ C, converges practically to ρc. In
other words, limt→∞ ρ(t) ∈ [(ρc − ε)1n, (ρc + ε)1n], where
ε ≤ ∆tvfρc

L . �

Intuitively, this result holds due to the natural dynamics
as well as the boundary conditions. The proof has been
excluded due to space constraints.

We can make a similar Lyapunov argument proving that
limt→∞ ρi(t) ∈ [ρmin

src , ρ
max
snk ],∀ i ∈ C, where ρmin

src =
ρc mini∈C(αi+

∑
j∈C kji) and ρmax

snk = ρjam−ρc mini∈C(βi+∑
j∈C kij). Bounding the flow rate in and out excludes any

state from being at equilibrium outside these bounds, given
the previous assumptions.

The previous analysis helps motivate the rerouting algorithm.
Maintaining Assumption 4.2 is crucial for equilibrium be-
havior of the network, and is expected that, when boundary
conditions oscillate about this condition, convergence to a
close-to-equilibrium condition will occur. However, within
these constraints we would like to hasten convergence to
further reduce delays, the benefits of this are heightened
under time-varying boundary conditions.

B. Rerouting Algorithm

In some situations, it is feasible to direct vehicles where to
go, in order to maintain a balanced networks over time. One
example is a factory setting where identical robots can have
dynamically reassigned tasks. Freight-type of vehicles or
autonomous cars in mobility-on-demand systems could also
be influenced in real traffic based on AIM-vehicle commu-
nication mechanisms. Control over vehicle direction means
that K can be altered under some constraints to improve the
total flow over the time interval. Because maximum flow is
achieved when ρi = ρc, ∀ i ∈ C, flow through intersections
can be redirected from more dense roads to less dense roads,
keeping the system close to ρc. This problem is formulated
in Problem 2.

A greedy approach suits this problem because it increases
immediate flow through the intersection and speeds up
the balancing of neighboring roads while maintaining the
equilibrium of the natural dynamics. A potential strategy is

to redirect flow from all in-neighbors of an intersection to the
least dense out-neighbor. If the least dense out-neighbor is
more dense than ρc, then redirect towards a sink if possible.
However, this approach creates congestion when sinks are
not ideal by attempting to direct flow out of the system but
the sink restricting the flow out, so we require an alternative
policy. Instead, each out-neighbor is sorted according to how
much flow they will allow in, and they are paired with in-
neighbors which provide the most flow, see REROUTING
ALGORITHM.

Algorithm 2: Rerouting Algorithm

1 for each intersection z ∈ Z at each time t do
2 D+ ← vector of cells flowing into z, sorted by

decreasing density;
3 D− ← vector of cells receiving flow from z, sorted

by increasing density;
4 for γ ∈ {1, . . . , |D+|} do
5 x← D+

γ ;
6 y ← D−γ ;
7 for ζ ∈ {1, . . . , n} do
8 if kx,ζ > 0 and ζ 6= y then
9 kx,ζ ← kmin;

10 end
11 if kζ,y > 0 and ζ 6= x then
12 kζ,y ← kmin;
13 end
14 end
15 kx,y ← 1− (|D+| − 1)kmin;
16 end
17 end

This algorithm is decentralized, the only information re-
quired is from immediate neighbors of an IM. Intuitively, the
algorithm is improving flow by directing flow from the most
dense in-neighbors of the intersection to the least dense out-
neighbors so that the flow from/to the most/least congested
road is relatively unrestricted. This pushes both states more
quickly towards ρc, and because they are the furthest away
from ρc, this helps decrease V (ρ(t)) more rapidly. Under
varying boundary conditions, this improvement is enhanced.

V. SIMULATION RESULTS

In simulation, both lane reversal and rerouting vehicles re-
duce overall traffic delay under imbalanced initial conditions
as we discuss next. We use ∆t = 1 second, L = 500
meters, ` = 4 lanes per road, and vf = 60 km/hr. Note,
ρjam ≈ 226 vehicles

km·lane was calculated by assuming an average
vehicle length of 4.11 meters and an average gap between
stationary vehicles of 0.31 meters.

Lane Reversal Algorithm

Generally, lane reversal creates a significant short-term im-
provement of traffic flow. Lane reversal can hinder overall
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traffic flow when reversing a lane requires lane merging
somewhere else in the system or when the road side with
less lanes receives heavy traffic flow afterwards. This first
issue can be addressed through coupling roads together so
that their control variables are equal and no lane merging is
required between them, in simulation we choose the more
conservative control value and apply that to both roads.
The second issue can be at least partially addressed through
predicting traffic patterns using past data or communications
with a larger portion of the road network, though we do not
address this in this paper.

We simulated a two road network with an intersection
between them, sources and sinks at the boundary, and an
initial state which had heavy congestion randomly sampled
from [0, ρjam/2] on one side of both roads and light conges-
tion randomly sampled from ρjam/2, ρjam] on the other. The
boundary conditions α and β on one end of the network
were randomly sampled from [0, 1] and α = 1 and β = 1
on the other side, creating an imbalanced flow. U-turns are
not allowed, and flow from any road to any neighbor is
equally likely. The improvement in the objective function
is shown in Table 6, we can see a large variance in the data
but there is always significant improvement. One example
of the benefit of lane reversal on the objective function is
shown in Figure 7, the flowrate increases immediately after
the lane reversal while maintaining the same equilibrium.
Note, maintaining a constant number of lanes along all paths
becomes impossible with a larger system, creating merges
which negatively affect the overall equilibrium.

36.6 28.9 21.8 13.5 39.1
44.3 68.8 13.0 54.6 34.7

Fig. 6: Relative reversal improvement (%)

Fig. 7: Lane reversal on two roads

Rerouting Algorithm

The rerouting policy improves flow rate in both short term
and long term while maintaining the original equilibrium,
though in a less dramatic fashion than lane reversal. We
have simulated a two block by two block road network with
random initial densities under random constant boundary
conditions with kmin = 0.05. We implemented the rerout-
ing policy on the central intersection, see Figure 8, black
represents very dense and white represents no vehicles. This
shows an initially unbalanced state which converged to a
more efficient state with help from the rerouting policy in
the middle intersection.

t = 0 seconds t = 20 seconds
Fig. 8: Twelve Road Network

In Table 9, we can see relative improvements on the total
flow rate given by this policy, ranging from negligible to
moderate. We note that the objective function describes the
performance of the each cell in the system, and in this
network there are 240 cells, only 8 of which are connected to
the intersection performing the policy, so moderate improve-
ment is acceptable. Under specific initial conditions, the most
improvement was seen at 36%, on average improvement is
between 0 and 5%, see Figure 9. In each case, this algorithm
improved overall flow rate.

1.3 0.1 5.7 0.1 1.3
3.3 0.0 3.4 4.6 3.9

Fig. 9: Relative rerouting improvement (%)

VI. CONCLUSION AND FUTURE WORK

In conclusion, we extended the cell transmission model and
established objective functions with the goal of minimizing
total time spent on the road. We proposed a distributed algo-
rithm to efficiently calculate and implement an appropriate
lane direction reallocation. We also proposed a distributed
algorithm to dynamically reroute vehicles to improve the
long term behavior of the system. We proved convergence
of the lane reversal algorithm to a critical point and bound
the equilibria of the traffic rerouting algorithm under certain
conditions. We showed through simulations performance
gains using lane reversal on a network under particular
conditions and using rerouting under different conditions.

There are many avenues for future work on this problem.
One avenue is improving the traffic model and comparing its
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Fig. 10: Network Flow Rate

predictions with real traffic traffic data to ensure accuracy,
in particular the vehicle time spent in an intersection is
currently assumed constant. A microscopic model will better
capture the dynamics of real vehicles on a road network,
for example by implementing simulations which include
spawning and tracking individual vehicles. Reinforcement
learning can address some of the issues with using a greedy
lane reversal algorithm to further reduce total time delays.
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