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Abstract

Inspired by a local version of the replicator dynamics, this work proposes a discrete-time and distributed algorithm that allows a
connected group of nodes to dynamically achieve virus spreading minimization subject to operational constraints. The proposed
algorithm is distributed in the sense that it can be implemented by network nodes via local and anonymous interactions. By
employing a discrete-time LaSalle invariance principle, we obtain a bound on the algorithm step size that guarantees asymptotic
convergence under time-varying interactions. The performance of the method is illustrated on a simulation example.
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1 Introduction

Virus spreading over computer and human networks is a
prevalent concern today, as it poses a threat to the secu-
rity of interconnected infrastructure and the well-being
of the general public. The implementation of strategies
to stop epidemics can specially be a challenge when net-
works are operated by multiple managers who need to
preserve the privacy and interest of their constituents.
These scenarios would benefit from the development of
distributed anonymous coordination algorithms that al-
low the implementation of best responses in a robust
way. Motivated by this, this manuscript proposes a novel
algorithm that can serve to resolve these issues for partic-
ular classes of network graphs and resource constraints.

Literature review. There are several models of virus
spreading and contagion over networks (see e.g., [14,18]
for surveys over virus models and control). One canon-
ical example is given by the SIS (susceptible-infected-
susceptible) model and its variations; see [1,3,19,20,27],
which present validation studies of such models for virus
propagation over human and computer graphs. Based
on this, two main strategies have been proposed to han-
dle such propagation in the literature. One approach
considers the detection and isolation capabilities of the
infected nodes by means of topology adaptation or quar-
antine, while another one considers node immunization.
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Along these lines, [6] and [24] propose a distributed
strategy to manipulate the topology of the network by
disconnecting infected nodes. This solution does not
consider the cost of disconnecting the network or con-
straints on the network connectivity. In [26], the authors
propose a decentralized algorithm to control the virus
propagation by disconnecting nodes and by applying
an antivirus subject to resource constraints. The decen-
tralized algorithm of [26] is based on the use of diagonal
matrices in the control input, which are naturally dis-
tributed. However, the algorithm that determines these
diagonal matrices is not distributed itself. Along the
lines of [26], the authors in [25] propose a sparse control
allocation of limited resources among a subset of a net-
works components to minimize the dominant eigenvalue
of a linear dynamical process associated with the net-
work. However, as in [26], the proposed algorithm is not
distributed itself. A recent formulation of the optimal
vaccination for the case of continuous time dynamics is
given in [21]. In [21] the authors propose a geometric
programming framework to find the optimal allocation
of resources under local constraints, nonetheless, this
solution is nor distributed neither decentralized. Based
on the framework proposed in [21], the authors in [5]
propose a distributed resource allocation strategy to
control a virus outbreak in a network. The proposed
algorithm is based on Distributed Alternating Direction
Method of Multipliers (D-ADMM) algorithm, however,
the cost on communication is expensive since every
operator in the network needs to interchange a local es-
timation of the variables of the entire network. Ideas of
distributed control have been commonly applied to dis-
tributed consensus algorithms [2, 15], where the central
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idea is to study whether a group of agents in a network
using local and anonymous information can reach a
global agreement. Similar in spirit to consensus algo-
rithms, the local replicator dynamics has been proposed
in [17], where it is applied to dynamic resource alloca-
tion. The local replicator dynamics is a model where
agents with local communication capabilities tend to
reach the same fitness using simple interactions, while
preserving the simplex invariant.

Statement of contributions. We study a virus spreading
minimization problem based on a general contagion dy-
namics model. We characterize the optimal allocation
solution to the virus problem by posing the problem ob-
jective as the minimization of the spectral radius of the
contagion-dynamics matrix subject to operational con-
straints. By using the Perron-Frobenius theorem and La-
grange multipliers theory, we obtain a novel characteri-
zation of the critical points of the problem that applies
to (not necessarily symmetric) weight-balanced matri-
ces. For other matrices, we give bounds for the solution
in terms of the associated symmetrized problem. After
this, we propose a discrete-time distributed algorithm
that implements the desired resource allocation for sym-
metric matrices. In contrast with previous work, our al-
gorithm can be implemented under partial information
by the network nodes by means of local and anonymous
interactions. More precisely, our algorithm is based on a
discretization of the local replicator dynamics that is fur-
ther adapted to ensure convergence of the solution to the
virus mitigation problem, while satisfying resource con-
straints. Using a novel discrete-time analysis, we are able
to provide a bound on the algorithm step size that guar-
antees convergence for agents subject to time-varying in-
teractions. Preliminary statements of the results of this
paper appeared in [22]. Here, we include the final state-
ments developed in full technical details.

2 Preliminaries and notation

We denote by R
d
≥0 the positive orthant of Rd, for some

d ∈ N, diag(a1, . . . , aN ) theN×N matrix with entries ai
along the diagonal, IN the identity matrix of sizeN×N ,
and 1N ∈ R

N the column vector whose elements are all
equal to one. The spectrum of A is denoted by spec(A),
an eigenvalue of A is denoted by λi(A) ∈ spec(A), its
spectral radius by ρ(A) = maxi|λi(A)|, and the 2-norm
of A is denoted by ‖A‖. When we use inequalities for
vectors, we refer to componentwise inequalities.

A real square matrix A = [aij ], A ∈ R
N×N
≥0 , is called

nonnegative, if its entries are nonnegative, i.e, aij ≥ 0,
for all i, j ∈ {1, . . . , N}. A directed graph of order N or
digraph is a pair G = (V, E), where V, the vertex set, is
a set with N nodes, and E ⊂ V × V, the edge set, is a
set of ordered pair of vertices called edges. We denote
the graph at time k as G(k) = (V, E(k)) with edge set
E(k) ⊂ V × V, k ∈ N. Given a digraph G, we define the

unweighted adjacency matrix of G by A(G) ∈ R
N×N as

aij = 1 if (i, j) ∈ E , and aij = 0 otherwise. Given a
nonnegative matrix B ∈ R

N×N , its associated weighted
digraph G(B) is the graph with V = {1, . . . , N} and edge
set defined by the following relationship: (i, j) ∈ E(B)
if and only if bij > 0. The associated weight of the edge
(i, j) is given by the entry bij . The graph G(B) is said

to be weight-balanced if
∑N

j=1 bij =
∑N

j=1 bji for all i ∈

V, in particular, G(B) is undirected if bij = bji for all
(i, j) ∈ E . A pair of indices i, j ∈ V of an undirected
graph G = (V, E) are called neighbors if (i, j) ∈ E . We
let Ni(G) denote the set of neighbors of i in the digraph
G. A path in a graph is an ordered sequence of vertices
such that any pair of consecutive vertices in the sequence
is an edge of the graph. A graph is connected if there
exists a path between any two vertices. If a graph is
not connected, then it is composed of multiple connected
components, that is, multiple connected subgraphs. In a
connected graph G, the distance from vertex i to vertex
j, denoted as dist(i, j), is the length (number of edges)
of a shortest i-j path in G.

2.1 On the replicator dynamics

Replicator dynamics [11,23,28] models the interaction of
an homogeneous population, where fractions of individ-
uals play a symmetric game. From the biological point of
view, it can be seen as mechanism to model the behav-
ior of a population whose individuals seek habitats with
different conditions to feed or reproduce. This dynam-
ics is represented by a first-order differential equation,
which is composed by the replicator, its fitness, and the
proportion in the population. The replicator represents
one individual in the entire population. The fitness is
the payoff that the individual gets during the game. Fi-
nally, the proportion in the population corresponds to
the fraction of individuals in the population that changes
as a result of their mutual interactions and fitnesses. A
particular choice of replicator dynamics is given by

ṗi(t) = pi(t)(fi − f̄), (1)

where pi denotes the proportion of population that play
one strategy i ∈ {1, . . . , N}, fi : R → R is the fitness,

and f̄ is the average fitness described by f̄ =
∑N

j=1 pjfj .

The choice of f̄ in (1) imposes a useful restriction to
the dynamics, as evolutions will belong to the simplex

∆p = {p ∈ R
N
>0 |

∑N
i=1 pi(t) = 1}. When the equilib-

rium point p∗i > 0 for all i, then the steady state of (1) is
achieved when fi(p

∗
i ) = f̄(p∗), where p∗ = [p∗1, . . . , p

∗
N ].

The properties of (1) make it useful to solve distributed
optimization problems subject to constraints like the
virus problem we state in Section 3.

A local version of the original replicator dynamics in (1)
is proposed in [17] to account for local interactions of
fractions of the population over a graph G. The local

2



replicator dynamics is given by

ṗi(t) = pi

(

fi
∑

j∈Ni

pj −
∑

j∈Ni

pjfj

)

, (2)

where Ni is the set of neighbors of i in the graph G. If
the choice of the fitness fi only depends on information
of the neighbors and itself, then the algorithm described
in (2) is distributed. Moreover, since (2) does not require
the exchange of identities, it is said that it accounts for
anonymous interactions. The authors in [17] show that
this algorithm conserves the most important character-
istics of (1), i.e., i) the simplex is invariant, and ii) the
equilibrium point is asymptotically stable in ∆p.

3 Problem statement and solution approach

In this section, we first introduce the contact network
dynamics proposed in [19] and the problem statement
proposed in [26]. Next, we extend a theorem in [26] for
symmetric, irreducible matrices to weight-balanced and
irreducible matrices. This extension is motivated by the
possibility of having an asymmetric placement of edge
isolation (e.g., quarantine or firewalls) making the inter-
action graph directed. Our proof relies on the Lagrange
multiplier approach and the Perron-Frobenius theorem,
instead of using a sensitivity formula. Finally, we pro-
pose a strategy for the minimization of the virus virus
spread over a network such that minimizes the Perron
eigenvalue of the symmetrized counterpart for any non-
negative matrix, and we characterize the goodness of
this approximation.

3.1 Problem statement

The virus dynamics over a network proposed in [19] is
given by

x
(k+1)
i =

(

1−
∏N

j=1
(1− ajix

(k)
j )

)

, (3)

where x
(k)
i ∈ R is the probability that node i is infected

at time k, i ∈ {1, . . . , N} and aji is defined as

aji =

{

βji, for j 6= i,

1− δi, for j = i.

Here, βji ∈ [0, 1] is the probability that the virus from
node i infects node j, and δi ∈ [0, 1] is the probability of
an infected node i to be recovered. Using theWeierstrass

product inequality, valid for ajix
(k)
j ∈ [0, 1], we obtain

the following upper bound

x
(k+1)
i ≤

∑N

j=1
ajix

(k)
j , ∀i ∈ {1, . . . , N}.

The previous inequality reads in vector notation as

x(k+1) ≤ A(δ)x(k), (4)

where x(k) = [x
(k)
1 , . . . , x

(k)
N ]T , δ = (δ1, . . . , δN ) ∈

[0, 1]N , and A(δ) ∈ R
N×N is given by

A(δ) =















1− δ1 β21 . . . βN1

β12 1− δ2 . . . βN2

...
...

. . .
...

β1N β2N . . . 1− δN















.

Let G , A(δ) − IN +D ≡ A(1N ), where D = diag(δ),
and G(IN+A(1N )) = G(IN+G) be the graph associated
with the contact dynamics matrix. We define the topol-
ogy matrix of the network as the matrix IN +G. When
there is no confusion, we will denote G(IN + G) by G
and A for the associated unweighted adjacency matrix.
In [19], authors prove next proposition,

Proposition 1 ([19]) An epidemic described by (3) be-
comes extinct if and only if ρ(A(δ)) < 1.

We consider the following problems to minimize the ef-
fects of virus contagion. The virus mitigation problem
is given by

min
δ∈[0,1]N

ρ(A(δ)),

subject to
∑N

i=1 δi = Γ,

ρ(A(δ)) < 1.

(5)

Depending on the value of Γ, the virus mitigation

problem is not feasible and we can only solve the relaxed
virus spread minimization problem:

min
δ∈[0,1]N

ρ(A(δ)),

subject to
∑N

i=1 δi = Γ.

(6)

Here, we only consider a partial vaccination strategy
since we only consider as decision variable δ, while β
is fixed. We further assume that there are enough re-
sources in terms of isolation/quarantine capabilities
(i.e.,β), which make possible to balance the network
interaction according to a finite-time distributed algo-
rithm presented in [9].

Remark 1 When there are not enough resources to bal-
ance the network, we can use a similarity transforma-
tion B = XAX−1, where B is weight-balanced and X
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is a square diagonal matrix that can be found by the al-
gorithm given in [8]. The similarity transformation for
balancing the network for irreducible matrices is proven
to be unique in [10]. The algorithm in [8] requires infor-
mation of the in- and out-neighbors. What prevents this
algorithm to be computed in a distributed way, is the fact
that at every step it is normalized using 1-norm, however,
all results of this algorithm hold when it is used ∞-norm
for normalizing. By this modification in the algorithm,
we can implement it in a distributed way. Since the al-
gorithm converges asymptotically to the diagonal X, the
result provided by this algorithm is only an approxima-
tion. The effect of such approximation is out of scope of
this paper.

Remark 2 The linear constraint in (5) and (6) serves to
model that the combined effort of operators to implement
δi should be upper bounded by a total resource value of Γ.
That is,

∑

i δi ≤ Γ. However, it is easy to see that the
solution of this problem is always at the boundary of the
constraint if A(δ) is irreducible and nonnegative; that is,
∑

i δi = Γ, is satisfied by the optimal solution.

3.2 Solution characterization for balanced matrices

We present a characterization of the solution to a re-
laxed problem for weight-balanced matrices in Theo-
rem 2 to provide sufficient conditions for feasibility for
the virus mitigation and virus spread minimiza-

tion problems. Previous to this, the next theorem re-
calls that the function ρ(A(δ)) is a convex function of δ
and, hence, the problems introduced in Section 3.1 are
convex. Proofs for all results in this paper can be found
in the Appendix.

Theorem 1 ([4]) Let B be a nonnegative matrix and
D = diag (δ1, . . . , δN ). Then, the Perron eigenvalue of
B +D, ρ(B +D), is a convex function of D.

In particular, the virus mitigation problem is feasible
when the set of δ satisfying δ ∈ [0, 1]N , ρ(A(δ)) < 1

and
∑N

i=1 δi = Γ is non empty. On the other hand, the
virus spread minimization is feasible when the set of
δ satisfying δ ∈ [0, 1]N and

∑N
i=1 δi = Γ is non empty.

Denote by ri = 1 +
∑N

j=1,j 6=i βji and ci = 1 +
∑N

j=1,j 6=i βij , the sum of row and column entries of

IN +A(1N ), respectively.

Theorem 2 For a weight-balanced, nonnegative, and
irreducible matrix A(δ) the solution to the virus

spread minimization problem without the restric-
tions δi ∈ [0, 1], i ∈ {1, . . . , N}, is given by making
the sums of each row of A(δ) equal to each other, i.e.,
−δi + ri = −δj + rj for i 6= j. Precisely, the solution is

characterized by

ρ∗(A(δ∗)) =

∑N
j=1 rj − Γ

N
, (7)

δ∗i =
Nri −

∑N
j=1 rj + Γ

N
. (8)

Corollary 1 (Sufficient conditions for problem feasibil-
ity): When A(δ) is weight-balanced, nonnegative, and ir-
reducible, then a feasible solution to the virus spread

minimization problem is given by (8) if

(9 )max
i

(

∑N

k,j =1,j 6=k
βjk −N

∑N

j =1,j 6=i
βji

)

≤ Γ

≤
∑N

i,j=1,j 6=i
βji +N(1−max

i

∑N

j=1,j 6=i
βji).

Moreover, a feasible solution to the virus mitigation

problem is given by (8) if

N
∑

i,j=1,j 6=i

βji < Γ ≤
N
∑

i,j=1,j 6=i

βji +N(1−max
i

N
∑

j=1,j 6=i

βji).

(10)

3.3 Solution bound for unbalanced matrices

When the topology matrix IN + A(1N ) is not weight-
balanced and there are not enough resources to make it
so as in [9], Theorem 2 is not applicable. Nonetheless, the
virus spread minimization problem can be relaxed to

minimizing ρ(Ā(δ)), where Ā(δ) = IN −D+
1

2
(A(1N )+

A(1N )T ). The next lemma shows that this upper bound
to the solution ρ∗(A(δ∗)), is at the same time upper
bounded by minδ‖A(δ)‖.

Lemma 1 Let Ā(δ) = IN − D +
1

2
(A(1N ) + A(1N )T )

be the symmetrization of A(δ) = IN − D + A(1N ).
Then minδ ρ(Ā(δ)) ≤ minδ‖A(δ)‖ and minδ ρ(Ā(δ)) ≥
ρ∗(A(δ∗)).

Since it holds that ‖A(δ)‖≥ ρ(Ā(δ)) ≥ ρ(A(δ)) as shown
in Lemma 1, an upper bound for a feasible solution of
the virus mitigation problem is given by solving the
following problem:

min
δ∈[0,1]N

ρ(Ā(δ))

subject to
∑N

i=1 δi = Γ,

ρ(Ā(δ)) < 1.

(11)
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This is based on the following lemma.

Lemma 2 The virus mitigation problem is feasible if
Problem (11) is feasible. In that case, an upper bound to
the solution of the virus mitigation problem is given
by a solution to Problem (11).

In the next lemma, we describe explicitly the upper
bound given by solving problem (11).

Lemma 3 Consider a virus dynamics with associ-
ated nonnegative and irreducible A(1N ). Let Γ sat-
isfy the sufficient condition (9) for the topology

IN +
A(1N ) +A(1N )T

2
. Then, an upper bound for the

solution of the virus spread minimization problem for

IN +A(1N ) is given by ρ∗(A(δ∗)) ≤

N
∑

j=1

(rj + cj)− Γ

2N
.

Finally, we characterize the distance of these bounds to
the solution of the virus spread minimization prob-
lem.

Lemma 4 Consider a virus dynamics with associated
nonnegative and irreducible A(1N ). Let Γ satisfy (9) for

the topology IN +
A(1N ) +A(1N )T

2
. Let δ∗1, δ∗2 and

δ∗3 be the vector solutions given in (8) for the topology

matrices IN+A(1N ), IN+A(1N )T and IN+
1

2
(A(1N )+

A(1N )T ), respectively. Let δ∗ be the solution to the virus

spread minimization problem and ei , |δ∗i − δ∗3i |, for
i ∈ {1, . . . , N}, be the errors between the solution given
by Lemma 3 and the optimal solution δ∗. Then, ei ≤
1

2
|δ∗1i − δ∗2i |, i ∈ {1, . . . , N}.

4 The constrained Euler replicator algorithm

This section describes the constrained Euler repli-

cator algorithm proposed to solve the virus spread

minimization problem. This algorithm is based on the
replicator dynamics and a local version of it, see Sec-
tion 2.1, which allows for the automatic satisfaction of
the linear resource constraint.

Consider the probabilities of recovery δ ∈ [0, 1]N and
the network graph G, which are defined in the virus

spread minimization problem. In what follows, we as-
sume that the topology matrix IN + A(1N ) is symmet-
ric, nonnegative, and the graph associated with it is con-
nected. Recall that Theorem 2 shows that the solution
to a relaxed version of the virus spread minimization

problem is given by a δ that makes the sum of the rows
in matrix A(δ) to be equal. Motivated by the fact that

at the equilibrium of the continuous-time replicator dy-
namics all fitnesses are equal and other constraints are
also naturally satisfied, we want solve the virus spread
minimization problem by employing a discretization of
these dynamics and by defining local fitness as the ith

row sum of matrix A(δ).

Using Euler first-order differences, we discretize the
continuous-time local replicator dynamics (2),

p
(k+1)
i = p

(k)
i + ǫ(k)p

(k)
i

(

f
(k)
i

∑

j∈Ni

p
(k)
j − f̄

(k)
i

)

,

(12)

where k ∈ N, f̄
(k)
i =

∑

j∈Ni
p
(k)
j f

(k)
j , and ǫ(k) > 0. De-

fine p = [δ1/Γ, . . . , δN/Γ]T ∈ [0, 1]N and fi(pi) = ri −
Γpi = ri − δi, i ∈ {1, . . . , N}, where recall that ri is the
ith row sum of IN + A(1N ). Then fi(Γpi) ≡ fi(δi) is
the ith row sum of A(δ). In compact form, the dynamics
in (12) read as:

p(k+1) = p(k) + ǫ(k) diag(p(k))(diag(f (k))Ap(k) −Af̄ (k)),
(13)

whereA is the unweighted adjacency matrix of G, f (k) =

[f
(k)
1 , . . . , f

(k)
N ]T , and f̄ (k) = [p

(k)
1 f

(k)
1 , . . . , p

(k)
N f

(k)
N ]T . To

solve the problems of interest, we want to keep δ ∈
[0, 1]N . Notice that (12) does not constraint its states

as pi ≤
hi

Γ
for certain desired constraints hi > 0 for

i ∈ {1, . . . , N} (in our particular virus problem hi = 1
for i ∈ {1, . . . , N}). Because of this, we propose a varia-
tion of (12) called the constrained Euler replica-

tor algorithm, whose convergence is analyzed in Sec-
tion 5. A short description of the constrained Euler

replicator algorithm is given as follows. Each node

computes its own state δ
(k+1)
i = Γp

(k+1)
i , i ∈ {1, . . . , N}.

If all trajectories are inside Ω , {δ(k) ∈ R
N
>0 | 1T

Nδ(k) =

Γ, δ(k) ≤ hi}, then the algorithm reduces to (12). Oth-
erwise, if node i violates the constraint δi ≤ hi, then it

stores the difference in αi ∈ R≥0 and puts δ
(k+1)
i = hi

(lines 4 to 6). Note that line 9 restores
αi

Γ
to p(k+1). i.e.,

the evolution of p(k) in line 9 is equivalent to the evolu-
tion of (12) in any case.

The computation of the step size for the constrained

Euler replicator algorithm and the algorithm in (13)
are discussed in the next section.

5 Stability analysis

In this section, we analyse the properties of the discrete-
time algorithm (13) and provide a sufficient condition
on ǫ(k) that guarantees its stability. The algorithm can
be used to solve a relaxed version of the virus spread
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Algorithm 1 constrained Euler replicator

1: for k > 0 do
2: Compute p

(k+1)
i as in (12)

3: δ
(k+1)
i = Γp

(k+1)
i

4: if δ
(k+1)
i > hi then

5: α
(k+1)
i = δ

(k+1)
i − hi

6: δ
(k+1)
i = hi

7: else α
(k+1)
i = 0

8: end if

9: p
(k+1)
i =

δ
(k+1)
i

+α
(k+1)
i

Γ
10: k = k + 1
11: end for

minimization problem, where the constraint δi ≤ 1
is omitted. Finally, we analyze the effects of the con-

strained Euler replicator algorithm when hi = 1,
for all i ∈ {1, . . . , N}.

Next, we show that the algorithm in (13) conserves the
most important characteristics of (1), i.e., i) the sim-
plex is invariant for small enough step size as shown
in Lemma 5, ii) all individuals get the same fitness at
the equilibrium with the choice of an adequate fitness
as shown in Lemma 6, and iii) the equilibrium point is
asymptotically stable in ∆p as shown in Theorem 3.

Lemma 5 (Invariance of ∆p under (13)): The dynam-

ics in (13) leaves ∆p invariant for a sequence ǫ(k) <
1

maxi,j(f
(k)
i − f

(k)
j )

, k ≥ 0.

Lemma 6 (Equilibria of (13)): Assume that Γ satis-
fies (9) and consider the dynamics (13) with initial con-
dition p(0) ∈ ∆p. Then the equilibrium points p∗ of (13)
such that p∗ > 0 coincide with those of the continuous-
time replicator dynamics.

As a consequence of Lemma 6, each connected compo-
nent of a disconnected graph arrives at a common equi-
librium fitness, i.e., the set of nodes of each component
agrees on the same average fitness. These equilibrium
fitnesses can differ from one connected component to an-
other.

Lemma 7 (Equilibrium point characterization un-
der (10)): Let G be a (not necessarily connected) graph,
let Γ satisfy (9), and consider the dynamics (13) with
initial condition p(0) ∈ ∆p. Then, the equilibrium point
p∗ > 0 of (13) is given by

p∗i =
|X |ri + Γ

∑

j∈X p
(0)
j −

∑

j∈X rj

|X |Γ
, (14)

where i ∈ X and (X , EX ) ⊂ G represents a connected
component of G.

Theorem 3 (Sufficient conditions for the stability
of the algorithm in (13)): Suppose Γ satisfies (10),
the set of neighbors in (12) are time-variant satis-

fying
⋃

k≥k0

A(1N )
(k)

is connected for all k0 ∈ Z≥0.

Then, the algorithm (13) converges to the solution
of the virus mitigation problem, and is asymp-
totically stable to this solution in ∆p for a sequence

ǫ(k) < min{
1

maxi,j(f
(k)
i − f

(k)
j )

,
1

Γmaxi p
(k)
i

}, k ≥ 0.

Remark 3 In order to compute the ǫ(k) given in The-
orem 3 in a distributed way, agents can employ a min
consensus algorithm. It means that every node takes the
minimum of the messages of neighbors and their own.
This algorithm has time complexity diam(G) for fixed
graphs G. Therefore, to implement a new iteration of the
dynamic equation (12), each node first implements a min
consensus algorithm during diam(G) rounds to obtain the
new ǫ(k).

Remark 4 To have a time-invariant (and more conser-
vative) ǫ given in Theorem 3, we can use the fact that

maxi,j(f
(k)
i − f

(k)
j ) ≤ 2maxi|f

(k)
i |≤ 2maxi ri + Γ pro-

vided p(k) ∈ (0, 1)N by Lemma 5. Then, ǫ can be cho-

sen as ǫ <
1

2maxi ri + Γ
. This time-invariant step size

can be determined by using a min consensus algorithm
before running the constrained Euler replicator

algorithm.

Remark 5 The evolution of p(k) in the constrained

Euler replicator algorithm is equivalent to the evo-
lution of (13), then the equilibrium point, properties and
the stability analysis already done for (13) hold for the
constrained Euler replicator algorithm. However,

notice when some α
(k)
i > 0 in the constrained Euler

replicator algorithm, then 1T
Nδ(k) ≤ Γ, but this can

only happen for some finite time since p(k) → p∗ asymp-
totically as shown in Theorem 3, and for k > K (i.e.,
when trajectories are close to the equilibrium) we know
that 1T

Nδ(k) = Γ.

Remark 6 The reader may infer that the result in The-
orem 3 can be obtained by the consensus algorithm of [16]
instead of using the proposed algorithm (13). However,
consensus algorithms consider linear multiagent inter-
actions and, thus, it employs linear systems tools. Our
algorithm is nonlinear and requires nonlinear tools to
prove stability. The extent of this generalization is anal-
ogous to what happens with respect to linear versus non-
linear system stability analysis. Moreover, by means of
our proposed algorithm, we solve a constrained optimiza-
tion problem that cannot be solved by the consensus algo-
rithm of [16]. One simple fact to see why the algorithms
are not comparable is that the simplex is invariant to our
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Fig. 1. Trajectories of the example given in (15) for the
algorithm in (13).

algorithm, which does not happen with the consensus al-
gorithm.

6 Simulations

In this section, we illustrate the response of the discrete
local replicator dynamics in (13) and the constrained
Euler replicator algorithm for the symmetric matrix

A(δ) =



















1− δ1 1/2 0 0 0

1/2 1− δ2 0 1/3 0

0 0 1− δ3 1/4 0

0 1/3 1/4 1− δ4 1/8

0 0 0 1/8 1− δ5



















, (15)

subject to Γ = 3. In order to exemplify a switch-
ing topology, we use a pseudorandom number 0 − 1
given by a uniform distribution for every edge of
the associated adjacency matrix of A(δ) during the
evolution δ(k). In Figure 1, we show the behav-
ior of (13) for ǫ = 1/2 and the initial condition
δ(0) = Γ[2/768, 56/768, 2/6, 200/768, 254/768] and
λ1(A(δ

(0))) = 1.424. Since λ1(A(δ
(0))) > 1, then the

virus is spreading over the network. The optimal value
is δ∗ = Γ[0.2056, 0.3167, 0.1222, 0.2750, 0.0806] and the
minimizer is λ1(A(δ

∗)) = .8833. Since λ1(A(δ
∗)) < 1,

we achieve the main objective that is to give an optimal
response to stop the epidemics by our dynamic algo-
rithm. Notice that, the discrete local replicator dynam-
ics in (13) does not satisfy δ(k) ≤ 1 for k > 0 in general.

This fact is exemplified in Figure 1, where δ
(0)
3 = 1,

δ
(24)
2 = 1.0466, and δ

(6)
4 = 1.1077. This issue is solved

by the constrained Euler replicator algorithm,
which performance is shown in Figure 2 for the same
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Fig. 2. Trajectories of the example given in (15) for the
constrained Euler replicator algorithm.

conditions as for Figure 1. Figure 2 shows that the con-
strained Euler replicator algorithm converges to
the desired equilibrium point of (13). Also, note that

δ
(k)
i ≤ 1 for k ≥ 0 and i ∈ {1, . . . , 5}, which shows
that the algorithm constraints its states as expected.
Figure 3 shows the performance of the constrained

Euler replicator algorithm for initial conditions
δ(0) = Γ[1/256, 1/2, 127/256], Γ = 2, and the following
unbalanced topology matrix

A(δ) =









1− δ1 1/10 0

1/4 1− δ2 1/16

1/8 1/16 1− δ3









. (16)

The trajectories for this example are shown in Fig-
ure 3, where we use Ā(δ) as shown in Lemma 4 to
approximate the solution given by the constrained

Euler replicator algorithm to the optimal one.
Using the same notation of the variables as defined
in Lemma 4, we get δ∗3 = [0.70415, 0.70415, 0.5917],
ρ(A(δ∗3)) = 0.5010, δ∗1 = [17/30, 187/240, 157/240],
δ∗2 = [101/120, 151/240, 127/240], ρ(A(δ∗1)) =
ρ(A(δ∗2)) = 0.5333. The optimal value is ρ∗(A(δ∗)) =
0.5002 for δ∗ = [0.6884, 0.7199, 0.5917]. This example
shows that the expected error is achieved.

The following example is based on the e-mail communi-
cation network from the Enron corporation, constructed
by taking the first 600 nodes from the dataset available
in [13]. We fix the probabilities of transmission to be pro-
portional to the in-degree of each node on the network.
Figure 4 shows the performance of the constrained

Euler replicator algorithm for this example. The ini-
tial conditions for this example are δ(0) = Γ

N
1N , Γ = 40.

Figure 4 shows that starting from ρ(A(δ(0))) > 1 we get
ρ(A(δ∗)) = .9588 by using the constrained Euler
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replicator algorithm.

7 Conclusions

We have studied a virus minimization problem for a gen-
eral SIS model, characterizing an explicit solution to the
problem for weight-balanced contagion-dynamics matri-
ces. We have given an strategy that stabilizes the spread
for general network topologies when there are enough
network resources. Based on that characterization, we
have proposed a novel discrete-time distributed algo-
rithm to stop infection spreading under time varying
topologies. Our approach solves the optimization prob-
lem by allocating limited immunization resources under
the system constraints. As future work we would like to
consider more sophisticated constraints in the problems

we have stated. For example we could consider a con-
straint of the form

∑

c(δi) ≤ Γ (where c is the cost of
modifying the rate δi) instead of the original one δi = Γ.
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A Proofs

PROOF. [Theorem 2] Since A(δ) is nonnegative and
irreducible for all δ, by the Perron-Frobenius theorem we
have that ρ(A) ≤ maxi{−δi + ri}. In order to obtain an
upper bound for ρ∗(A(δ∗)), we minimize the maximum
row sum of A(δ), i.e,

min
δ

(max
i

−δi + ri)

subject to
∑N

i=1 δi = Γ.

(A.1)

The problem stated in (A.1) can be reformulated as

min
z,δ

z

subject to

z ≥ maxi(−δi + ri),
∑N

i=1 δi = Γ,

(A.2)

where z ∈ R is a new variable. It holds that z ≥
maxi(−δi + ri) if and only if z ≥ −δi + ri for all
i ∈ {1, . . . , N}. Then, the Lagrangian of (A.2) is given
by

L(z, δ, ν, µ) = z + ν(

N
∑

i=1

δi − Γ) +

N
∑

i=1

µi(−z − δi + ri),

where ν, and µ = [µ1, . . . , µN ] are the KKT multi-
pliers for the equality and inequality constraints, re-
spectively. Suppose that ȳ∗ = (µ̄∗, z̄∗, δ̄∗, ν̄∗) is a solu-
tion to (A.2). From complementary slackness, we have
µ̄∗
i (−z̄∗ − δ̄∗i + ri) = 0 for all i ∈ {1, . . . , N}. More-

over, ∂L
∂z

∣

∣

ȳ∗
= 1 −

∑N
i µ̄∗

i = 0, ∂L
∂δi

∣

∣

∣

ȳ∗

= ν̄∗ − µ̄∗
i = 0,

and ν̄∗ = µ̄∗
i = 1

N
. A critical point is given when z̄∗ =

−δ̄∗i + ri, ∀i ∈ {1, . . . , N}. Note that all µ̄∗
i are active

(i.e, µ̄∗
i > 0). From the fact that problem (A.2) gives

an upper bound to the solution of the virus spread

minimization problem without the δ ∈ [0, 1]N restric-
tion, it follows that ρ∗(A(δ∗)) ≤ z̄∗ = max

i
{−δ̄∗i + ri}.

Since z̄∗ = max
i

{−δ̄∗i + ri} = min
i
{−δ̄∗i + ri} = −δ̄∗i + ri,

∀i, so z̄∗ = −δ̄∗i + ri, ∀i. Similarly, an analogous condi-
tion holds when we consider ρ(A(δ)T ) ≥ mini{−δi+ci},
which follows from the Perron-Frobenius theorem. The
analogous problem to (A.1) with the alternative objec-
tivemaxδ mini(−δi+ci) leads to a solution z

∗ = −δ∗i+ci,
∀i, which satisfies z∗ ≤ ρ∗(A(δ∗)T ).

From ρ(A(δ)) = ρ(A(δ)T ) for any δ, we obtain the re-
lation z∗ ≤ ρ∗(A(δ∗)) ≤ z̄∗. Using that

∑

i δi = Γ,
and that z̄∗ = −δ̄∗i + ri (resp. z∗ = −δ∗i + ci) for
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all i ∈ {1, . . . , N}, we obtain (7) (resp. the analogous
equation to (7) with ci replacing ri). From the weight-
balanced property of IN +G, we have that ri = ci for all
i ∈ {1, . . . , N}, and thus δ̄∗i = δ∗i for all i ∈ {1, . . . , N}.
Thus, z∗ = z∗ = ρ∗(A(δ∗)).

Finally, (8) is obtained by replacing (7) into the expres-
sion ρ∗(A(δ∗)) = −δ∗i + ri. ✷

PROOF. [Corollary 1] For the left-hand side of
the inequality (9), assume δ∗i ≥ 0. It follows that

Nri −
∑N

j=1 rj + Γ ≥ 0, which is equivalent to

Γ ≥ maxi(
∑N

k,j=1,j 6=k βjk −N
∑N

j=1,j 6=i βji). The right-

hand side of inequalities (9) and inequality (10) follows
from imposing 1− δ∗i ≥ 0, i ∈ {1, . . . , N}. By replacing
δ∗i in N −Nδ∗i ≥ 0 from (8), we have that

Γ ≤
∑N

j=1
rj −Nri +N ⇐⇒

Γ ≤ N +
N
∑

i,j=1,j 6=i

βji −N(1 +
N
∑

j=1,j 6=i

βji) +N.

It holds that Γ ≤ N +
∑N

i,j=1,j 6=i βji−N
∑N

j=1,j 6=i βji if

and only if Γ ≤
∑N

i,j=1,j 6=i βji+N(1−maxi
∑N

j=1,j 6=i βji).

For the left-hand side of the inequality (10), assume
ρ∗(A(δ∗)) < 1. By replacing (7) in the previous inequal-

ity, we obtain Γ >
∑N

j=1 rj −N . The result follows after

replacing the definition of rj , j ∈ {1, . . . , N}. Notice that
∑N

i,j=1,j 6=i βji ≥ maxi(
∑N

k,j=1,j 6=k βjk − N
∑N

j=1 βji),

then the left side of the inequality (10) implies that
δ∗i ≥ 0. ✷

PROOF. [Lemma 1] For the first inequality we
use the fact that ρ(A) ≤ ‖A‖ holds for any ma-
trix A, [12]. Notice that Ā(δ) can be expressed as
Ā(δ) = 1

2 (A(δ) + AT (δ)). Then, ‖Ā(δ)‖= 1
2‖A(δ) +

AT (δ)‖≤ 1
2 (‖A(δ)‖+‖AT (δ)‖) = ‖A(δ)‖, it follows that

minδ ρ(Ā(δ)) ≤ minδ‖Ā(δ)‖≤ minδ‖A(δ)‖. For the
second inequality, we refer the reader to [7], where it is
proven that ρ(A) ≤ ρ( 12 (A + AT )) for any nonnegative
matrix A, so the result follows. ✷

PROOF. [Lemma 2]We have that minδ‖A(δ)‖< 1 =⇒
ρ∗(A(δ∗)) < 1, then it holds that minδ ρ(Ā(δ)) < 1 =⇒
ρ∗(A(δ∗)) < 1 . Thus, there exists δ satisfying the con-
straints of the virus mitigation problem if there exists
δ satisfying the constraints of Problem (11). ✷

PROOF. [Lemma 3] Notice that Ā(δ) = IN − D +
1
2 (G+GT ), is symmetric, so we can apply Corollary 1 for

ρ∗(Ā(δ∗)) under the sufficient condition (9) for Γ. The
upper bound follows from ρ∗(A(δ∗)) ≤ ρ∗(Ā(δ∗)). ✷

PROOF. [Lemma 4] Note that the solution given by
Lemma 3 is the middle point between δ∗1 and δ∗2. Also
note that ρ(A(δ∗1)) = ρ(A(δ∗2)). By the convexity of
ρ(A(δ)) in Theorem 1, we know that min{δ∗1i , δ∗2i } ≤
δ∗i ≤ max{δ∗1i , δ∗2i }, so the result follows. ✷

PROOF. [Lemma 5]We have to show two properties to
conclude that ∆p is invariant under (13). First, it holds

that 1T
Np(k+1) = 1T

Np(k), and second, p
(k)
i > 0 for all

i ∈ {1, . . . , N}, and k > 0, for a small enough step size.
To show the first property, we multiply by 1T

N on both
sides of (13)

1T
Np(k+1) = 1T

Np(k) + ǫ(k)(f̄ (k)TAp(k) − p(k)
T

Af̄ (k)),

where we use the fact p(k)T = 1T
N diag(p(k)), and f̄ (k)T =

p(k)T diag(f (k)). Since the matrix A is symmetric, then
we have the property p(k)TAf̄ (k) = f̄ (k)TAp(k). There-
fore, we have that 1T

Np(k+1) = 1T
Np(k) for any ǫ(k) > 0.

For the second property, we rewrite (12) as p
(k+1)
i =

p
(k)
i (1−∆

(k)
i ), where ∆

(k)
i , ǫ(k)(f̄

(k)
i −f

(k)
i

∑

j∈Ni
p
(k)
j ).

Then,

max
i

∆
(k)
i = ǫ(k) max

i

∑

j∈Ni

p
(k)
j (f

(k)
j − f

(k)
i )

≤ ǫ(k) max
i,j

(f
(k)
i − f

(k)
j ).

Then, a sufficient condition for which maxi ∆
(k)
i < 1 is

given when ǫ(k) < 1

maxi,j(f
(k)
i

−f
(k)
j

)
. ✷

PROOF. [Lemma 6] Clearly, an equilibrium point is
p∗i = 0 for all i ∈ {1, . . . , N}, but by assumption we only
consider p∗ > 0. Now, suppose p∗ > 0, then it must be
that

∑

j∈Ni

p∗j (f
∗
i − f∗

j ) = 0, (A.3)

for all i ∈ {1, . . . , N}. By assumption we have that Γ
is large enough, or in other words, the size of Γ allows
f∗
i = f∗

j for all i, j ∈ {1, . . . , N} and p∗ > 0. Since G
is connected, then (A.3) holds if f∗

i = f∗
j for all i, j ∈

{1, . . . , N}. Now we proceed to show the uniqueness of
this solution. For that, we want to show that the set J =
{p ∈ R

N | fi(pi) = fj(pj) ∀i, j ∈ {1, . . . , N},1T
Np = 1}
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reduces to a single point p∗. By assumption fi is a strictly
decreasing monotone function and its inverse f−1

i always

exists. Notice that f−1
i is decreasing since fi ◦ f−1

i =

1, and
∂f−1

i

∂pi
=

(

∂fi
∂pi

)−1

< 0. Assume that there exits

α̂ 6= ᾱ for α̂, ᾱ ∈ R such that p̂ = f−1(α̂1N ), and p̄ =
f−1(ᾱ1N ), which satisfies 1T

N p̂ = 1T
N p̄ = 1.Write p̂−p̄ =

f−1(α̂1N ) − f−1(ᾱ1N ). Multiplying last expression by
1T
N , it follows

(A.4)

N
∑

j =1

(f−1
j (α̂)− f−1

j (ᾱ)) = 1T
N p̂− 1T

N p̄ = 0.

Recall that fi is strictly decreasing monotone function,
i.e., for x, y ∈ R we have that fi(x) < fi(y) iff x > y.
Using last fact we have that f−1

i (x) < f−1
i (y) iff x > y.

Without loss of generality assume α̂ > ᾱ (if the opposite
inequality is satisfied, simply switch the roles of α̂ and ᾱ
in what follows), then f−1

i (α̂) < f−1
i (ᾱ) (Recall α̂ 6= ᾱ

by assumption). We have that f−1
i (α̂) − f−1

i (ᾱ) < 0,

which implies that f−1
i (α̂) and f−1

i (ᾱ) have the same
sign. Therefore, the only solution to (A.4) is given when
α̂ = ᾱ, and the set J reduces to a single point p∗. ✷

PROOF. [Lemma 7] Note that G is not necessary

connected. In order to get (14), we use
∑

j∈X p
(k)
j =

∑

j∈X p
(0)
j for all k ≥ 0, which is given by the con-

servativeness of the states in Lemma 5. We have that
f∗
i = f∗

j for all i, j ∈ X by Lemma 6. It follows
Γp∗i

∑

j∈X 1 =
∑

j∈X (ri − rj + Γp∗j ), and the result fol-
lows. Notice that when the graph is connected we have
the same expression as in (8). ✷

PROOF. [Theorem 3] Let f(p) = [f1(p1), . . . , fN (pN )]
be the vector representation of the fitnesses. Con-
sider the Lyapunov function candidate V : RN → R,

V (f (k)(p)) = maxi∈V f
(k)
i (pi). Notice that V is a valid

Lyapunov function because f(p∗) is a global minimum
by Theorem 2, and then V (f (k)(p)) ≥ V (f(p∗)). Define
∆V (k) = V (f (k+1)(p))−V (f (k)(p)), for all k ≥ 0, where

V (f (k+1)(p)) = maxi f
(k+1)
i = maxi{ri − Γp

(k+1)
i }.

Then,

∆V (k) = max
i∈V

f
(k+1)
i −max

i∈V
f
(k)
i

= max
i∈V

(

ri − Γp
(k)
i − ǫ(k)Γp

(k)
i f

(k)
i

∑

j∈Ni

p
(k)
j

+ ǫ(k)Γp
(k)
i f̄

(k)
i

)

−max
i∈V

f
(k)
i

= max
i∈V

(

f
(k)
i + ǫ(k)Γp

(k)
i f̄

(k)
i

− ǫ(k)Γp
(k)
i f

(k)
i

∑

j∈Ni

p
(k)
j

)

−max
i∈V

f
(k)
i

= max
i∈V

(

f
(k)
i + ǫ(k)Γp

(k)
i (f̄

(k)
i − f

(k)
i

∑

j∈Ni

p
(k)
j )

−max
l∈V

f
(k)
l

)

.

Let f
(k)
max = maxi∈V f

(k)
i . Then,

∆V (k) = max
i∈V

(

f
(k)
i + ǫ(k)Γp

(k)
i

∑

j∈Ni

p
(k)
j f

(k)
j

− ǫ(k)Γp
(k)
i f

(k)
i

∑

j∈Ni

p
(k)
j − f (k)

max

)

= max
i∈V

(

f
(k)
i − ǫ(k)Γp

(k)
i f

(k)
i

∑

j∈Ni

p
(k)
j − f (k)

max

+ ǫ(k)Γp
(k)
i

∑

j∈Ni

p
(k)
j (f

(k)
j + f (k)

max − f (k)
max)

)

(A.5)= max
i∈V

(

− ǫ(k)Γp
(k)
i

∑

j∈Ni

p
(k)
j (f (k)

max − f
(k)
j )

− (1− ǫ(k)Γp
(k)
i

∑

j∈Ni

p
(k)
j )(f (k)

max − f
(k)
i )

)

.

We require ∆V (k) ≤ 0, so, it is sufficient to guarantee

that 1−ǫ(k)Γp
(k)
i

∑

j∈Ni
p
(k)
j > 0 since (f

(k)
max−f

(k)
i ) ≥ 0.

For that we choose ǫ(k) < min{ 1

maxi,j(f
(k)
i

−f
(k)
j

)
, 1

Γmaxi p
(k)
i

}.

Note that if maxi,j(f
(k)
i − f

(k)
j ) ≥ Γmaxi p

(k)
i , then

ǫ(k)Γp
(k)
i

∑

j∈Ni
p
(k)
j < 1 since p

(k)
i ∈ ∆p by Lemma 5.

On the other hand, if maxi,j(f
(k)
i − f

(k)
j ) < Γmaxi p

(k)
i ,

then ǫ(k) < 1

Γmaxi p
(k)
i

≤ 1

maxi,j(f
(k)
i

−f
(k)
j

)
, and p

(k)
i ∈ ∆p

by Lemma 5. Then, ∆V (k) ≤ 0 in any case.

We have just shown that ∆V (k) is non-positive. We show
next that there is not trajectory that can stay identically
at points where ∆V (k) = 0 other than the equilibrium.
There are three possible scenarios i) at the equilibrium,

ii) when f
(k)
i = f

(k)
max for some i ∈ V, f

(k)
j = f

(k)
max for

all j ∈ Ni and |V
(k)
eq |< N , where V

(k)
eq = {i ∈ V|f

(k)
i =

f
(k)
max}, and iii) when f

(k)
i = f

(k)
max for some i ∈ V, and

Ni = ∅.
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For case (ii), we haveV
(k)
eq ⊂ V. Let γ , max{dist(l, j) | l ∈

V \ V
(k)
eq , j ∈ V

(k)
eq }, that is, γ defines the maximum dis-

tance between nodes with maximum fitness and nodes
with strictly smaller fitness. Next, we characterize γ for
time-invariant G. Assume ∆V (k) = 0 but trajectories

are not at the equilibrium. Define ∆f
(k)
i = f

(k+1)
i −f

(k)
i .

Pick i ∈ V
(k)
eq such that there exists some neighbor j

satisfying j ∈ Ni ∩ (V \ V
(k)
eq ). Note that node i always

exists since the assumption that the graph is connected.
Using an analogous procedure as the one to show that
∆V (k) is non-positive, and the fact that at least one
node j ∈ Ni does not have maximum fitness, it follows

that f
(k)
max − f

(k)
j < 0 for some j ∈ Ni, so that ∆f

(k)
i =

f
(k+1)
i − f

(k)
max = −p

(k)
i

∑

j∈Ni
p
(k)
j (f

(k)
max − f

(k)
j ) < 0.

Then |V
(k+1)
eq |< |V

(k)
eq |. Repeat this process γ times (note

that γ is an upper bound for the time that it takes a node
with maximum fitness to interact with a neighbor having
strictly smaller fitness), then afterm > k+γ at most the

number of agents having f
(k)
max is 1 or else f

(m)
i < f

(k)
max,

which implies ∆V (m+k) < 0 if trajectories are not at
equilibrium. Therefore, V (f (k+γ)(p)) − V (f (k)(p)) < 0.
Note for the time-variant G(k) the bound γ can increase
with respect to the one shown in the time-invariant G
since there exists the possibility that at some instant a

vertex in V
(k)
eq does not have a neighbor with fitness less

than f
(k)
max, but γ is finite since the union of graphs is

connected as k → ∞, which implies that trajectories do
not get trapped in ∆V = 0.

For case (iii), we have that at least one node i ∈ V
(k)
eq will

have a neighbor j ∈ V\V
(k)
eq such that f

(k)
j < f

(k)
max as k →

∞, let say that this happens at instant m+ 1 ≥ k, then

∆f
(m+1)
i = f

(m+1)
i − f

(m)
max = −p

(m)
i

∑

j∈Ni
p
(m)
j (f

(m)
max −

f
(m)
j ) < 0, then |V

(m+1)
eq |< |V

(m)
eq |. The same process

occurs for all nodes in V
(k)
eq since the union of graphs is

connected as k → ∞. Therefore, by LaSalle’s invariance
principle, every trajectory starting in ∆p approaches f∗

as k → ∞. ✷

12


	Introduction
	Preliminaries and notation
	On the replicator dynamics

	Problem statement and solution approach
	Problem statement
	Solution characterization for balanced matrices
	Solution bound for unbalanced matrices

	The constrained Euler replicator algorithm
	Stability analysis
	Simulations
	Conclusions
	Proofs

