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Abstract— This note considers a class of decentralized convex
optimization problems subject to constraints. We propose a
discrete-time algorithm with constant step-size that exploits
the simultaneous perturbation method to obtain information
of the cost function. Under some technical conditions, we prove
practical convergence in probability of the algorithm to a ball
that contains the optimizer and which has a step-dependent
size. The novelty of our approach is that the agents do not
require a closed form expression of the cost function, nor
global knowledge of total resources in the network or any
specific procedure for algorithm initialization. Our proof meth-
ods employ nonsmooth Lyapunov theory, convex analysis, and
stochastic difference inclusions. We illustrate the applicability
of the algorithm in an electricity market scenario.

I. INTRODUCTION

The operation of large-scale systems imposes new de-
mands and challenges on the design of learning algorithms
for optimal resource allocation. In a typical scenario, a group
of agents decides how to allocate a set of limited resources
to solve a common objective while satisfying operational and
limited communication constraints. The challenge is in the
design of algorithms that are scalable, robust against errors
in communication or computation, preserve privacy, and that
allow the agents in the network an autonomous decision on
resource utilization. Different factors increase the complexity
of such design in a network, such as problem uncertainty
arising from other environmental and operational decisions
that makes it difficult to the agents to have a closed form
expression of their objective functions, which are often only
accessible through (noisy) measurements.

A prominent application of resource allocation can be
found in electricity markets, where renewable energy sources
are integrated into electricity grids. In these scenarios, a main
objective is to match supply with demand to compensate
for power grid imbalances with distributed energy resources.
Depending on what technology and source of energy is avail-
able at a given moment, the functional cost of supply and
consumption may not be fully known and only numerically
computable with given inputs. Costs may also depend on
external prices that are determined on the global production
and demand, which functional form may not be directly
available. Motivated by this, here we propose a stochastic,
distributed, and robust algorithm in discrete-time for resource
allocation, which does not require any specific knowledge
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of the closed-form of agents’ cost functions or any special
initialization procedure.

Literature review. The subject of model-free optimization
is receiving increasing interest as it handles uncertainties in
the model while providing stability guarantees. Extremum
seeking control, which theoretical foundation is given in [1]
for continuous-time and [2] for discrete-time, is a well-
known method that has been successfully applied in real-time
optimization when the analytic cost function is unknown.
This is the case of [3], where the authors consider a convex
optimization problem subject to linear constraints. They
propose a continuous-time algorithm that combines the idea
of saddle point dynamics with extremum seeking control
to converge to the set of saddle points of the Lagrangian
associated with the convex optimization problem in a prac-
tical way. A similar approach is followed in [4], where
a primal-dual continuous-time algorithm is amended with
extremum seeking control to converge to the minimizer. As
an application, the authors study the dynamics of electricity
markets by means of a resource allocation problem. More
related to this work is the paper [5], where the authors adapt
three different stochastic approximation algorithms that use
a gradient based method for extremum seeking control of a
dynamical system. The three papers above have in common
the centralized approach to their respective optimization
problems. On the other hand, the authors in [6] propose a
decentralized algorithm to solve a resource allocation prob-
lem. They propose and analyze a continuous-time algorithm
that combines the ideas of replicator dynamics and extremum
seeking. However, the optimization problem there does not
consider box constraints, the graph topology is undirected,
and the continuous-time nature of the algorithm makes it
difficult to implement for real-time applications.

Employing a different idea, but similar in spirit to ex-
tremum seeking control, the simultaneous perturbation (SP)
gradient estimate, proposed first in [7], has been applied
to optimization. The SP method is a well-known method
for estimating the gradient of a cost function from noisy
measurements. Its application to unconstrained optimiza-
tion is known as the simultaneous perturbation stochastic
approximation (SPSA) algorithm. An application of the
SPSA algorithm is found in [8], [9], were the authors
design a controller to drive a robot to a source without the
use of the position information. The SP method has been
also applied to constrained optimization; for example [10]
presents a stochastic approximation algorithm based on the
penalty function method to solve a optimization problem
with inequality constraints. However, the algorithm in the
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papers mentioned above are based on standard assumptions
found in SPSA, such as a monotonically decreasing step-size.
Although this approach fits very well in many applications
where direct measurements of the gradient are not available,
in on-line optimization a decreasing step-size is not desirable.
That is the case in source-seeking problems, where a mobile
robot might get trapped in a location where the magnitude of
the gradient is small or in applications where it is required to
track a time-varying optimum. To overcome this drawback,
a constant step-size is used. That is the case in [11], [12],
where the authors propose a local voting algorithm with
constant step-size and apply it to solve an approximate
consensus problem for stochastic networks. However, the
optimization problem there does not consider box constraints
and the graph topology is undirected.

Statement of contributions. We propose and analyze a
novel distributed discrete-time stochastic algorithm to solve
a class of distributed resource allocation problems. Our algo-
rithm builds on our previous work [13] and the SP method.
In particular, we extend our ROBUST BOX-CONSTRAINED

GRADIENT FAIRNESS algorithm with an SP technique but,
unlike previous works, we employ a constant step-size.
In this way, our approach allows an interconnected group
of agents to collectively minimize a global cost function
subject to both equality and inequality constraints, where
the closed-form expression of the local cost functions is
unknown to the agents. Under some technical conditions, we
show that the algorithm converges in probability to a small
neighborhood of the solution as long as the chosen step-size
is sufficiently small. It is shown that the proposed algorithms
are convergent to a neighborhood around the equilibrium
even when there are temporary errors in communication or
computation. Thus, agents do not require global knowledge
of total resources in the network or employ any special
procedure for initialization. Our algorithm is provable correct
over weight-balanced and strongly connected networks. In
the proofs, we employ Lyapunov theory together with tools
from convex analysis and stochastic difference inclusions.

II. PRELIMINARIES

This section presents notation and basic notions from
graph, matrix, and stability theory that are used in the sequel.

A. Notation and graph-theoretic notions

In what follows, we denote by Z≥0 the set of nonnegative
integers, Z>0 the set of positive integers, N the set of natural
numbers, and R

N
>0 the positive orthant of R

N , for some
N ∈ N, respectively. The spectrum of a matrix A ∈ R

N×N

is denoted by spec(A), and an eigenvalue of a symmetric
matrix A ∈ R

N×N is denoted by λi(A) ∈ spec(A), where
λ1(A) ≥ . . . ≥ λN (A). The singular values of A are
represented by σ1(A) ≥ . . . ≥ σN (A). In what follows,
we let IN be the identity matrix of size N × N , and
diag(a1, . . . , aN ) the N×N matrix with entries ai along the
diagonal. The vector 1N ∈ R

N is the column vector whose
elements are all equal to one. When using inequalities for
vectors, these refer to componentwise inequalities. When a

vector x ∈ R
N is composed by nonzero elements, we define

the elementwise inverse as x−1 , [x−1
1 , . . . , x−1

n ]⊤. We let
[l]+ = max{0, l}, for l ∈ R. The two-norm and ∞-norm of a
vector are denoted by ‖.‖2 and ‖.‖∞, respectively. A function
f is o(h), and we write f(x) = o(h(x)) as x→ x0, to mean
that limx→x0

f(x)
h(x) = 0. A function ϕ : Rn

>0 → R
n
>0 is of

class K if it is continuous, strictly increasing and ϕ(0) = 0.
Furthermore, φ is class K∞ if it is of class K and unbounded.
The closed and open unit balls centered at the origin in R

n

are denoted by B and B
◦, respectively.

A matrix A = [aij ] ∈ R
N×N
≥0 is called nonnegative if

aij ≥ 0, for all i, j ∈ {1, . . . , N}. A directed graph of
order N or digraph is a pair G = (V , E), where V , the
vertex set, is a set with N nodes, and E ⊂ V × V , the edge
set, is a set of ordered pair of vertices called edges. Given
B ∈ R

N×N
≥0 , its associated weighted digraph G(B) is the

graph with V = {1, . . . , N} and edge set defined by the
following relationship: (i, j) ∈ E(B) if and only if bij > 0.
The associated weight of the edge (i, j) is given by the
entry bij . The digraph G(B) is said to be weight-balanced if
∑N

j=1 bij =
∑N

j=1 bji for all i ∈ V . Given a pair of indices
i, j ∈ V of a digraph G = (V , E), j is called an out neighbor
of i if (i, j) ∈ E . We let N out

i (G) denote the set of out
neighbors of i in G. A digraph G(A) is strongly connected
if there exists a path between any two vertices. The strongly
connectedness of G(A) is equivalent to requiring that A
is an irreducible matrix. The Laplacian matrix associated
to a digraph G(A) is defined as L(G)ii =

∑N

j=1 aij , and
L(G)ij = −aij for i 6= j. Let x ∈ R

N , we denote
Avg(x) = 1

N
1
⊤
Nx.

B. Stability for stochastic difference inclusions

The notions we introduce here follow [14]. Consider a
discrete-time, stochastic difference inclusion

(1)x+ ∈ Hα(x, v
+), v ∼ µ,

where x+ is the state after an instantaneous change, Hα :
R

n × R
m ⇉ R

n is a set-valued map for some n,m ∈ Z>0

parameterized by α ∈ R>0 and which assigns non-empty
set values, and x ∈ R

n is the state. The notation v+ and v
refers to sequences of random input variables as explained
next. Consider a complete probability space (Ω,F ,P), where
Ω denotes the set of all possible outcomes, F is the σ-
field associated with Ω, and P is the probability function
that assigns a probability to events in F . In particular, we
assume B(Rm) ⊆ F , where B(Rm) is the Borel field.
In (1), we use v+ and v as a place holder for a sequence of
independent, identically distributed (i.i.d.) random variables
v , {vk}∞k=0; that is, such that P(vk ∈ F ) = P({w ∈
Ω | vk(w) ∈ F}) is well defined and independent of k for
each F ∈ B(Rm). We use Fk to denote the collection of sets
{w ∈ Ω | (v0(w), . . . ,vk(w)) ∈ F}, F ∈ B((Rm)k+1),
which are the sub-σ-fields of F that form the minimal
filtration of the sequence v. Due to the i.i.d property, each
random variable has the same probability measure µ :
B(Rm) → [0, 1] defined as µ(F ) , P(vk ∈ F ) and, for
almost all w ∈ Ω,
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E[f(v0, . . . ,vk,vk+1)|Fk](w)

=

∫

Rm

f(v0(w), . . . ,vk(w), v)µ(dv),

for each k ∈ Z≥0 and each measurable f : (Rm)k+2 → R.
The sequence of random variables x , {xk}k≥0, where

xk : domxk ⊂ Ω → R
n, k ∈ Z≥0 with x0 = x for all

w ∈ Ω and domxk+1 ⊂ domxk , is called a random process
starting at x ∈ R

n. We say that x is adapted to the natural
filtration of v if xk+1 is Fk measurable for each k ∈ Z≥0,
i.e., x−1

k+1(F ) ∈ Fk for each F ∈ B(Rm). A random process
x starting from x ∈ R

n that is adapted to the natural filtration
of v, together with a random variable Ix : Ω → Z≥0 ∪ {∞}
(which denotes the number of elements in the sequence x)
is a random solution of (1) starting at x ∈ R

n, denoted as
x ∈ S(x), if x0 = x, xk+1(w) ∈ Hα(xk(w),vk+1(w)) for
all w ∈ domxk+1 , {w ∈ Ω | k + 1 ≤ Ix} and k ∈ Z≥0.
We impose the following regularity condition on H.

Assumption 1: H is locally bounded and v 7→
graph(Hα(·, v)) , {(x, y) ∈ R

n × R
n | y ∈ Hα(x, v)} is

measurable with closed values. •
The compact set A ⊂ R

n is stable in probability for (1)
if for each ǫ > 0 and ς > 0 there exists ω > 0 such that,
for each x ∈ A+ωB and x ∈ S(x), P(graph(x) ⊂ (Z≥0 ×
(A+ ǫB◦))) ≥ 1− ς .

Next, we introduce the notion of stochastic stability called
recurrence, wherein solutions return to a bounded set in-
finitely often. Roughly speaking, an open, bounded set is
said to be recurrent if almost all solutions revisit the set
infinitely often. A recurrent set is not necessarily stable in
probability and recurrence does not imply that solutions stay
bounded, but rather states that solutions reach a compact set
with probability one.

Definition 1: (Globally Recurrent Set): An open, bounded
set O ⊂ R

n is said to be globally recurrent if
E[

∏

i∈Z>0
IRn\O(xi)] = 0, for each x ∈ R

n and each
x ∈ S(x). •

Proposition 1: [14] Consider the system (1) under As-
sumption 1. If there exists a radially unbounded, upper
semicontinuous function V : Rn → R≥0, and a continuous
function ̺ : Rn → R>0 such that

(2)
∫

Rm

max
h ∈Hα

V (h)µ(dv) ≤ V (x) − ̺(x),

for all x ∈ R
n \ O. Then, O is globally recurrent for (1). •

In order to analyze the stability properties of systems of
the form (1) with respect to compact sets A ⊂ R

n, we
introduce the notion of input-to-state stability in probability.
The system (1) is said to be input-to-state stable in prob-
ability (ISSp) relative to A if 1) A is stable in probability
when α = 0 and 2) there exists ϕ ∈ K∞ such that, for
each α > 0, the open bounded set A + ϕ(α)B◦ is globally
recurrent for (1).

C. Convex analysis notions

The notions we introduce here follow [15], [16]. Let f :
R

n → R be a closed, proper, and convex function for some
n ∈ Z>0. The subgradient of f is the set-valued map ∂f :

R
n ⇉ R

n defined by the subgradient set ∂f(x) = {ξ ∈
R

n | f(x′) ≥ f(x) + ξ⊤(x′ − x)}. We refer to df(x) as the
semi-derivative function, which is the support function of the
nonempty, compact, and convex set ∂f(x), i.e., df(x)(w) =
sup{ξ⊤w | ξ ∈ ∂f(x)}.

We say that f satisfies the superquadratic growth condi-
tion if there exists γ > 0 such that

(3)f(y) ≥ f(x) + df(x)(y − x) +
γ

2
‖y − x‖2,

for x, y ∈ R
n. In particular, a strongly convex function

satisfies the superquadratic growth condition, and, if f is
differentiable, this condition is equivalent to assuming ρIn ≤
∇2f(x) for x ∈ R

n. Similarly, we say that f satisfies the
subquadratic growth condition if there is Γ such that

(4)f(y) ≤ f(x) + df(x)(y − x) +
Γ

2
‖y − x‖2,

for x, y ∈ R
n.

III. PROBLEM STATEMENT, SOLUTION APPROACH, AND

ALGORITHM

In this section, we introduce the optimization problem
we are set out to solve, which is followed by the pro-
posed STOCHASTIC BOX-CONSTRAINED GRADIENT algo-
rithm with guaranteed convergence to their corresponding
optimizer under complementary sets of assumptions.

A. Problem statement and solution approach

We consider a network of N agents connected over a
digraph whose goal is to minimize the sum of local payoff
functions fi : R → R≥0, i ∈ {1, . . . , N}, where no ex-
plicit closed-form expression of the function fi is available,
under resource constraints. The BOX-COUPLED FAIRNESS

optimization problem is given by

min
p∈[p,p]N

∑N

i=1
fi(pi)

s.t. 1
⊤
Np = 1

⊤
N ū,

(5)

where fi is the payoff, p = [p1, . . . , pN ]⊤ ∈ R
N is the

resource allocation, ūi ∈ R is the input assumed to be
constant that represents the available quantity of resources for
each agent, ū = [ū1, . . . , ūN ]⊤, and p, p ∈ R

N are the lower
and upper limits of the optimization variable, respectively.
We name the last constraint in (5) as the box constraint. We
simply refer to the problem with the box constraint omitted
as the LINEARLY COUPLED FAIRNESS optimization problem.
To solve both problems we state the following assumption.

Assumption 2: (Problem assumptions): We assume that
the BOX-COUPLED FAIRNESS has a unique solution and there
is not explicit closed-form expression of the payoff function
fi, i ∈ {1, . . . , N}. The only information available are mea-
surements of fi at the parameter pi. Furthermore, we assume
fi is twice continuously differentiable and bounded below
with uniform bounded gradients, i.e., there exist constant
M ∈ R>0 such that maxi∈V |

∂fi(pi)
∂pi

|≤ M for p ∈ R
N . An

upper bound of M is assumed to be known. An agent i ∈ V
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should be able to measure or obtain fj(pj) for j ∈ N out
i . We

assume that the box constraints are explicitly given. •
Under the same assumptions as for the last problem and

using the exact penalty method (see, e.g., [17]), we reformu-
late the BOX-COUPLED FAIRNESS problem as follows:

min
p
f̂(p)

s.t. 1
⊤
Np = 1

⊤
N ū,

(6)

where f̂(p) ,
∑N

i=1 fi(pi) + J(p), J(p) , χ
∑N

i=1([pi −
pi]+ + [pi − pi]+), and χ ∈ R>0. The next lemma charac-
terizes the optimal solution to the BOX-COUPLED FAIRNESS

optimization problem.
Lemma 1: (Solution of the BOX-COUPLED FAIRNESS

problem [18]): Let Assumption 2, on the payoff character-
istics for the BOX-COUPLED FAIRNESS problem, hold. Let
χ ∈ R>0 be such that

(7)χ > 2 max
p∈RN

‖∇pf(p)‖∞.

Then, the solution p∗ to the BOX-COUPLED FAIRNESS opti-
mization problem satisfies

(8a)ζ∗1N ∈ ∇pf(p
∗) + ∂J(p∗),

(8b)1
⊤
Np

∗ = 1
⊤
N ū,

where ζ ∈ R is the Lagrange multiplier for the equality
constraint of the BOX-COUPLED FAIRNESS problem. •

Next, we propose a distributed discrete-time algorithm
which successfully converges to the solutions of the BOX-
COUPLED FAIRNESS problem introduced above under the
corresponding assumptions. We will refer to them as the
STOCHASTIC BOX-CONSTRAINED GRADIENT algorithm.

B. Proposed algorithm

In order to solve the BOX-COUPLED FAIRNESS prob-
lem dynamically, we introduce the STOCHASTIC BOX-
CONSTRAINED GRADIENT algorithm shown in Algorithm 1,
where

Σ =

{

w+ = w − αL(g + ψ), (9a)

p+ = p+ α(−L(g + ψ) + w − p+ u), (9b)

where w ∈ R
N is an internal estimator state assumed

w(0) = 0, α ∈ (0, 1) is the step-size, L is the Lapla-
cian matrix associated to directed graph G, g(p, δ, v) ,

[g1(p1, δ, v1), . . . , gN(pN , δ, vN )]⊤ ∈ R
N with gi : R×R

2×
R → R, for i ∈ V , given as:

gi(p, δ, v) =
fi(pi + δ1vi)− fi(pi − δ2vi)

δ1 + δ2
v−1
i .

Here, fi : R → R has the same meaning as in (5), δ =
(δ1, δ2)

⊤ ∈ R
2, the random variables {vk}k∈Z≥0

take values
in {−1, 1}N , ψ ∈ ∂J(p), u ∈ R

N is defined as u = ū +
ǭ, where ūi ∈ R is the input assumed to be constant that
represents the available quantity of resources for each agent,
ū = (ū1, . . . , ūN)⊤, and ǭ ∈ R

N is defined as

ǭi =











−ǫ, if p+i = pi
ǫ, if p+i = p

i

0, otherwise,

Algorithm 1 One step of the STOCHASTIC BOX-
CONSTRAINED GRADIENT algorithm for agent i ∈ V

1: ǭi = 0

2: Compute Σi as in (9)
3: if p+

i
= p

i
then

4: ǭi = −ǫ

5: end if
6: if p+

i
= p

i
then

7: ǭi = ǫ

8: end if
9: Compute p

+

i
as in (9b)

where ǫ ∈ R>0 is a given small constant satisfying ǫ ≤ α.
Remark 1: Notice that the STOCHASTIC BOX-

CONSTRAINED GRADIENT algorithm does not allow
to have p+i = pi or p+i = p

i
since it perturbs Σi using a

small quantity ǭi at any time this happens. •
Since the box constraints are explicitly given, the gen-

eralized gradient of the penalty function is directly used
in the algorithm.We make the following assumption on the
sequence of random variables v.

Assumption 3: (On the characteristics of the random in-
put): The sequence of random variables {vk}k∈Z≥0

, defined
on a probability space (Ω,F ,P) with vk : Ω → {−1, 1}N ,
is i.i.d. with E[vk] = 0 for each k ∈ Z≥0. •

In what follows we use the following notation. We refer
to Fu

≤ , {p ∈ R
N | 1

⊤
Np ≤ 1

⊤
N ū + Nǫ}, Fu

≥ , {p ∈

R
N | 1⊤

Np ≥ 1
⊤
N ū−Nǫ}, Fu , Fu

≤∩Fu
≥, and Fν

box = {p ∈
R

N | p− ν1N ≤ p ≤ p+ ν1N} for ν ∈ R>0.
Remark 2: For the easiness of presentation we neglect the

presence of noise in the observations of fi, i ∈ V . However,
from the analysis in the next section, practical convergence
in expected value to the equilibrium point can be achieved
under appropriate statistical properties on the noise. •

IV. STABILITY ANALYSIS

In this section, we show that the equilibrium point of
the STOCHASTIC BOX-CONSTRAINED GRADIENT dynamics
coincide with the optimal solutions of the corresponding
problem under the stated assumptions when G is strongly
connected and weight-balanced, and g(p, δ, v) is replaced by
∇pf(p) in (9). Theorem 1 presents the stability properties
of this dynamics. Proofs for all results in this paper can be
found in the extended version of this paper available online
in http://fausto.dynamic.ucsd.edu/eduardo/
mainResourceSP.pdf.

Lemma 2: (Equilibria of the STOCHASTIC BOX-
CONSTRAINED GRADIENT algorithm): Let Assumption 2,
on the payoff characteristics for the BOX-COUPLED

FAIRNESS problem, hold. Let G be a weight-balanced
and strongly connected graph. Let the point p∗ represent
the solution of the STOCHASTIC BOX-CONSTRAINED

GRADIENT algorithm. Replace g(p, δ, v) by ∇pf(p) and
let ǫ = 0 in (9). Then, the point p∗ is the solution of the
STOCHASTIC BOX-CONSTRAINED GRADIENT algorithm if
and only if there exists η∗ ∈ R such that
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(10a)η∗1N ∈ ∂f̂(p∗),

(10b)1
⊤
Np

∗ = 1
⊤
N ū.

•
The following lemma characterizes the invariance of Fu

≤ and
Fu

≥ with respect to the STOCHASTIC BOX-CONSTRAINED

GRADIENT dynamics.
Lemma 3: (Invariance of the resource constraint un-

der (9)): Let Assumption 2, on the payoff characteristics
for the LINEARLY COUPLED FAIRNESS problem, hold. Let G
be a weight-balanced and strongly connected graph. Assume
α ∈ (0, 1) in (9). Then, the sets Fu

≤ and Fu
≥ are strongly pos-

itively invariant under the STOCHASTIC BOX-CONSTRAINED

GRADIENT dynamics. •
Before presenting our main results, the following lemma
characterizes g(p, δ, v) in terms of the gradient of the cost
function f . Lemma 5 shows that the trajectories of the
STOCHASTIC BOX-CONSTRAINED GRADIENT dynamics are
bounded.

Lemma 4: (SP approximation to the gradient): Let As-
sumption 3, on the characteristics of the random input, hold.
Assume that f is convex, finite, and twice differentiable and
δ1 + δ2 > 0. Then

gi(p, δ, v) =
∂f(p)

∂pi
+ bi + ci, (11)

where bi =
∑

j 6=i

vj
vi

∂f(p)
∂pj

, for i ∈ {1, . . . , n}, c =
v−1

2(δ1+δ2)
v⊤(δ21∇

2f(p1) − δ22∇
2f(p2))v, pj = p + δ′jv for

some δ′j ∈ [0, 1] and j ∈ {1, 2}. •
Lemma 5: (Boundedness of the STOCHASTIC BOX-

CONSTRAINED GRADIENT dynamics): Let Assumption 2, on
the payoff characteristics for the BOX-COUPLED FAIRNESS

problem, hold. Let G be weight-balanced and strongly con-
nected. Assume that

(12)χ >
1

min
(i,j)∈E

aij

(

2Mdout,max + ‖w(0)− p(0) + ū‖∞
)

,

and

(13)α <
mini∈V{pi − p

i
}

2dout,max(M + χ) + ‖w(0)− p(0) + ū‖∞
,

where dout,max = maxi∈V

∑N

j=1 aij . Then, there exists ν such
that

(14)ν ≤ max{|ν1|, |ν2|, ν3}

where ν1 = max{1⊤
Np(0),1

⊤
N ū + Nǫ} − (N − 1)minj pj ,

ν2 = min{1⊤
Np(0),1

⊤
N ū + Nǫ} − (N − 1)maxj pj , and

ν3 = α(2dout,max maxp‖∇pf(p) + b + c‖∞+2χdout,max +
‖w(0)−p(0)+u‖∞), for which the set Fν

box is strongly posi-
tively invariant under the STOCHASTIC BOX-CONSTRAINED

GRADIENT algorithm. •
Theorem 1: (Stability of the STOCHASTIC BOX-

CONSTRAINED GRADIENT algorithm): Let Assumption 2,
on the payoff characteristics for the BOX-COUPLED

FAIRNESS problem, hold. Assume G be a weight-balanced
and strongly connected graph. Then, for any constant
input ū ∈ R

N and any initial state p(0), and w(0) = 0,
the solution of the system (9) converges asymptotically
in probability to an open ball of radius depending on α,
δ1 + δ2, and ǫ centered at the equilibrium point (10). •

V. APPLICATION: DISTRIBUTED ECONOMIC DISPATCH

WITH UNKNOWN UTILITY FUNCTIONS

We consider an electricity market consisting of suppliers
and consumers, where the profit and cost functions of power
generation and consumption is unknown to the consumers
and suppliers. We denote by xi the electricity consumption
of consumer i ∈ {1, . . . , n}. Each consumer is associated
with a cost function f c

i : R → R. We denote by zj the
electricity production by supplier j ∈ {1, . . . ,m}. We define
N as the dimension of the state space, i.e., N = n+m. The
suppliers have an associated cost function f s

j : R → R. The
market clearing procedure can be formulated as

min
x,z

∑n

i=1
f c
i (xi) +

∑m

i=1
f s
i (zi)

s.t.
∑n

i=1 xi ≤
∑m

i=1 zi,
x ∈ [x, x], z ∈ [z, z].

(15)

Notice the optimization problem above does not have the
form of the BOX-COUPLED FAIRNESS optimization problem.
However, we can transform the problem into

min
x,z,s

∑n

i=1
f c
i (xi) +

∑m

i=1
f s
i (−zi)

s.t.
∑n

i=1 xi +
∑m

i=1 zi + 1
⊤
Ns = 0,

s ≥ 0, x ∈ [x, x], z ∈ [−z,−z].

(16)

which allows us to use the STOCHASTIC BOX-
CONSTRAINED GRADIENT algorithm, as explained next.

Remark 3: A more general equality constraint can be
considered for the BOX-COUPLED FAIRNESS optimization
problem. For example, if we consider the equality constraint
of the form c⊤p = 1

⊤
N ū , where ci ∈ R>0. Then, we can

use a new variable yi = cipi for i ∈ {1, . . . , N}. The BOX-
COUPLED FAIRNESS optimization problem becomes

min
yi∈[cipi,cipi]

f(ȳ)

s.t. 1
⊤
Ny = 1

⊤
N ū,

(17)

where ȳ , [c−1
1 y1, . . . , c

−1
n yN ]⊤. Notice that f is still convex

with respect to y since it is a composition of an affine
mapping.

Remark 4: When an inequality constraint ‘≤’ is consid-
ered instead of the equality constraint for the BOX-COUPLED

FAIRNESS problem, we can add N slack variables s ∈ R
N
≥0

to this problem to convert the inequality constraint into an
equality one. In this case, the BOX-COUPLED FAIRNESS

optimization problem is equivalent to

min
p∈[p,p],s∈R

N
≥0

f(p)

s.t. 1
⊤
Np+ 1

⊤
Ns = 1

⊤
N ū.

(18)

To see that the problem (18) is equivalent to the original one,
first notice that if (p, s) is feasible for the problem (18),
then p is feasible for the original problem, since 1

⊤
Ns =

1
⊤
N ū− 1

⊤
Np ≥ 0. Conversely, if p is feasible for the original

problem, then (p, s) is feasible for the problem (18), where
we take 1

⊤
Ns = 1

⊤
N ū− 1

⊤
Np.

Example 1 (Distributed electricity market): We consider
an electricity market consisting in 10 consumers and 5
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suppliers. This example is partially taken from [4]. Our
example differs from the example in [4] since we consider a
graph for the topology of the electricity market. We illustrate
the response of the STOCHASTIC BOX-CONSTRAINED GRA-
DIENT algorithm for the undirected adjacency matrix A. We
construct G(A) as a ring with V ∈ {1, . . . , 15}, bidirectional
edges given by ai,i+1 = 1/5 for i ∈ V (assume that if i = 15,
then i + 1 = 1) and additional bidirectional edges given by
a1,5 = a3,9 = 1/6. We use ūi = 0 for i ∈ V , x ∈ [0, 10]n,
z ∈ [−10, 0]m, χ = 10, and δ1 = δ2 = α = 0.01. We use the
variable z in the negative orthant. Its sign means the direction
of the flow, i.e., the variable is always negative indicating that
it is a supplier. Figure 1 shows the behavior of the STOCHAS-
TIC BOX-CONSTRAINED GRADIENT algorithm for a random
initial condition with xi(0) = zj(0) = 0, i ∈ {1, . . . , n},
j ∈ {1, . . . ,m}, w(0) = 0. We have introduced additive
Gaussian noise in the measurements of the signal mapping
of zero mean and variance .05. The optimal is given by x∗ =
[2.09, 1.78, 6.35, 4.46, 3.17, 2.34, 4.35, 4.08, 7.79, 2.45] and
z∗ = [−6.63,−6.82,−7.85,−8.28,−9.27] (in kW ). To
illustrate the algorithm robustness, we introduce an erroneous
update on the system state at iteration k = 15× 103, where
we force x(k) and z(k) to be zero during 100 iterations.
Notice that trajectories converge to the desire equilibrium
no matter the erroneous updates on the system state we have
introduced.

Evolution of x(k) and z(k)

0.5 1 1.5 2 2.5 3

0

0

5

10

−5

−10

Iterations ×104

kW

Fig. 1. Evolution of the electricity market for Example 1. Negative
trajectories correspond to the suppliers z(k) and positive ones to the
consumers x(k). Dashed lines are the optimal consumption and production
x∗ and z∗, respectively. In k = 15 × 103 it is forced the states x(k) and
z(k) to be zero during an interval of 100 iterations.

VI. CONCLUSIONS

Building on the our previous algorithm ROBUST BOX-
CONSTRAINED GRADIENT FAIRNESS and the simultaneous
perturbation method, we have introduced a novel stochastic
algorithm that allows a group of agents to find the minimizer
of an unknown cost function while satisfying inequality
and equality constraints. We have proven convergence in a
practical way to the solution as long as the chosen step-size
is sufficiently small. In particular, the proposed algorithm are
designed to be robust to temporary errors in communication
or computations of agents. Our technical approach relies on

results nonsmooth Lyapunov theory, convex analysis, and
stochastic difference inclusions. Motivated by applications
to resource allocation and optimization, we plan to extend
available proofs that can help us relax the assumptions
needed.
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